TD3

4 novembre 2024

Exercice 1

On rappelle qu'un point fixe d'une permutation est un entier i tel que $\sigma(i) = i$. Montrer que, avec probabilité 1 - o(1), une permutation aléatoire uniforme σ_n ne contient pas deux points fixes consécutifs.

Exercice 2

Soit X_n le nombre de blocs 01 dans un mot aléatoire uniforme w_n dans $\{0,1\}^n$. Montrer que, X_n/n tend vers en probabilité vers un nombre c, que l'on calculera.

Exercice 3

Soit X une v.a. à valeurs **réelles** et espérance finie. Montrer que, pour tout $\mu \geq \mathbb{E}[X]$, on a

$$\mathbb{P}[X \le \mu] > 0.$$

En déduire que, si X a valeurs dans \mathbb{N} et $\mathbb{E}[X] < 1$, alors $\mathbb{P}[X = 0] > 0$.

Exercice 4

Soit v_1, \ldots, v_n des vecteurs de norme 1 dans \mathbb{R}^d . Montrer qu'il existe $\varepsilon_1, \ldots, \varepsilon_n$ dans $\{-1, 1\}$ telle que

$$\left\| \sum_{i=1}^n \varepsilon_i v_i \right\| \le \sqrt{n}.$$

(Indice : calculer $\mathbb{E}\left[\left\|\sum_{i=1}^{n}X_{i}v_{i}\right\|^{2}\right]$, en prenant les X_{i} i.i.d. avec $\mathbb{P}[X_{1}=-1]=\mathbb{P}[X_{1}=1]=1/2.$)

Exercice 5

- 1. Soit X_n le nombre de points fixes d'une permutation aléatoire uniforme σ_n . Calculer $\mathbb{E}(X_n)$ et $\mathbb{E}(X_n^2)$. Peut-on utiliser la méthode du second moment pour estimer $P[X_n = 0]$?
- 2. Soit Y une variable aléatoire avec une variance finie, que l'on note σ^2 . Montrer que, pour u > 0,

$$\mathbb{P}[Y \ge \mathbb{E}(Y) + u] \le \frac{\sigma^2}{u^2 + \sigma^2}.$$

Indice: écrire, pour $t > -\mathbb{E}[X]$ bien choisi,

$$\mathbb{P}[X \ge \mathbb{E}[X] + u] \le \mathbb{P}\left[(X + t)^2 \ge (\mathbb{E}[X] + u + t)^2 \right].$$

3. Trouver une borne supérieure pour $\mathbb{P}[X_n \geq 2]$, où X_n est le nombre de points fixes d'une permutation aléatoire uniforme.