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Standard notation/terminology: throughout the script,
• r.v. stands for random variable: unless specified otherwise, r.v. are real-valued and usually repre-

sented by uppercase letters;
• (Ω,A,P) is a probability space; throughout the script, ω represents an element of Ω; when there is

no ambiguity, we write Lp instead of Lp(Ω,A,P);
• 1{B} is the indicator function of a measurable set B;
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• PY is the distribution of the r.v. Y ;
• a.s. means ”almost surely”, i.e. that the event we are speaking of holds with probability 1; addition-

ally ”for almost all ω” means for ω in a set of probability 1.

Part A. Conditional expectation

1. Discrete conditioning

Reminder: if A,B are measurable sets with P(B) > 0, then we set P(A|B) = P(A∩B)
P(B) .

More generally, if X ∈ L1 or X ≥ 0, then we have

E[X|B] =
E[X1B ]

P(B)
=

∑
k∈Range(X)

k P(X = k|B).

But, what if we want to condition on a random variable Y and not on an event B? What is the expectation
of X knowing Y ? This depends on the value of Y … We will define E[X|Y ] as a function of Y .

Definition 1.1. Consider r.v. X : Ω → R and Y : Ω → S, where Y takes values in a countable set S.
Assume X ∈ L1 or X ≥ 0. Then the conditional expectation of X knowing Y is defined as E[X|Y ] = φ(Y ),
where, for y in S,

φ(y) =

{
E[X|Y = y] if P(Y = y) > 0;

undefined if P(Y = y) = 0.

Warning: E[X|Y ] is a random variable Ω→ R, like X, and not a number like E[X].

Example. Assume Y ∼ Poisson(λ) and X ∼ Binomial(Y, p).
If Y = n, then X ∼ Binomial(n, p) and E[X|Y = n] = n p. Thus E[X|Y ] = Y p.
Less intuitively, we can also consider E[Y |X] by computing E[Y |X = k] for all k

E[Y |X = k] =
∑
n≥k

n
P(Y = n,X = k)

P(X = k)
=

∑
n≥k nP(Y = n)P(X = k|Y = n)

P(X = k)
.

The denominator is computed as follows:

P(X = k) =
∑
m≥k

P(X = k|Y = m)P(Y = m) =
∑
m≥k

(
m

k

)
pk(1− p)m

k λme−λ

m!
= · · · = (λp)ke−λp

k!
.

Simplifying we get

E[Y |X = k] = e−λ+λp
∑
n≥k

n
λn−k(1− p)n−k

(n− k)!
= · · · = k + (1− p)λ.

Comparing with the definition of conditional expectation, we conclude that E[Y |X] = X + (1− p)λ.

Remark. (i) Let S′ = {y ∈ S|P(Y = y) = 0} be the set where E[X|Y ] is undefined. Since S is countable,
we have PY (S

′) = P(Y ∈ S′) = 0. Therefore φ is well defined PY almost surely, and E[X|Y ] is defined
almost surely.

(ii) Call (Ai)i∈I the partition of Ω induced by Y , i.e.

{Ai, i ∈ I} = {Y −1(s), s ∈ S}.

The conditional expectation E[X|Y ] depends only on Y through the partition (Ai)i∈I . For instance we
have E[X|Y ] = E[X|1− Y ].

Proposition 1.2. Let X ∈ L1 and Y : Ω→ S as above. For all bounded functions g : S → R we have

(CP1) E
[
g(Y )E[X|Y ]

]
= E

[
g(Y )X

]
.

The same holds for X ≥ 0 and all nonnegative functions g : S → R.
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Proof. We have

E
[
g(Y )E[X|Y ]

]
=
∑
k∈S

P(Y = k)g(k)E[X|Y = k] =
∑
k∈S

g(k)E
[
X 1{Y = k}

]
=
∑
k∈S

E
[
Xg(Y )1{Y = k}

]
= E

[
Xg(Y )

(∑
k∈S

1{Y = k}
)]

= E
[
g(Y )X

]
.

The assumptions ensure that all sums converge (or are sums of nonnegative terms, and hence well defined).
□

2. Extension to continuous setting

If Y takes value in a uncountable space, e.g., R, it might be the case that P(Y = y) = 0 for all y. We
need to define E[X|Y ] differently. We will use (CP1) and a detour through the theory of Hilbert spaces.

2.1. Hilbert spaces and projections.

Definition 2.1. A (real) Hilbert space H is a complete normed real vector space, equipped with an inner
scalar product s.t. ⟨x, x⟩ = ∥x∥2 (called Hilbertian scalar product).

Lemma 2.2 (Cauchy-Schwarz inequality). Let x, y be element in a Hilbert space H. Then |⟨x, y⟩| ≤ ∥x∥ ∥y∥.

Hint of proof. Expand ∥x± y∥2 ≤ (∥x∥+ ∥y∥)2 (which follows from triangular inequality), cancel out terms,
and get the above inequality. □

This implies in particular that the scalar product x, y 7→ ⟨x, y⟩ is continuous in both variables.

Definition 2.3. A subspace L of a Hilbert space H is a closed linear subspace of H.

Definition 2.4. Let x be in H and L be a subspace of H. The distance form x to L is d(x, L) = infy∈L ∥x−y∥.

Theorem 2.5. Let x be in H and L be a subspace of H. Then there exists a unique y in L such that
(1) ∥x− y∥ = d(x, L).

Note: both the existence and the uniqueness of y need to be proven (no compactness for justifying the
existence).

The proof of the theorem uses the following lemma.

Lemma 2.6. Let x, y, y′ be elements of a Hilbert space H and set z = y+y′

2 . Then

∥y − y′∥2 = 2∥x− y∥2 + 2∥x− y′∥2 − 4∥x− z∥2.

Idea of proof. Expand using scalar products and compare both sides. □

Proof of the theorem. Uniqueness. Let y and y′ be elements of L such that ∥x − y∥ = ∥x − y′∥ = d(x, L).
The above lemma yields

∥y − y′∥2 = 2∥x− y∥2 + 2∥x− y′∥2 − 4∥x− y+y′

2 ∥
2 = 4d(x, L)2 − 4∥x− y+y′

2 ∥
2 ≤ 0,

since y+y′

2 is in L. Therefore, ∥y − y′∥2 = 0 and y = y′.
Existence. Let (yn) be a sequence in L s.t. ∥x − yn∥ tends to d(x, L). Using the lemma above, we have,

for any n,m ≥ 1

∥yn − ym∥2 = 2∥x− yn∥2 + 2∥x− ym∥2 − 4
∥∥x− yn+ym

2

∥∥2
Both ∥x − yn∥ and ∥x − ym∥ tends to d(x, L). Moreover,

∥∥x− yn+ym

2

∥∥ is at least d(x, L) since yn+ym

2 is in
L. We conclude that the RHS tends to 0 (it should be nonnegative). Hence (yn) is a Cauchy sequence and
converges to some y in L (recall that Hilbert spaces are complete and that L is closed by assumption). By
continuity of the norm, we have

∥x− y∥ = lim
n→∞

∥x− yn∥ = d(x, L),

proving the existence of y satisfying (1). □
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Proposition 2.7. Let x in H and L be a subspace of H and define y as in the above theorem. Then y is
the unique element of L such that x− y is in L⊥.

Terminology: y is called the orthogonal projection of x on L.

Proof. First, we prove x − y ∈ L⊥. Let h be in L and α in R. We have y + αh ∈ L, which implies
∥x− (y + αh)∥2 ≥ ∥x− y∥2. Expanding with scalar products, this reduces to

−2α⟨x− y, h⟩+ α2∥h∥2 ≥ 0.

Since this has to hold for any α in R, we have ⟨x− y, h⟩ = 0. This holds for all h in L, meaning that x− y
is indeed in L⊥.

Uniqueness: take y′ ∈ L s.t. x− y′ is in L⊥. Then y − y′ is in L, but also y − y′ = (x− y′)− (x− y) lies
in L⊥. This implies y − y′ = 0 i.e. y = y′. □

Corollary 2.8. let L be a subspace of a Hilbert space H. The “orthogonal projection to L” map is linear.

Proof. Take x1, x2 in H with orthogonal projections y1, y2 on L, and let α1 and α2 be scalars. We set
x3 = α1x1 + α2x2, y3 = α1y1 + α2y2.

We want to prove that y3 is the orthogonal projection of x3 on L. It suffices to prove that y3 is in L and
x3 − y3 in L⊥, which is straightforward. □

2.2. Back to conditional expectation. As usual, let (Ω,A,P) be a probability space. Recall the standard
definition of the L2 space:

L2 = L2(Ω,A,P) =
{
X r.v. s.t. E

[
X2
]
< +∞

}
/ ∼,

where X ∼ X ′ if P(X ̸= X ′) = 0 (it is standard and sometimes implicit in probability theory to identify
r.v., which differ on a set of probability 0). We equip L2 with the scalar product ⟨X,Y ⟩ = E[XY ] (which
is well-defined and finite for X,Y in L2), and with the norm ∥X∥2 =

√
E
[
X2
]
. Then L2 is a normed real

vector space with a Hilbertian scalar product. Moreover, we know from the Probability 1 class that L2 is
complete. Hence, it is a Hilbert space.

Consider now in addition a σ-subalgebra B of A. Then L2(Ω,B,P) is a subset of the Hilbert space
L2(Ω,A,P). It is clearly closed by taking linear expectations. Furthermore if Xn is a sequence of B-
measurable r.v. converging in L2 to some A-measurable r.v. X, then a general lemma ensures that a
subsequence Xnk

is converging a.s. to X. This implies that X is B-measurable since it is an a.s. limit of
B-measurable r.v. We have shown that L2(Ω,B,P) is a closed subset of the Hilbert space L2(Ω,A,P).

Summing up it is a subspace in the sense of the previous subsection (closed linear subspace) and we have
existence and uniqueness of projections to L2(Ω,B,P).

We note that, in L2, we have
(X −X ′) ⊥ Z ⇔ E

[
(X −X ′)Z

]
= 0 ⇔ E[XZ] = E[X ′Z]

Definition 2.9. Let X be a r.v. in L2(Ω,A,P) and B a σ-subalgebra of A. We define
the conditional expectation of X knowing B, denoted E[X|B], as the orthogonal projection of X on L2(Ω,B,P).

Equivalently, this is the unique1 B-measurable X ′ in L2 such that
(CP2) for all Z in L2(Ω,B,P), we have E[XZ] = E[X ′Z].

We call (CP2) the characterizing property.
Warning. E[X|B] is a (B-measurable) r.v., not a number. It is defined, up to equality on a set of

probability 1.
Here are some first properties of the conditional expectation.

Lemma 2.10. As usual, (Ω,A,P) is a probability space and B ⊆ A be a σ-subalgebra.
(i) The map X 7→ E[X|B] is linear;

(ii) If is a r.v. in L2 satisfying X ≥ 0 a.s., then E[X|B] ≥ 0 a.s.;

1Here, and in the sequel, unique means up to equality on a set of probability 1.
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(iii) If X1, X2 are r.v. in L2 satisfying X1 ≤ X2 a.s., then E[X1|B] ≤ E[X2|B] a.s.

Proof. Item (i) is immediate as orthogonal projections are linear. Item (iii) follows from (i) and (ii); hence,
it is sufficient to prove (ii).

The only ingredient we have is the characterizing property. Set Z = 1{E[X|B] < 0}. The r.v. is
B-measurable and bounded (hence L2), so that
(2) E[XZ] = E

[
E[X|B]Z

]
.

But XZ ≥ 0 a.s., hence E[XZ] ≥ 0. On the other hand, E[X|B]Z ≤ 0 a.s. (for all ω, either E[X|B] < 0 or
Z = 0, by definition of Z). This implies E

[
E[X|B]Z

]
≤ 0.

We conclude that both sides of (2) are equal to 0. This implies E[X|B]Z = 0 a.s., which might happen
only if E[X|B] ≥ 0 a.s (see the definition of Z). □

A particular case: when B is the ”σ-algebra generated by a r.v. Y ”

Definition 2.11. Let E be a σ-algebra on a base set E and Y : Ω→ E a r.v. The σ-algebra generated by Y
is

σ(Y ) =
{
A ∈ A|∃B ∈ E s.t. Y −1(B) = A

}
⊆ A.

Equivalently, this is the smallest σ-algebra of Ω s.t. Y is measurable.

We denote E[X|Y ] = E[X|σ(Y )].

Lemma 2.12. A r.v. X is σ(Y )-measurable if and only if X = f(Y ) for some measurable function f .

Proof. Admitted (easy, but technical). □

With this lemma, the definition of E[X|Y ] rewrites as follows: E[X|Y ] is the unique r.v. X ′ in L2

which writes X ′ = φ(Y ) and satisfies E[XZ] = E[X′Z] for all r.v. Z = g(Y ) in L2. This coincides2

with the notation in the discrete setting, see Proposition 1.2.

2.3. Extension of nonnegative and L1 r.v. In the discrete setting, we have defined the conditional
expectation E[X|Y ] whenever X is in L1 or X takes nonnegative values (same condition as for the standard
expectation). In general, we have only define it when X is in L2 (recall L2 ⊂ L1). We now extend the
definition to X in L1 or X ≥ 0. There is no underlying Hilbert space anymore, so we will proceed by
approximation by L2 r.v.

Theorem 2.13. Let X ≥ 0 be a nonnegative r.v. and B ⊆ A be a σ-subalgebra. There exists a unique
B-measurable r.v. X ′ ≥ 0 such that3

(CP+) for all B-measurable r.v. Z ≥ 0, we have E[XZ] = E[X ′Z].

Moreover, when additionally X in L2, we have X ′ = E[X|B]

Notation. This r.v. X ′ is denoted E[X|B] and called the conditional expectation of X knowing B (also
when X ′ is not in L2).

Proof. Existence. Let Xn = X ∧ n = min(X,n). For fixed n ≥ 1, the r.v. Xn is bounded, and hence in L2.
Therefore, E[Xn|B] is well-defined.

Since Xn ≤ Xn+1 a.s., we have E[Xn|B] ≤ E[Xn+1|B] a.s. (Lemma 2.10). Hence, for any ω, the sequence(
E[Xn|B](ω)

)
n

has an almost sure limit, which we denote X ′(ω).
As a pointwise limit of B-measurable functions, X ′ is B-measurable. Take Z ≥ 0, B-measurable, and set

Zn = Z ∧ n. Using the monotone convergence theorem and the caracterizing property of E[Xn|B] we have
E[X ′Z] = lim

n→∞
E
[
E[Xn|B]Zn

]
= lim

n→∞
E
[
XnZn

]
= exp[XZ].

This proves the existence part in the theorem.

2In fact, this does not exactly coincide: here, we have variables in L2, while in the discrete setting, we were working with
L1/nonnegative/bounded r.v.; we address this issue in the next subsection.

3The expectations E[XZ] and E[X′Z] might be +∞.
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Uniqueness. Take X ′
1 and X ′

2 both nonnegative and B-measurable, and assume that both satisfy (CP+).
For 0 < a < b, Consider Za,b = 1{X ′

1 < a < b < X ′
2}, which is B-measurable. Using the characterizing

property twice, we have E[X ′
1Za,b] = E[XZM ] = E[X ′

2Za,b]. But

E[X ′
1Za,b] ≤ aP(X ′

1 < a < b < X ′
2), while E[X ′

2Za,b] ≥ bP(X ′
1 < a < b < X ′

2).

Since both are equal, this is possible only if P(X ′
1 < a < b < X ′

2) = 0. This holds for all rational numbers
a < b, so that

P(X ′
1 < X ′

2) = P
(∪

a,b∈Q
{X ′

1 < a < b < X ′
2}
)
= 0.

By symmetry P(X ′
1 > X ′

2) = 0. We conclude that X ′
1 = X ′

2 a.s.
Proof of X ′ = E[X|B] when both X ∈ L2 and X ≥ 0. Let X ′ satisfying (CP+) for all nonnegative B mea-

surable r.v. Z. To show X ′ = E[X|B], we need to show that X ′ also satisfies E[ZX ′] = E[ZX] it for (possibly
negative) Z in L2. We write Z = Z+ − Z−, where Z+ = max(Z, 0) and Z− = −min(Z, 0). Then

E[ZX ′] = E[Z+X ′]− E[Z−X ′] = E[Z+X]− E[Z−X] = E[ZX],

where the middle equation uses (CP+) for the nonnegative r.v. Z+ and Z−. We also note that the condition
Z in L2 ensures that E[Z+X ′],E[Z−X ′] < +∞, so that the difference is well-defined. This concludes the
proof. □

Theorem 2.14. Let X be a r.v. in L1 and B ⊆ A be a σ-subalgebra. There exists a unique B-measurable
r.v. X ′ ∈ L1 such that

(CP1) for all bounded B-measurable r.v. Z, we have E[XZ] = E[X ′Z].

Moreover, when additionally X in L2 or X ≥ 0, we have X ′ = E[X|B].

Notation. This r.v. X ′ is denoted E[X|B] and called the conditional expectation of X knowing B.

Proof. Existence. We write X = X+ − X− where X+ = max(X, 0) ≥ 0 and X− = −min(X, 0) ≥ 0. Set
(X ′)+ = E[X+|B], which is well-defined since X+ ≥ 0. Using (CP+) for Z = 1 we have

E[(X ′)+] = E[X+] ≤ E[|X|] <∞.

In particular, (X ′)+ is a.s. finite. Similarly (X ′)− := E[X−|B] is a.s. finite. We set X ′ := (X ′)+ − (X ′)−

and we want to check (CP1).
Let Z be a bounded B-measurable random variable. We decompose Z = Z+ − Z− as usual. Then, using

four times (CP+), we get

E[X ′Z] = E[(X ′)+Z+]− E[(X ′)−Z+]− E[(X ′)+Z−] + E[(X ′)−Z−]

= E[X+Z+]− E[X−Z+]− E[X+Z−] + E[X−Z−] = E[XZ]

This shows the existence of X ′ satisfying (CP1). The uniqueness and the statement X ′ = E[X|B] are proved
in a similar way as in the previous theorem. □

In both cases, to prove that something is a conditional expectation, we can restrict the ”tests” in the
characterizing property.

Lemma 2.15. Let X be a r.v., either nonnegative or in L1 (recall L2 ⊂ L1). Then E[X|B] is the unique
B-measurable r.v. X ′ such that

(CP1) for all B in B, we have E[X1B ] = E[X ′1B ].

Proof. Existence is a consequence of the above theorems since (CP1) is weaker than (CP+) and (CP1)
respectively.

For uniqueness, it is easy to show that such any X ′ verifying Eq. (CP1) should be nonegative or in L1,
whenever X is nonnegative or in L1. Furthermore the uniqueness proofs in the above theorem only use the
case where Z = 1B , showing uniqueness in this lemma as well. □
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3. Ten computation rules for conditional expectation

Basic properties: take X,Y r.v. either nonnegative or in L1 and B ⊆ A be a σ-subalgebra.
(i) E[1|B] = 1 a.s. and E

[
E[X|B]

]
= E[X].

(ii) E[aX + bY |B] = aE[X|B] + bE[Y |B] a.s.
(iii) If X ≤ Y a.s., then E[X|B] ≤ E[Y |B] a.s.
(iv) If Y is B measurable, then E[XY |B] = Y E[X|B] a.s. (assuming XY ≥ 0 or in L1).

In particular, E[Y |B] = Y a.s.
(v) If X is independent from B, then E[X|B] = E[X].
(vi) If C ⊆ B is a σ-subalgebra, then

E[X|C] = E
[
E[X|B]

∣∣C].
(This is called the tower property.)

Proof. (i) The r.v. X ′ defined by X ′ = 1 a.s. clearly satisfies (CP1) when X = 1 a.s., proving E[1|B] = 1
a.s. The second part is (CP1) written for Z = 1 (or equivalently, B = Ω).

(ii) It is straightforward to check that the RHS fulfills the characterizing property for aX + bY .
(iii) Take Z = 1{E[X|B] > E[Y |B]}. We have

E
[
E[X|B]Z

]
= E[XZ] ≤ E[Y Z] = E

[
E[Y |B]Z

]
.

But, a.s. ZE[X|B] ≥ ZE[Y |B]. This implies a.s. equality ZE[X|B] = ZE[Y |B], i.e., E[X|B] ≤ E[Y |B]
a.s. (using the definition of Z).

(iv) We first consider X,Y ≥ 0. For Z ≥ 0 B-measurable, we have, using the characterizing property for X
(recall that Y is B measurable, so that ZY is B-measurable):

E
[
ZY E[X|B]

]
= E[ZY X]

Thus, Y E[X|B] fulfills the characterizing property for Y X and we have
Y E[X|B] = E[Y X|B].

The case X,Y,XY in L1 follows by setting X = X+ −X− and Y = Y + − Y −.
(v) If X is independent from B, then, for B in B, we have

E[1BX] = E[1B ]E[X] = E
[
1BE[X]

]
,

proving E[X|B] = E[X].
(vi) Let C ∈ C, we have, using the charactering property twice w.r.t. C and B (since C ⊆ B, we also have

C ∈ B)
E
[
1C E

[
E[X|B]|C

]]
= E

[
1CE[X|B]

]
= E[1CX],

proving E[X|C] = E
[
E[X|B]

∣∣C]. □

Intertwining conditional expectations and limits
(vii) (Monotone convergence theorem for conditional expectation)

Assume (Xn) is a sequence of nonnegative r.v. with Xn ≤ Xn+1 a.s. for all n. This implies that
Xn(ω) has a limit for almost all ω (possibly +∞), which we call X∞(ω). Consider a σ-subalgebra B of
A.

We have the following a.s. convergence, as n→∞:
E[Xn|B]→ E[X∞|B]

(viii) (Fatou’s lemma for condition expectation) Assume (Xn) is a sequence of nonnegative r.v. and B is a
σ-subalgebra of A. We have, for almost all ω in Ω,

E
[
lim inf
n→∞

Xn

∣∣∣B] (ω) ≤ lim inf
n→∞

E[Xn|B](ω).

(ix) (Dominated convergence for conditional expectation) If Xn tends to X a.s. and there exists Z ∈ L1

such that |Xn| ≤ Z a.s. for all n, then
E[Xn|B]→ E[X|B],

a.s. and in L1.
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Proof. (vii) By property (iii) above, we have E[Xn|B] ≤ E[Xn+1|B] a.s. This implies that E[Xn|B](ω) has
a limit for almost all ω, which we denote X ′

∞(ω). We still need to identify X ′
∞ and E[X∞|B], i.e.

to check that X ′
∞ satisfies the characterizing property for X∞ (we know that X ′

∞ as a.s. limit of B
measurable r.v.). We have, for B ∈ B,

E[1BX
′
∞] = lim

n→∞
E
[
1BE[Xn|B]

]
= lim

n→∞
E
[
1BXn

]
= E[1BX∞],

where we used the usual monotone convergence theorem (first and third equalities) and the character-
izing property for Xn (second equality). This proves X ′

∞ = E[X∞|B] as wanted.
(viii) We apply (vii) to the increasing sequence of nonnegative r.v. Yk = infn≥k Xn: we have, a.s., as k tends

to +∞
E[Yk|B]→ E[Y∞|B],

where Y∞(ω) = limYk(ω) = lim infXn(ω). The LHS fulfills E[Yk|B] ≤ E[Xk|B] a.s. (since Yk ≤ Xk a.s.
and using item (iii) above). We have that, for almost all ω, E[Xk|B](ω) dominates a sequence tending
to E[lim infXn|B](ω), i.e.

lim inf E[Xk|B](ω) ≥ E[lim infXn|B](ω),

as wanted.
(ix) We apply Fatou’s lemma (for conditional expectation) to Z −Xn: for almost all ω, we have

lim inf E[Z −Xn|B](ω) ≥ E[Z −X|B](ω).

After simplification, this gives lim supE[Xn|B](ω) ≤ E[X|B](ω). The inequality lim inf E[Xn|B](ω) ≥
E[X|B](ω) is proved similarly by applying Fatou’s lemma to Z +Xn. Both together imply

limE[Xn|B](ω) = E[X|B](ω). □

This proves a.s. convergence. The L1 convergence follows by the usual dominated convergence theorem,
since |E[Xn|B]| ≤ E

[
|Z|
∣∣B] and

E
[
E
[
|Z|
∣∣B]] = E

[
|Z|
]
< +∞.

Jensen’s inequality for conditional expectations.
(x) Let X be a r.v. and f : R→ R a convex function. As usual B ⊆ A is a σ-subalgebra. Assume X and

f(X) are either nonnegative or in L1. Then, a.s.,

E[f(X)|B] ≥ f(E[X|B]).

Proof. We admit the following fact from analysis: since f is convex, there exists sequences (an) and (bn)
such that, for all x in R, we have f(x) = supn≥1(anx+ bn).

Then we have

E[f(X)|B] = E[sup
n≥1

(anX + bn)|B] ≥ sup
n≥1

E[anX + bn|B] = sup
n≥1

anE[X|B] + bn = f
(
E[X|B]

)
,

where we used the defining property of an and bn (first and last step), the monotonicity of conditional
expectation (i.e. item (iii) above, in the second step) and its linearity (third step). □

An important consequence. Consider the convex function f(x) = |x|p for p ≥ 1. Jensen’s inequality tells
us that for X ≥ 0 or X ∈ L1, we have

E[|X|p|B] ≥
∣∣E[X|B]∣∣p a.s.

Taking expectation we get
E[|X|p] ≥ E

[∣∣E[X|B]∣∣p].
In particular, X ∈ Lp implies that E[X|B] is in Lp for any σ-subalgebra B. Also if we have a sequence of
r.v. Yn → Y in Lp, then E[Yn|B]→ E[Y |B] in Lp (apply the above to X = Y − Yn).
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4. Some important examples

4.1. Conditional expectation and independence.
Proposition 4.1. Let X and Y be independent r.v. and h a real-valued function s.t. h(X,Y ) is either
nonnegative or in L1. Then

E
[
h(X,Y )|Y

]
= H(Y ),

where H(y) := E[h(X, y)] =
∫
h(x, y)PX(dx).

Informally, when X and Y are independent, conditioning on Y means taking only X at random.

Proof. Assume h(X,T ) ≥ 0 (the proof in the L1 case being similar). Let Z = g(Y ) be a nonnegative
σ(Y )-measurable r.v.4, we have, using the independence of X and Y ,

E
[
h(X,Y )g(Y )

]
=

∫ ∫
g(y)h(x, y)PX(dx)PY (dy) =

∫ (∫
h(x, y)PX(dx)

)
g(y)PY (dy)

=

∫
H(y)g(y)PY (dy) = E

[
H(Y )g(Y )

]
.

Hence H(Y ), which is σ(Y )-measurable, satisfies the characterizing property for h(X,Y ). We conclude that
E
[
h(X,Y )|Y

]
= H(Y ), as wanted. □

Remark. We did not make precise the spaces in which X and Y are taking value; it can be any spaces E
and F (equipped with a σ-algebra, s.t. X,Y r.v. has a sense). Then the domain of h should be E × F .

The results also holds true more generally if we condition on any σ-algebra B s.t. X is independent from
B and Y B measurable.
4.2. Density case.
Proposition 4.2. Let X and Y be real-valued r.v. with joint distribution p(x, y)dxdy. Let q(y) =

∫
R p(x, y)dx

denote the density of Y . For x, y in R, we define

p(x, y) =

{
p(x,y)
q(y) if q(y) > 0;

0 otherwise.

Then for any measurable function h : R→ R such that h(X) is either nonnegative or in L1, we have

(3) E
[
h(X)|Y

]
=

∫
R
h(x)p(x, Y )dx.

Informally, conditionally on Y , the r.v. X has density p(x, Y ). The formula giving p(x, Y ) is the same as
for conditional probability in the discrete setting, replacing probabilities by densities.

Proof (in class, we assume q(y) > 0 for all y for simplicity). We check that the RHS of (3), satisfies the
characterizing property for h(X). Assuming h(X) is nonnegative (the L1 case is similar), we let Z = g(Y )
be a nonnegative σ(Y )-measurable random variable. On one side, we have

(4) E
[
h(X)g(Y )

]
=

∫
R2

h(x)g(y)p(x, y)dxdy.

On the other side, setting φ(y) =
∫
R h(x)p(x, y)dx, we can write

E
[
φ(Y )g(Y )

]
=

∫
R
φ(y)g(y)q(y)dy =

∫
R2

h(x)p(x, y)g(y)q(y)1{q(y) > 0}dxdy,

where, in the second equality, we added the indicator 1{q(y) > 0} (this does not change the integrand, since
the integrand is zero when q(y) = 0 anyway) and we substituted φ(y) by its defining formula. Furthermore,
we implicitly used the fact that integrand is nonnegative to rewrite successive integrals on x and y as a joint
integral on (x, y) (Fubini-Tonelli theorem). When q(y) > 0, we have p(x, y)q(y) = p(x, y) so that

(5) E
[
φ(Y )g(Y )

]
=

∫
R2

h(x)g(y)p(x, y)1{q(y) > 0}dxdy.

4From Lemma 2.12, we know that all σ(Y )-measurable r.v. are of the form g(Y ). We will not recall that further in the
sequel.
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But q(y) = 0 implies that p(x, y) = 0 for almost all x (see the definition of q(y) and recall that p(x, y) ≥ 0),
so that

(6)
∫
R2

h(x)g(y)p(x, y)1{q(y) = 0}dxdy = 0.

Comparing (4), (5) and (6), we conclude that E
[
h(X)g(Y )

]
= E

[
φ(Y )g(Y )

]
. Since this holds for all

nonnegative σ(Y )-measurable r.v. Z = g(Y ) and since furthermore φ(Y ) is σ(Y )-measurable, we have
φ(Y ) = E

[
h(X)|Y

]
, as wanted. □

4.3. Gaussian vectors. Reminder/scratch course on Gaussian vectors. Fix a dimension d ≥ 1. Let µ⃗ be
a vector in Rd, called mean vector, and K be a d × d symmetric semi-definite matrix, called covariance
matrix. Then the Gaussian multivariate distribution N (µ⃗,K) is defined by its characteristic transform: if
X⃗ ∼ N (µ⃗,K), then, for all ζ⃗ in Rd,

E
[
exp(i⟨ζ⃗, X⃗⟩)

]
= exp

(
i⟨ζ⃗, µ⃗⟩ − 1

2 ζ⃗
tKζ⃗

)
.

In particular, for 1 ≤ j, ℓ ≤ d,
E[Xj ] = µj , Cov(Xj , Xℓ) = Kj,ℓ.

Some properties:
• X⃗ is a multivariate Gaussian vector if and only if all linear combinations

∑d
j=1 αjXj (αj ∈ R)are

(univariate) Gaussian. In particular X⃗ is a multivariate Gaussian implies that all Xj are Gaussian
but the converse is not true.

• If X⃗ is a multivariate Gaussian vector and if Cov(Xj , Xℓ) = 0 for some j and ℓ, then Xj and Xℓ are
independent. (More generally, if {j1, . . . , js} and {ℓ1, . . . , ℓt} are sets such that Cov(Xjp , Xℓq ) = 0
for all p ≤ s and q ≤ t, then the sets of r.v. {Xj1 , . . . , Xjs} and {Xℓ1 , . . . , Xℓs} are independent.)

Proposition 4.3. Let (Y1, . . . , Yd, X) be a centered Gaussian vector. Let X̂ be the orthogonal projection5 of
X on Span(Y1, . . . , Yd), we have

E
[
X|(Y1, . . . , Yd)

]
= X̂.

Proof. For any j ≤ d, we have

(7) Cov(X − X̂, Yj) = E
[
(X − X̂)Yj

]
= 0,

where the first equality uses that the variables are all centered and the second that X̂ is the orthogonal
projection of X on Span(Y1, . . . , Yd).

Note that (X − X̂, Y1, . . . , Yd) is a Gaussian vector: indeed, all linear combinations of its coordinates are
linear combinations of those of (X,Y1, . . . , Yd) and hence Gaussian. Therefore the vanishing of covariances
in (7) implies that X − X̂ is independent from {Y1, . . . , Yd}. We have

E
[
X|(Y1, . . . , Yd)

]
= E

[
X − X̂|(Y1, . . . , Yd)

]
+ E

[
X̂|(Y1, . . . , Yd)

]
= E

[
X − X̂

]
+ X̂ = X̂,

where the second equality uses computation rules (iv) and (v) p. 8 (the first uses linearity of conditional
expectation; the last that variables are centered). □

Remark. In fact, we can prove that the ”conditional density/distribution of X knowing (Y1, . . . , Yd)” is that
of a Gaussian centered in

∑d
j=1 λjYj . More precisely, for all h : R→ R such that h(X) is either nonnegative

or in L1,
E
[
h(X)|(Y1, . . . , Yd)

]
=

∫
R
h(x) 1

σ
√
2π

exp
(−(x−µ)2

2σ2

)
dx,

where µ = X̂ and σ2 = E
[
(X − X̂)2|(Y1, . . . , Yd)

]
. The result also extends to E

[
h(X1, . . . , Xc)|(Y1, . . . , Yd)

]
,

assuming that (X1, . . . , Xc, Y1, . . . , Yd) is a Gaussian vector.

5Since X and the Yj are in L2, we use the same scalar product as before, namely ⟨Z,Z′⟩ = E(ZZ′). Note however that,
here, we project on the linear space spanned by the Yj and not on the much bigger space L2(Ω, σ(Y1, . . . , Yd),P) as in the
general L2 case.



12 VALENTIN FÉRAY

Part B. Martingales

5. Basics

Definition 5.1. A filtered probability space is a quadruple (Ω,F , (Fn)n≥1, P ) where (Ω,F , P ) is a probability
space and (Fn)n≥1 a sequence of σ-algebra of Ω such that

F0 ⊆ F1 ⊆ · · · ⊆ F .
The sequence (Fn)n≥1 is called a filtration and a sequence (Xn)n≥0 of random variables such that each Xn is
Fn-measurable is called suited to the filtration (Fn)n≥1 or simply a random process (if the filtration is clear
from the context).

A sequence (Xn)n≥0 of random variables such that each Xn is Fn−1-measurable is called predictable.

Remark. This implies that Fn ⊇ σ(X0, X1, · · · , Xn) (the latter is by definition the smallest σ-algebra that
makes X0,…,Xn measurable). A standard situation is Fn = σ(X0, X1, · · · , Xn), but none of the results below
need this assumption.

Throughout this chapter, we assume that we are working in a filtered probability space (Ω,F , (Fn)n≥1, P ).

Definition 5.2. Let (Xn)n≥0 be a random process such that Xn is in L1 for all n ≥ 0. Then Xn is called
a martingale if for any n ≥ 0, we have

(8) E
[
Xn+1|Fn

]
= Xn a.s.

Eq. (8) is called the martingale property.

Example. (i) Let (Yi)i≥1 be independent centered integrable r.v. Set Xn = Y1 + · · · + Yn and Fn =
σ(Y1, . . . , Yn) for every n ≥ 1. For each n ≥ 1, the r.v. Xn is a sum of r.v. in L1 and hence in L1. We
have, a.s.,

E
[
Xn+1|Fn

]
= E

[
Y1 + · · ·+ Yn + Yn+1|Fn

]
= Y1 + · · ·+ Yn + E[Yn+1] = Xn + 0 = Xn,

where in the second equality we have used that E[Y |B] = Y is Y is B-measurable (this applies to
Y1,…,Yn) and that E[Y |B] = E[Y ] is Y is independent from B (this applies to Yn+1).

We conclude that Xn is a martingale.
(ii) Let (Ti)i≥1 be independent unbiased coin tosses, i.e. r.v. with distribution

P[Ti = head] = P[Ti = tail] = 1/2.

We let Fn = σ(T1, . . . , Tn) and (An)n≥1 be a predictable r.v. with respect to Tn. Finally, we set,

Yi = Ai1{Ti = head} −Ai1{Ti = tail} and Xn =

n∑
i=1

Yi.

Gambling interpretation: at each time i ≥ 1, a gambler bets Ai units on “head”. Then Yi represents its
(algebraic) winnings in the i-th round and Xn its cumulative winnings until time n.

At round i, the gambler can choose what he bets (Ai) depending on the outcome of the previous
coin tosses T1,…, Ti−1, but he does not know Ti, Ti+1, …This explains the predictability hypothesis: Ai

should be Fi−1 measurable.

We now prove that (Xn)n≥0 is a martingale. Obviously, each Yi is in L1 and hence Xn is in L1 for
any n ≥ 0. We compute

E
[
Yn+1|Fn

]
= An+1E

[
1{Tn+1 = head}

]
−An+1E

[
1{Tn+1 = tail}

]
= 0 a.s.,

which implies
E
[
Xn+1|Fn

]
= E

[
Xn|Fn

]
+ E

[
Yn+1|Fn

]
= Xn + 0 = Xn.

This proves the martingale property.
→ Martingales are models for cumulative winnings in a fair game.

(iii) Take X ∈ L1 and let Xn = E[X|Fn]. Then Xn is in L1 and satisfies the martingale property (because of
the tower rule for conditional expectation). Therefore (Xn)n≥0 is a martingale; martingales constructed
this way are called closed.
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Proposition 5.3. Let (Xn)n≥0 be a martingale. Then
(i) E[Xn] is independent of n;

(ii) for any n ≥ p, we have E[Xn|Fp] = Xp.

Proof. This is a straightforward application of the properties of conditional expectation. □

6. Stopping times

6.1. Definitions.

Definition 6.1. A random variable T : Ω→ N ∪ {+∞} is called a stopping time if for any n ≥ 0, we have
{T ≤ n} ∈ Fn.

Equivalently, T is a stopping time if and only if, for any n ≥ 0, {T = n} is in Fn.
Gambling interpretation: T is the time at which a gambler stops playing (i.e. T = n means that he stops

after round n). The decision to stop playing at time n is taken knowing what happens until time n and not
after, i.e. is Fn-measurable.

Definition 6.2. Let (Xn)n≥0 be a random process and T a stopping time. We define the r.v. XT as follows:
for ω in Ω,

XT (ω) =

{
XT (ω)(ω) if T (ω) <∞;

undefined if T (ω) =∞.

It is easy to check that XT is indeed F-measurable.
Gambling interpretation: XT is the winning of the gambler when he stops playing.

6.2. Martingale and stopping times. If n is an integer and T a stopping time, then we set n ∧ T (ω) =
min(n, T (ω)). This defines a stopping time and we have the following important stability result.

Proposition 6.3. Let (Xn)n≥0 be a martingale and T a stopping time. Then (Xn∧T )n≥0 is a martingale.

Proof. We can write

Xn∧T =

n−1∑
i=0

Xi1{T = i}+Xn1{T ≥ n},

showing that Xn∧T is Fn-measurable and in L1.
We now check the martingale property. Let B be Fn measurable,

E
[
X(n+1)∧T1{B}

]
= E

[
XT1{T ≤ n}1{B}

]
+ E

[
Xn+11{T > n}1{B}

]
.

Since {T > n} ∩B is in Fn and since E
[
Xn+1|Fn

]
= Xn a.s. (martingale property), we have

E
[
Xn+11{T > n}1{B}

]
= E

[
Xn1{T > n}1{B}

]
.

Summing up,

E
[
X(n+1)∧T1{B}

]
= E

[
XT1{T ≤ n}1{B}

]
+ E

[
Xn1{T > n}1{B}

]
= E

[
Xn∧T1{B}

]
.

Since this holds for any B in Fn and since Xn∧T is Fn measurable, we have

E
[
X(n+1)∧T |Fn

]
= Xn∧T .

This concludes the proof that (Xn∧T )n≥0 is a martingale. □
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6.3. The optional stopping theorem.

Theorem 6.4. Let T be a bounded stopping time, i.e. there exists M > 0 s.t. P(T > M) = 0. Let (Xn)n≥0

be a martingale. Then XT is in L1 and E[XT ] = E[X0].

Gambling interpretation: in a fair game and in finite time, one cannot have in expectation more at the
end than at the beginning (whatever strategy one uses, and whenever one decides to stop).

Proof. Since T is bounded by M , we have XT = XM∧T a.s. We have seen in the proof of Proposition 6.3
that XM∧T is in L1, so that XT is in L1.

Applying Proposition 5.3, item (i) to the martingale (Xn∧T )n≥0, we have

E[XT ] = E[XM∧T ] = E[X0∧T ] = E[X0]. □

Remark. The hypothesis “T bounded” is necessary in the above theorem. Take Xn = Y1+ · · ·+Yn, where Yi

are i.i.d. r.v. with P[Yi = 1] = P[Yi = −1] = 1/2. We take the stopping time T = inf{n ≥ 0 s.t. Xn = −1}
(why is it a stopping time? see exercises). We will see later in the lecture that T < ∞ a.s. Obviously
XT = −1 a.s., which implies E[XT ] = −1 ̸= E[X0] = 0.

7. Sub- and super-martingales

7.1. Definition and some constructions.

Definition 7.1. A random process (Xn)n≥0 with Xn ∈ L1 (for all n ≥ 0) is called a submartingale (resp.
a supermartingale) if for any n ≥ 0, we have

E
[
Xn+1|Fn

]
≥ Xn a.s. (resp. E

[
Xn+1|Fn

]
≤ Xn a.s.).

We note that (Xn)n≥0 is a supermartingale if and only if (−Xn)n≥0 is a submartingale. We will therefore
restrict our attention to submartingales; all results for submartingales have analogues for supermartingales
using this simple transformation.

If (Xn)n≥0 is a submartingale, we have

E
[
Xn+1

]
= E

[
E[Xn+1|Fn]

]
≥ E[Xn].

Warning. I personally find the sense of the inequalities unintuitive: submartigales are nondecreasing in
expectation.

Lemma 7.2. (i) Let (Xn)n≥0 be a martingale and φ : R→ R be a convex function. Assume φ(Xn) is in
L1 for all n ≥ 0. Then (φ(Xn))n≥0 is a submartingale.

(ii) Let (Xn)n≥0 be a submartingale and φ : R→ R be an nondecreasing convex function. Assume φ(Xn)
is in L1 for all n ≥ 0. Then (φ(Xn))n≥0 is a submartingale.

Proof. (i) Using Jensen’s inequality and the martingale property for Xn, we hvave

E
[
φ(Xn+1)|Fn

]
≥ φ

(
E
[
Xn+1|Fn

])
= φ(Xn),

showing that (φ(Xn))n≥0 is a submartingale.
(ii) Similar.

□

In particular, if Xn is a martingale, |Xn| and X+
n = max(Xn, 0) are submartingales. If furthermore Xn

is in L2, then X2
n is a submartingale.
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7.2. Doob’s decomposition.

Theorem 7.3. Let (Xn)n≥0 be a random process with Xn in L1 (for all n ≥ 0). Then there exist a
martingale (Mn)n≥0 and a predictable process (An)n≥0 such that

Xn = X0 +Mn +An and M0 = A0 = 0 a.s.

Moreover,
• this decomposition is unique up to a.s. equality;
• An is a.s. nondecreasing if and only if Xn is a submartingale.

Proof. Uniqueness. Assume that we have (Mn)n≥0 and (An)n≥0 as in the theorem. Then, for n ≥ 0, using
the martingale property for Mn and the fact that X0 and An+1 are Fn measurable,

E[Xn+1|Fn] = E[X0|Fn] + E[Mn+1|Fn] + E[An+1|Fn]

= X0 +Mn +An+1 = Xn + (An+1 −An).

This implies An+1 −An = E[Xn+1|Fn]−Xn, and therefore, since A0 = 0 a.s.,

An =

n−1∑
k=0

(E[Xk+1|Fk]−Xk) a.s.

Hence An is uniquely determined, up to a.s. equality, and so is Mn = Xn −X0 −An.
Existence. Inspired by the above computation, we set

An =

n−1∑
k=0

(E[Xk+1|Fk]−Xk) and Mn = Xn −X0 −An.

Clearly, A0 = M0 = 0 a.s. and An is Fn−1-measurable. It remains to check that (Mn)n≥0 is a martingale.
Clearly An and Mn are in L1. Moreover,

E
[
Mn+1|Fn

]
= E

[
Xn+1|Fn

]
−X0 −An+1

= E
[
Xn+1|Fn

]
−X0 − (An + E[Xn+1|Fn]−Xn) = Xn −X0 −An = Mn.

Second additional statement. The equivalence “(Xn)n≥0 submartingale ⇔ (An)n≥0 a.s. nondecreasing”
follows from the formula An+1 −An = E[Xn+1|Fn]−Xn above. □

Corollary 7.4. Let (Xn)n≥0 be a submartingale and S ≤ T bounded stopping times. Then E[XS ] ≤ E[XT ].

Proof. We write the Doob’s decomposition Xn = X0 + Mn + An of Xn, Since (Mn)n≥0 is a martingale,
by Theorem 6.4, we have E[MS ] = E[MT ]. Since (Xn)n≥0 is a submartingale, the process (An)n≥0 is a.s.
nondecreasing and we have AS ≤ AT a.s., implying E[AS ] ≤ E[AT ]. Therefore,

E[XS ] = E[X0] + E[MS ] + E[AS ] ≤ E[X0] + E[MT ] + E[AT ] = E[XT ]. □

8. Inequalities

8.1. Maximal inequalities. In this section, we use the notation

X∗
n(ω) = sup

j≤n
|Xj(ω)|, X∗

∞(ω) = sup
j≥0
|Xj(ω)|.

In general, X∗
n is hard to analyze: the index j maximizing Xj(ω) depends on ω. For martingales, we have a

good control on it.

Theorem 8.1 (Doob’s maximal inequality). (i) Let (Xn)n≥0 be a martingale or a nonnegative submartin-
gale. Then, for α > 0 and any n ≥ 0,

P[X∗
n ≥ α] ≤ 1

αE
[
|Xn|

]
.

(ii) Let (Xn)n≥0 be a nonnegative supermartingale. Then, for α > 0,

P[X∗
∞ ≥ α] ≤ 1

αE
[
|X0|

]
.
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Comment: if Xn is your (algebraic) loss at a game and you cannot exceed loss α at any time, the
probability P[X∗

n ≥ α] is something you really want to know about. Markov’s inequality tells you that
P[X∗

n ≥ α] ≤ 1
αE[|X

∗
n|], so that Doob’s inequality “replaces” E[|X∗

n|] by the easier quantity E
[
|Xn|

]
or

E
[
|X0|

]
.

Proof. Preliminaries: We start by some discussions common to the two cases. Set T = inf{j ≥ 0 : |Xj | ≥ α}.
Then

P[X∗
n ≥ α] = P[T ≤ n].

Besides, when T ≤ n, we have |XT | = |Xn∧T | ≥ α. Therefore
E
[
|Xn∧T |1{T ≤ n}

]
≥ αE

[
1{T ≤ n}

]
= αP[T ≤ n].

We conclude that
(9) P[X∗

n ≥ α] = P[T ≤ n] ≤ 1
αE
[
|Xn∧T |1{T ≤ n}

]
≤ 1

αE
[
|Xn∧T |].

item (i). In this case, |Xn| is a submartingale by Lemma 7.2. Therefore, from Corollary 7.4, we have

(10) E[|Xn∧T |] ≤ E[|Xn|].

Plugging this back into (9), we get item (i).
item (ii) Here, |Xn| = Xn is a supermartingale. From Corollary 7.4, we have

E[|Xn∧T |] ≤ E[|X0|].

Plugging this back into (9), we get
P[X∗

n ≥ α] ≤ 1
αE[|X0|].

The right-hand-side is independent from n, so we can take the limit n→∞ and have
P[X∗

∞ ≥ α] = lim
n→∞

P[X∗
n ≥ α] ≤ 1

αE[|X0|],

where the first limit follows from the event {X∗
∞ ≥ α} being a countable increasing union of the events

{X∗
n ≥ α}. □

Technical comment used in the next section. We can improve inequality (i) as follows:
(11) P[X∗

n ≥ α] ≤ 1
α E
[
|Xn|1{X∗

n ≥ α}
]
.

Indeed, we obsere that, when T > n, we have |Xn∧T | = |Xn|, which implies
E
[
|Xn∧T |1{T > n}

]
= E

[
|Xn|1{T > n}

]
.

Combining with (10) gives
E
[
|Xn∧T |1{T ≤ n}

]
≤ E

[
|Xn|1{T ≤ n}

]
.

Plugging this back into (9) gives (11).

8.2. Lp inequality. In this section, we fix p ≥ 1. The goal is now to control ∥X∗
n∥p = E

[
(X∗

n)
p
]1/p.

Lemma 8.2. Let Y be a nonnegative r.v. We have

E[Y p] =

∫ ∞

0

pαp−1 P[Y ≥ α]dα.

(Both sides might be finite or infinite.)

Comment. The case p = 1, namely E[Y ] =
∫∞
0

P[Y ≥ α]dα, is well-known.

Proof. Using Fubini’s theorem for nonnegative functions,∫ ∞

0

pαp−1 P[Y ≥ α]dα = E
[∫ ∞

0

pαp−1 1{Y ≥ α}dα
]
= E

[∫ Y

0

pαp−1dα

]
= E [Y p] . □

Reminder (Hölder’s inequality). Let p, q > 1 such that 1
p + 1

q = 1. Then E[|XY |] ≤ ∥X∥p∥Y ∥q.
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Theorem 8.3 (Doob’s Lp inequality). Let p > 1 and (Xn) be a martingale or a nonnegative submartingale.
Then

∥X∗
n∥p ≤

p
p−1∥Xn∥p.

(∥Xn∥p or both ∥Xn∥p and ∥X∗
n∥p might be infinite.)

Proof. We assume w.l.o.g. ∥Xn∥p < ∞, i.e. Xn in Lp. This implies E[Xn|Fj ] ∈ Lp for any j ≤ n. But we
have either Xj = E[Xn|Fj ] (martingale case) or |Xj | = Xj ≤ E[Xn|Fj ] (nonnegative submartingale case),
so that Xj is also in Lp. Since X∗

n ≤ |X0|+ · · ·+ |Xn|, we know that X∗
n is also in Lp, i.e. ∥X∗

n∥p <∞. We
have

E
[
(X∗

n)
p
]
=

∫ +∞

0

pαp−1P[X∗
n ≥ α]dα(Lemma 8.2)

≤
∫ +∞

0

pαp−1E
[
|Xn|1{X∗

n ≥ α}
]

α
dα(Eq. (11))

≤ pE
[
|Xn|

∫ +∞

0

αp−21{X∗
n ≥ α}dα

]
(Fubini)

≤ pE

[
|Xn|

∫ X∗
n

0

αp−2dα

]
= p

p−1E
[
|Xn|(X∗

n)
p−1
]

(computations)

≤ p
p−1 ∥Xn∥p E

[
(X∗

n)
(p−1)q

]1/q
.(Hölder)

But (p− 1)q = p, so that dividing the above equality by E
[
(X∗

n)
p
]1/q

<∞ gives

∥X∗
n∥p = E

[
(X∗

n)
p
]1−1/q ≤ p

p−1∥Xn∥p. □

Comment. With the hypothesis of the theorem, |Xn|p is a submartingale so that ∥Xj∥p ≤ ∥Xn∥p. This
implies

∥X∗
n∥p ≤ ∥X0∥p + · · ·+ ∥Xn∥p ≤ (n+ 1)∥Xn∥p.

The nice aspect of Doob’s Lp inequality is that the pre-factor is independent of n. In particular, it yields
the following.
Corollary 8.4. Let (Xn)n≥0 be a martingale or a nonnegative submartingale bounded in Lp (i.e. we assume
supn≥0 ∥Xn∥p < +∞). Then X∗

∞ is in Lp and

∥X∗
∞∥p ≤

p

p− 1
sup
n≥0
∥Xn∥p.

Proof. By definition X∗
n is a.s. nondecreasing (we take a supremum over more and more variables) and tends

a.s. to X∗
∞. Thus, by monotone convergence,

∥X∗
∞∥p = lim

n→∞
∥X∗

n∥p.

The corollary then follows from Doob’s Lp inequality. □

9. Almost sure convergence

9.1. The upcrossing inequality. Here, we prove a technical result which will be useful for proving con-
vergence theorem in the next section.

Upcrossings. Let x = (xn)n≥0 be a deterministic real-valued sequence and a < b be real numbers. We set
t0 = 0 and for j ≥ 0,

s
(a,b)
j+1 (x) = inf{n ≥ tj : xn ≤ a};

t
(a,b)
j+1 (x) = inf{n ≥ sj+1 : xn ≤ b};

u(a,b)
n (x) = max{j : t(a,b)j (x) ≤ n};

u(a,b)
∞ (x) = max{j : t(a,b)j (x) < +∞}.

Informally, u(a,b)
n (x) (resp. u

(a,b)
∞ (x)) is the number of times the sequence (xn)n≥0 has crossed the strip (a, b)

from bottom to top until time n (resp. until time ∞); see Fig. 1.
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Figure 1. Illustration of the definition of upcrossings. The crosses indicate the dots of
coordinates (n, xn). The curve does not represent anything concrete, it is only here to make
the definition of upcrossings more intuitive.

Lemma 9.1. A real-valued sequence (xn)n≥0 has a limit ℓ in R∪ {−∞,+∞} if and only if, for all rational
numbers a < b, we have u

(a,b)
∞ (x) < +∞.

Proof. Admitted (easy Analysis I exercise). □

We know consider a random process X := (Xn)n≥0. Then, for j ≥ 0 and n in N ∪ {∞}, the quantity

S
(a,b)
j = s

(a,b)
j (X), T

(a,b)
j = t

(a,b)
j (X) and U (a,b)

n = u(a,b)
n (X)

are random variables. It is easy to see that S
(a,b)
j and T

(a,b)
j are stopping times and the U

(a,b)
n is Fn

measurable.
Notation: y+ = max(y, 0).

Theorem 9.2 (Doob’s upcrossing inequality). Let (Xn)n≥0 be a submartingale and fix a < b. Then

E
[
U (a,b)
n

]
≤ 1

b−aE
[
(Xn − a)+

]
Proof. We write Un = U

(a,b)
n for simplicity. Let Yn = (Xn− a)+. Then (Yn)n≥0 is a submartingale since the

function x 7→ (x− a)+ is convex and nondecreasing. We can write

Yn = YS1
+ (YT1

− YS1
) + (YS2

− YT1
) + · · ·+

{
(YTj − YSj ) + (Yn − TTj );

(YSj+1 − YTj ) + (Yn − YSj+1),

where j is chosen such that Tj ≤ n < Sj+1 (first case) or Sj+1 ≤ n < Tj + 1 (second case). In both cases,
j = Un. We can rewrite in a unified way as

(12) Yn = YS1∧n +

n∑
i=1

(YTi∧n − YSi∧n) + +

n∑
i=1

(YSi+1∧n − YTi∧n)

For i ≤ Un, we have

YTi∧n = YTi
≥ b− a (since XTi

≥ b); YSi∧n = YSi
= 0 (since XSi

≤ a).

This implies YTi∧n−YSi∧n ≥ b−a. Other terms in the first sum of (12) (for i > Un) are nonnegative (either
YSi∧n = YSi

= 0 or YSi∧n = Yn = YTi∧n), so that this sum is at least (b− a)Un.
For the second sum in (12), we observe that (Ti ∧n) ≤ (Si+1 ∧n) are both bounded stopping time. Since

Yn is a submartingale, from Corollary 7.4, we have

E
[
YTi∧n

]
≤ E

[
YSi+1∧n

]
.

Therefore the second term in (12) has a nonnegative expectation.
Finally, the first term in (12) is YS1∧n which is nonnegative a.s.
We conclude, taking expectation (12) and using the previous discussions, that

E[Yn] ≥ E

[
n∑

i=1

(YTi∧n − YSi∧n)

]
≥ (b− a)E[Un]. □
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9.2. The almost sure convergence theorem.
Theorem 9.3 (submartingale a.s. convergence theorem). Let (Xn)n≥0 be a submartingale. We assume
supn≥0 E[X+

n ] <∞. Then there exists X∞ ∈ L1 such that Xn
a.s.−→ X∞.

Comments:
• Submartingale are assumed to be in L1. This implies that, for each n ≥ 0, we have E[X+

n ] < ∞.
What is important in the above hypothesis is that we have a bound independent of n.

• Here are some stronger conditions (hence sufficient to imply a.s. convergence of submartingales):
supE[|Xn|] <∞ or “there exists M > 0 s.t., for all n ≥ 0, Xn ≤M a.s.”. Again, the important point
is that the bound is independent of n.

In particular, nonnegative martingales and supermartingales cv a.s.
• For all n ≥ 0, Xn lies in L1 (definition of submartingale). The theorem states that the a.s. limit
X∞ is in L1 as well. However, Xn does not necessarily converge to X∞ in L1. It may also happen
that E[Xn] does not converge to E[X∞].

Proof. Let a < b be rational numbers. Using the notation of Section 9.1, we have
E
[
U (a,b)
∞

]
= lim

n→∞
E
[
U (a,b)
n

]
≤ lim inf n→∞ 1

b−aE
[
(Xn − a)+

]
≤ 1

b−a

(
E[(Xn)

+] + |a|
)
< +∞,

where the first equality comes from the monotone convergence theorem and the following inequality from
Theorem 9.2. This implies

P
[
U (a,b)
∞ <∞

]
= 1.

This holds for any rational numbers a < b. Since Q is countable, we have

P

 ∩
a,b∈Q, a<b

{U (a,b)
∞ <∞}

 .

From Lemma 9.1, this implies, that for ω in a set of probability 1, Xn(ω) has a limit in R ∪ {−∞,+∞},
which we denote X∞(ω).

This defines X∞ on a set of probability 1. By construction Xn
a.s.−→ X∞. It remains to check that X∞ is

in L1. We have, for all n ≥ 0,
E[|Xn|] = E[X+

n ] + E[X−
n ] = 2E[X+

n ]− E[Xn] ≤ 2E[X+
n ]− E[X0],

where we used in the middle the inequality E[Xn] ≥ E[X0], true for any submartingale. This implies, in
combination with Fatou’s lemma,

E[|X∞|] ≤ lim inf
n≥0

E[|Xn|] ≤ 2(sup
n≥0

E[X+
n ])− E[X0] < +∞. □

Note: when we construct X∞ in the proof, it might a priori take values ±∞. However, a posteriori, from
E[|X∞|] < +∞, we know that X∞ takes finite values a.s.

An important example. Take Xn = Y1 + · · ·+ Yn, where Yi are i.i.d. r.v. with P[Yi = 1] = P[Yi = −1] =
1/2. We take the stopping time T = inf{n ≥ 0 s.t. Xn = 1} and set Mn = Xn∧T , which is a martingale by
Proposition 6.3. We note that Mn ≤ 1 a.s. (either T > n, then Mn = Xn and Xn has not reach 1 yet, so
that Xn < 1, or T ≤ n and then Mn = XT = 1). Applying Theorem 9.3, we know that Mn converges a.s.
to some M∞.

Let ω be an element of the probability space Ω. Assume that T (ω) = +∞. Then Mn(ω) = Xn(ω) for all
n ≥ 0. But Xn(ω) does not converge (for all n ≥ 1, we have |Xn(ω) −Xn−1(ω)| = |Yn(ω)| = 1), therefore
Mn(ω) does not converge.

We set
C = {ω ∈ Ω : Mn(ω) converges}.

we have proved above that, on the one hand P[C] = 1 and on the other hand {T = ∞} ⊆ C. This implies
P
[
T =∞

]
= 0. In other words, with probability 1, there exists a time n, at which Xn = 1.

(This is not easy to prove directly!)
In the above example, we have M∞ = XT = 1 a.s., while M0 = X0 = 0. In particular E[M∞] ̸= E[M0],

while E[Mn] = E[M0] for all n ≥ 0 (since Mn is a martingale). In summary, we have a.s. convergence
Mn →M∞, but not E[Mn]→ E[M∞] (and a fortiori not convergence in L1).
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10. Uniform integrable (sub)martingales and L1 convergence

10.1. L1 convergence theorems. Uniform integrability is a necessary and sufficient condition for a se-
quence of random variables assumed to converge in probability to converge also in L1. A short account on
uniform integrability is given in Appendix A6.

Theorem 10.1 (Submartingale L1 convergence theorem). Let (Xn)n≥0 be a submartingale. The following
assertions are equivalent:

(i) (Xn)n≥0 is u.i.;
(ii) There exists X∞ in L1 such that Xn

a.s., L1

−→ X∞.

Proof. First assume (i). By Proposition A.2 item (i), we have supi∈I E
[
|Xi|

]
<∞. We can therefore apply

the submartingale a.s. convergence theorem, and we know that there exists X∞ in L1 such that Xn
a.s.−→ X∞.

A fortiori, Xn converges to X∞ in probability; since Xn is u.i., by Proposition A.2, item (iii), we conclude
that Xn converges to X∞ in L1.

Conversely, let us assume (ii). Then (i) follows from Proposition A.2, item (ii). □

For martingales, there is a third equivalent statement.

Theorem 10.2 (Martingale L1 convergence theorem). Let (Xn)n≥0 be a martingale. The following asser-
tions are equivalent:

(i) (Xn)n≥0 is u.i.;
(ii) There exists X∞ in L1 such that Xn

a.s., L1

−→ X∞;
(iii) There exists X in L1 such that, for all n ≥ 0, we have Xn = E[X|Fn].
Moreover, when these statements hold, we have X∞ = E[X|F∞], where F∞ = σ

(∪
n≥0 Fn

)
.

Comments:
• Recall that martingales as in item (iii) are called closed. The theorem asserts that a martingale is

u.i. if and only if it is closed.
• The r.v. X from item (iii) is not unique. We will see in the proof that we can take X = X∞.

Moreover, when F∞ = F , the additional statement says that necessarily X = X∞, so that we have
uniqueness in this case. It is however good to keep in mind that it is not always the case.

Proof. We already proved (i)⇔ (ii) in the more general setting of submartingales (Theorem 10.1). Moreover,
(iii) ⇒ (i) is a direct consequence of Corollary A.4.

Proof of (ii) ⇒ (iii). We will prove that Xn = E
[
X∞|Fn

]
, yielding the existence of X as wanted (take

X = X∞). To this end, we check the characterizing property of conditional expectation. Take B in Fn.
For p ≥ n, we have E

[
Xp|Fn

]
= Xn (martingale property), implying E

[
Xp 1{B}

]
= E

[
Xn 1{B}

]
. Since Xp

converges to X∞ in L1, we have
lim
p→∞

E
[
Xp 1{B}

]
= E

[
X∞ 1{B}

]
.

Therefore E
[
X∞ 1{B}

]
= E

[
Xn 1{B}

]
. Since this holds for any B in Fn and since Xn is Fn measurable,

we have Xn = E
[
X∞|Fn

]
, concluding the proof.

Proof of the extra statement. For any n ≥ 0, Xn is Fn-measurable and hence F∞ measurable. The limit
of measurable functions is measurable, so X∞ is also F∞ measurable. To prove X∞ = E[X|F∞], we need
to prove that it satisfy the characterizing property.

Let B be in Fn for some n ≥ 0. Then we have
E
[
X 1{B}

]
= E

[
Xn 1{B}

]
= E

[
X∞ 1{B}

]
,

where the first equality follows from X = E[Xn|Fn] (asumption of item (iii) above), while the second follows
from X∞ = E[Xn|Fn] (proved in (ii) ⇒ (iii) above). Therefore the equality E

[
X 1{B}

]
= E

[
X∞ 1{B}

]
6The material in Appendix A will be presented in the lecture; we have chosen to put it in appendix in the lecture notes,

because this material can be of interest, independently of its use in martingale theory.
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holds for all B in
∪

n≥0 Fn. By the monotone class theorem, see, e.g., [JP04, Theorem 6.2], it holds for any
B in σ

(∪
n≥0 Fn

)
= F∞. □

10.2. An example of application. As above, we consider Xn = Y1+ · · ·+Yn, where Yi are i.i.d. r.v. with
P[Yi = 1] = P[Yi = −1] = 1/2. Additionally, let a and b be two positive integers and set

T = inf{n ≥ 0 s.t. Xn = −a or Xn = b
}
.

Obviously, T is a stopping time. Therefore Xn∧T is a martingale (Proposition 6.3). We note that Xn∧T is
a.s. in the set {−a,−a+1, · · · , b}, so that it is a bounded martingale, and in particular u.i. Therefore Xn∧T

converges a.s. and in L1 to XT . The same argument as at the end of Section 9.2 tells us that T < +∞ a.s.,
which implies that a.s. XT takes values in {−a, b}. We have

E[XT ] = −aP[XT = −a] + bP[XT = b] = E[X0] = 0.

Since P[XT = −a] + P[XT = b] = 1, we can solve and get

P[XT = −a] = b
a+b , P[XT = −a] = a

a+b .

We determined the probabilities of winning and losing in the strategy “I stop the game when I have lost
amount a or won amount b”.

10.3. The unbounded optional stopping theorem. In the following, we consider a u.i. martingale
(Xn)n≥0 and a stopping time T . Since Xn has an a.s. limit X∞, we can define XT regardless of T being
finite or not, namely

XT (ω) =

{
XT (ω)(ω) if T (ω) <∞;

X∞(ω) if T (ω) = +∞.

Theorem 10.3. Let (Xn)n≥0 be a u.i. martingale and T be a stopping time. Then E[XT ] = E[X0].

Comparison with optional stopping theorem (Theorem 6.4). Here, T is not assumed to be bounded, not
even to be a.s. finite. The cost is that we have to assume Xn u.i.

Gambling interpretation. If we assume the winnings (and losses) of the gambler to be bounded (quite
reasonable assumption!), then even unbounded time strategies cannot achieve a better expectation of winnings
than just keeping the initial amount X0.

To prove the theorem, we first prove the following lemma.

Lemma 10.4. Let (Xn)n≥0 be a u.i. martingale. Then family (XS), where the index S runs over all
stopping times S, is u.i.

Proof. Recall that, as a u.i. martingale, Xn has an a.s. and L1 limit X∞ and that Xn = E[X∞|Fn] (see
Theorem 10.2 and the discussion below).

XS = X∞ 1{S = +∞}+
∑
n≥0

Xn 1{S = n}

= X∞1{S = +∞}+
∑
n≥0

E[X∞|Fn]1{S = n},

The single r.v. family (X∞) is uniformly inegrable so that, by Proposition A.3, there exists a convex
nondecreasing function φ with limx→∞

φ(x)
x = +∞ and E[φ(|X∞|)] <∞. We apply x→ φ(|x|) to the above

display, observing that there is always only one non-zero term on the right-hand side:

φ
(
|XS |

)
= φ

(
|X∞|

)
1{S = +∞}+

∑
n≥0

φ
(
|E[X∞|Fn]|

)
1{S = n}.

Now we use Jensen’s inequality for the convex function x→ φ(|x|):

φ
(
|XS |

)
≤ φ

(
|X∞|)1{S = +∞}+

∑
n≥0

E
[
φ(|X∞|)|Fn

]
1{S = n}.
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Taking expectation, and using the characterizing property, we get

E
[
φ
(
|XS |

)]
≤ E

[
φ(|X∞|)1{S = +∞}

]
+
∑
n≥0

E
[
φ(|X∞|)1{S = n}

]
= E

[
φ(|X∞|)

]
.

The right-hand side is finite (by construction of φ) and the bound is uniform on all stopping times S. From
Proposition A.3, this proves that the family (XS), where S runs over all stopping times, is u.i. □

Proof of Theorem 10.3. From Proposition 6.3, we know that (Xn∧T )n≥0 is a martingale. It is easy to check
from the definition that this martingale converges a.s. to XT , as n tends to +∞.

Since for each n ≥ 0, the quantity n ∧ T is a stopping time, the family (Xn∧T )n≥0 is a subfamily of the
family (XS), where S runs over all stopping times. From Lemma 10.4, this family is u.i. Therefore the
martingale Xn∧T converges to XT also in L1. Consequently

E[XT ] = lim
n→∞

E[Xn∧T ].

But, from the optional stopping theorem for bounded stopping times (Theorem 6.4), we know that for every
n ≥ 0, we have E[Xn∧T ] = E[X0]. We conclude that E[XT ] = E[X0], as wanted. □

10.4. Lp convergence. In this section, we discuss Lp convergence of martingales. For background and
motivation for Lp convergence of r.v. in general, we refer the reader to Appendix B7

Theorem 10.5 (Submartingale Lp convergence theorem). Let (Xn)n≥0 be a submartingale and p > 1. Then
the following assertions are equivalent:

(i) supn≥0 ∥Xn∥p <∞;
(ii) (Xn)n≥0 converges to some X∞ in Lp.

Comments
• The implication (ii) ⇒ (i) is true for any sequence (Xn)n≥0 of r.v.; see Proposition B.1. Only the

implication (i) ⇒ (ii) uses the martingale assumption and needs to be proven.
• (i) holds in particular for any p for bounded martingales.

Proof of (i) ⇒ (ii). From Proposition A.3 used with φ(x) = xp, the hypothesis supn≥0 ∥Xn∥p <∞ implies
that the martingale (Xn)n≥0 is u.i. Therefore, from Theorem 10.2, it has some a.s. and L1 limit X∞. We
need to prove that X∞ is in Lp and that the convergence Xn → X∞ holds in Lp as well.

We recall Doob’s Lp inequality (or rather Corollary 8.4): if X∗
∞ = supj≥0 |Xj |, then

∥X∗
∞∥p ≤

p
p−1 sup

n≥0
∥Xn∥p.

Assuming (i), we have X∗
∞ is in Lp. Since |X∞| ≤ X∗

∞ a.s., X∞ is in Lp as well.
We finally want to prove E[|Xn −X∞|p]→ 0. We will apply the dominated convergence theorem.
• Since Xn

a.s.−→ X∞, we have |Xn −X∞|p tends to 0 a.s.
• Moreover, a.s., we have

|Xn −X∞|p ≤ (|Xn|+ |X∞|)p ≤ 2p−1(|Xn|p + |X∞|p) ≤ 2p−1(|X∗
∞|p + |X∞|p),

where the middle inequality uses the convexity of the fonction x 7→ |x|p. The upper bound is
independent of n and integrable (since X∗

∞ and X∞ are both in Lp).
We conclude that E[|Xn −X∞|p]→ 0, i.e. Xn converges to X∞ in Lp, as wanted. □

11. Backwards martingales

In this section, we consider martingale indexed by negative integers. For simplicity, we do not discuss
generalizations, as backward submartingales.

7The material of this appendix will be presented in class.
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Definition 11.1. Let (Ω,F ,P) be a probability space, then a negatively indexed sequence (Fn)n≤0 is a
backward filtration if each Fn is a σ-algebra and we have

· · · ⊆ F−2 ⊆ F−1 ⊆ F0 ⊆ F .

Moreover a negatively indexed sequence (Xn)n≤0 of r.v. in L1 is a backward martingale if each Xn is
Fn-measurable and, for every n < 0,

E
[
Xn+1|Fn] = Xn.

As for usual martingales, we have more generally E
[
Xp|Fn] = Xn for p ≥ n. In particular E

[
X0|Fn] = Xn,

i.e. all backward martingales are “closed” (borrowing the terminology we introduced for usual martingales).
Consequently, from Corollary A.4, all backward martingales are u.i. This observation is used in the following
convergence theorem; note there is no assumptions, besides being a backward martingale.

Theorem 11.2. Let (Xn)n≤0 be a backward martingale. Then there exists a r.v. X−∞ in L1 s.t., as n

tends to −∞, Xn
a.s., L1

−→ X−∞

Proof. The proof uses Doob’s upcrossing inequality. Since this inequality is stated for usual martingales
(and not backward martingales), we need to construct a usual martingale. Fix N ≥ 0 and define, for k ≥ 0,

GNk = Fmin(k−N,0), Y N
k = Xmin(k−N,0).

For each fixed N ≥ 0, we have a filtration (GNk )k≥0 and a martingale Y k := (Y N
k )k≥0 w.r.t. that filtration

(straightforward to check).
Doob’s upcrosisng inequality (Theorem 9.2) applied to the martingale (−Y N

k )k≥0 at time k = N tells us
that, for any rational numbers a < b, we have

E
[
U

(a,b)
N (−Y k)

]
≤ 1

b−aE
[
(−Y N

N − a)+
]
.

But −Y N
N = X0 and one can check easily that U

(a,b)
N (−Y k) = U

(−b,−a)
N (X ′), where X ′

n := X−n is the
positively-indexed version of Xn. Summing up, we have

E
[
U

(−b,−a)
N (X ′)

]
≤ 1

b−aE
[
(−X0 − a)+

]
,

where we note that the right-hand-side is independent of N and therefore gives an upper bound for E
[
U

(−b,−a)
∞ (X ′)

]
=

limN→∞ E
[
U

(−b,−a)
N (X ′)

]
(this limit holds by monotone convergence).

The proof is now similar to the forward case. The probability that U
(−b,−a)
∞ (X ′) < ∞ is one. Since this

holds for any rational numbers a < b, we know that a.s., the sequence X ′ satisfies: for all a′ := −b < b′ := −a,
U

(a′,b′)
∞ (X ′) < ∞. By the upcrossing lemma (Lemma 9.1), this implies, that for almost all ω, the sequence

X ′
n(ω) as n tends to +∞, or equivalently Xn(ω) as n tends to −∞, has a limit which we denote X−∞(ω).

This defines a r.v. X−∞ and we have Xn
a.s.−→ X−∞ as n tends to −∞.

Using Fatou’s lemma, we have

E
[
|X−∞|

]
≤ lim inf

n→−∞
E
[
|Xn|

]
< +∞,

the last bound coming from the fact that (Xn)n≤0 is u.i. (see the discussion before the theorem) and hence
bounded in L1 (Proposition A.2, item (i)). We conclude that X−∞ is in L1.

Finally, recall that Xn
a.s.−→ X−∞. Since (Xn)n≤0 is u.i., from Proposition A.2, item (iii), we have

Xn → X−∞ in L1 as well. □

12. Some applications

12.1. The strong law of large numbers.

Theorem 12.1. Let (Yi)i≥1 be a sequence of i.i.d. random variables with E
[
|Y1|

]
<∞. Then

Y1 + · · ·+ Yn

n

a.s., L1

−→ E[Y1].
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(The right-hand side is the constant random variable X∞ s.t. X∞(ω) = E[Y1] for (almost) all ω.)
The proof of the theorem uses backward martingales and the two following properties of conditional

expectation (left as exercises to the reader)
(i) Let X be a r.v. defined on a probability space (Ω,F ,P) and B and C be σ-subalgebra of F . We assume

that (X,B) is independent from C. Then

E
[
X|σ(B, C)

]
= E

[
X|B

]
(ii) Take (Yi)i≥1 as above and Sn = Y1 + · · ·+ Yn. Then, for i in {1, · · · , n}, we have E

[
Yi|Sn

]
= Sn

n a.s.

Proof. We set Sn = Y1 + · · ·+ Yn, G−n = σ(Sn, Sn+1, · · · ) and X−n = Sn

n for n ≥ 1.
Claim: (Xp)p≤−1 is a backward martingale w.r.t to the filtration (Gp)p≤1.
Proof of the claim: clearly Xp is in L1 since the Yi’s are in L1 and Xp is (Gp)p≤1-measurable. We also

note that G−n = σ(Sn, Yn+1, Yn+2, · · · ). Using the above properties (i) and (ii), we have, for p = −n < 1

E
[
Xp+1|Gp

]
= E

[Sn−1

n−1 |Sn

]
=

1

n− 1

(
E
[
Y1|Sn

]
+ · · ·+ E

[
Yn−1|Sn

])
=

1

n− 1

(
Sn

n + · · ·+ Sn

n

)
= Sn

n = Xp.

Therefore the martingale property is verified and (Xp)p≤−1 is a backward martingale, as claimed.

From Theorem 11.2, we know that there exists X−∞ in L1 s.t. Xp
a.s., L1

−→ X−∞ as p tends to −∞.
Since X−n = Sn

n , this translates as Sn

n

a.s., L1

−→ X−∞ as n tends to +∞ and the only thing left to prove is
X−∞ = E[Y1] a.s.

As the convergence Xp → X−∞ holds in L1, we also have convergence in expectation and

(13) E[X−∞] = lim
n→∞

E[Sn

n ] = E[Y1].

Besides, for each N ≥ 1, X−∞ is σ(YN+1, YN+2, · · · ) measurable. Indeed, setting SN
n =

∑n
i=N+1 Yi, we have

lim
n→∞

Sn

n = lim
n→∞

SN
n

n

and the RHS is σ(YN+1, YN+2, · · · ) measurable. We conclude that X−∞ is

H∞ :=
∩
N≥1

σ(YN+1, YN+2, · · · )

measurable. But H∞ is known as Kolmogorov’s tail algebra and Kolmogorov 0-1 law states that events in
this algebra have probability 0 or 1 [JP04, Theorem 10.6] or equavalently, r.v. which are H∞-measurable
are a.s. constant. Therefore X−∞ = C a.s. for some real number C. But C = E[X−∞] = E[Y1] by Eq. (13)
above, which concludes the proof. □

12.2. Hewitt-Savage zero-one law. Let (Yi)i≥1 be i.i.d. random variables and X = F (Y1, Y2, · · · ) be
some random variable. The function F is called symmetric if, for any permutation π : N → N with finite
support and any variables x1,x2, …, we have

F (xπ(1), xπ(2), · · · ) = F (x1, x2, · · · )

Theorem 12.2. Let (Yi)i≥1 be i.i.d. random variables and F be a symmetric function as above. Then the
r.v. X = F (Y1, Y2, · · · ) is a.s. constant.

Example. We take
F (x1, x2, · · · ) = 1

{
x1 + · · ·+ xn > 10 for infinitely many n

}
.

Then F (Y1, Y2, · · · ) = 1 a.s. or F (Y1, Y2, · · · ) = 0 a.s. (this depends on the distribution of Y ), i.e. either the
partial sum sequence goes infinitely many times above 10 a.s., or it stays ultimately below 10 a.s.

This extends to any dimension and any Borel set B instead of the interval (10,+∞).
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Proof. W.l.o.g., assume F bounded (otherwise replace F by φ ◦F where φ is a bounded injective function);
this implies that X is in L1. We set

Fn = σ(Y1, · · · , Yn), Gn = σ(Yn+1, Yn+2, · · · ),
and let Xn = E[X|Fn] and Zn = E[X|Gn]. The sequences Xn and Zn defines usual martingale, resp.
backward martingales with respect to the filtration Fn, resp. backward filtration Gn. Therefore, from
Theorems 10.2 and 11.2 (note that Xn is a closed martingale by definition), we know that Xn and Zn

converge a.s. and in L1 to X∞ and Z∞, respectively. Furthermore, we have

X∞ = E
[
X|σ

(∪
n≥0
Fn

)]
= X.

On the other hand, Z∞ is
∩

n≥0 Gn measurable, and hence a.s. equal to a constant C, by Kolmogorov 0-1
law. Since we have L1 convergence, we have

C = E[Z∞] = lim
n→∞

E[Zn] = E[X],

where the third inequality follows from Zn being a backward martingale. To sum up, Zn converges to E[X],
a.s and in L1.

But Xn is Fn measurable, and hence, Xn = g(Y1, . . . , Yn) for some measurable function g. Recall that Xn

tends in L1 to X = F (Y1, Y2, . . . ). Since (Y1, Y2, . . . ) has the same law as (Yn+1, . . . , Y2n, Y1, . . . , Yn, Y2n+1, . . . )
(these are i.i.d. random variables, changing the order does not change their joint law), we have that
g(Yn+1, . . . , Y2n) tends in L1 to

F (Yn+1, . . . , Y2n, Y1, . . . , Yn, Y2n+1, . . . ) = F (Y1, Y2, . . . ) = X,

where we used the symmetry of F . Concretely, we have

lim
n→∞

E
[∣∣g(Yn+1, . . . , Y2n)−X

∣∣] = 0.

Since taking conditional expectation is a L1 contraction (Jensen’s inequality), we also have

lim
n→∞

E
[∣∣E[g(Yn+1, . . . , Y2n)|Gn

]
− E

[
X|Gn

]∣∣] = 0.

But g(Yn+1, . . . , Y2n) is Gn measurable and E
[
X|Gn

]
= Zn by definition, so that

lim
n→∞

∥g(Yn+1, . . . , Y2n)− Zn∥1 = 0.

However, we have proved that g(Yn+1, . . . , Y2n) tends to X in L1 while Zn tends to E[X]. This forces
X = E[X] a.s., which is what we wanted to prove. □
12.3. Galton-Watson processes. The two applications above are “theoretical” applications of martingale
theory. There are also many applications in the analysis of probabilistic models: the idea is to find a
martingale in the model, and use convergence results for this martingale to understand the behaviour of the
models. A few examples of this kind are given in the exercise sheet (gamble models, urn models, …). We
give here a standard one: Galton-Watson processes.

Let µ be a probability measure on {0, 1, 2, · · · } with m :=
∑

i≥0 iµ(i) <∞. We assume that 0 < µ({0}) <
1 (otherwise, the model is trivial).

Let (ξ
(n)
k )k,n≥1 be a collection of i.i.d. random variables with law µ We set X0 = 1 and for n ≥ 0,

Xn+1 =

Xn∑
k=1

ξ
(n+1)
k .

(The number of terms in the sum defining Xn+1 is Xn.
Interpretation: this models the number of individuals in a population with asexual reproduction (or

considering only males in a population; the model was initially introduced to estimate the probability of
survival of last names of Lords in England). Then Xn is the number of individual at generation n; ξ(n+1)

k is
the number of children of the k-th individual of generation n; this is a random variable following a distribution
µ, which is called the offspring distribution. See Fig. 2.

Main question: Will there be extinction or survival of the population? i.e. what is the probability that
Xn0

= 0 for some n0 (which implies Xn = 0 for n ≥ n0)?
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Figure 2. The first 4 generation of a Galton-Watson process (this shows one possible
realization of the process). Taken from this url

.

A martingale: we consider the filtration

Fn = σ
(
(ξ

(p)
k )p≤n,k≥0

)
.

(This is the σ-algebra containing what happens until generation n.) Clearly, Xn is Fn-measurable and

E[Xn+1|Fn] = E

[
Xn∑
k=1

ξ
(n+1)
k

∣∣Fn

]
= E

[ ∞∑
k=1

1[k ≤ Xn]ξ
(n+1)
k

∣∣Fn

]
We have replace the upper bound Xn in the summation index by ∞ and added 1[k ≤ Xn] in order not to
manipulate a sum with a random summation set. We now use that Xn is Fn-measurable, while ξ

(n+1)
k is

independent from Fn: we get

E[Xn+1|Fn] =

∞∑
k=1

1[k ≤ Xn]E
[
ξ
(n+1)
k

]
=

∞∑
k=1

(1[k ≤ Xn]m) = mXn.

Dividing by mn+1, this gives
E
[Xn+1

mn+1

∣∣Fn

]
= Xn

mn .

This proves that Mn := Xn

mn is a martingale (why is it in L1?). Since it is nonnegative, Theorem 9.3 (applied
to −Mn) implies the existence of Z in L1 such that Mn

a.s.−→ Z (but we might not have convergence in L1).

How to use this martingale convergence? We now need to distinguish 3 cases

m < 1: Observing that either Mn = 0 or Mn ≥ 1
mn → +∞, we see that Mn can only converge if

Mn = 0 for n large enough. Therefore, a.s., there exists n0 (depending on ω) s.t. Mn = 0 for n ≥ n0.
This implies that Xn = 0 for n ≥ n0, i.e. we have almost sure extinction.

Note: consequently in this case, Z = 0. On the other hand, for all n ≥ 0, we have E[Mn] =
E[M0] = 1 (martingales have constant expectation). In particular, we note that E[Z] = 0 ̸=
limE[Mn] = 1, so that the a.s. convergence Mn → Z does not hold in L1.

m = 1: In this case, Mn = Xn. Note that, for n, k > 0, P
[
Xn+1 = k|Xn = k] < 1 so that for fixed k

and n0,
P
[
Xn = k for all n ≥ n0

]
= 0.

Taking a countable union, we conclude that the probability that Xn converges (or equivalently
stabilizes) to some k > 0 is equal to 0. Since Xn converges a.s. to Z, we conclude that necessarily
Z = 0 a.s. This implies that a.s., Xn = 0 for n ≥ n0 (n0 depends on ω), i.e. we have almost sure
extinction.

https://corecomputations.wordpress.com/2011/07/26/the-galton-watson-process-part-i/
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m > 1: In this case, one can prove that there is a nonzero probability of survival, i.e.
P
[
Xn > 0 for all n ≥ 0

]
> 0.

For simplicity we only prove this assuming that m2 :=
∑

k≥0 k
2µ({k}) is finite.

We first prove that Mn is bounded in L2. We have

E
[
X2

n+1|Fn

]
= E

∑
j,k≥1

1[j ≤ Xn]1[k ≤ Xn]ξ
(n+1)
j ξ

(n+1)
k

∣∣Fn


=
∑
j,k≥1

1[j ≤ Xn]1[k ≤ Xn]E
[
ξ
(n+1)
j ξ

(n+1)
k

]
,

where we used that Xn is Fn-measurable, while ξ
(n+1)
j and ξ

(n+1)
k are independent from Fn. The

expectation in the last line is m2 when j = k and m2 when j ̸= k (in this case ξ
(n+1)
j and ξ

(n+1)
k are

independent one from the other). We get
E
[
X2

n+1|Fn

]
= Xn m2 + (X2

n −Xn)m
2 = (m2 −m2)Xn +m2X2

n.

Dividing by m2n+2 and taking expectation, we have

E
[
M2

n+1

]
=

m2 −m2

mn+2
E[Mn] + E

[
M2

n

]
.

But E[Mn] = E[M0] = 1 (since Mn is a martingale) and E[M2
0 ] = 1, so that

E
[
M2

n

]
= 1 +

n−1∑
k=0

m2 −m2

mk+2
,

which is bounded since m2−m2

mk+2 is the general term of a convergent geometric series (the common
ratio is m−1 < 1). This proves that Mn is bounded in L2 and therefore the a.s. convergence Mn → Z
holds in L2 as well (Theorem 10.5). We therefore have E[Z] = limn→∞ E[Mn] = E[M0] = 1. This
proves P[Z > 0] > 0. But Z > 0 implies that Xn is nonzero for n sufficiently large (and hence for all
n, since Xn0 = 0 implies Xn = 0 for all n ≥ n0). We have proved that there is a positive probability
of survival.

Note: it is easy to show that the probability of extinction is also nonzero, indeed
P
[
Xn = 0 for some n ≥ 0

]
≤ P[X1 = 0] = µ({0}) > 0.

Part C. Markov chains

13. Basics

Framework. As in the previous chapter, we will consider some random processes (Xn)n≥0 on a (filtered)
probability space. We additionally make an important assumption throughout Part C: Xn takes value in a
countable space S (called “state space”). This implies:

• for fixed N , the law of XN is determined by the individual probabilities (P[XN = s])s∈S .
• the law of the whole process (Xn)n≥0 : Ω→ SN is determined by the cylinder probabilities(

P
[
X0 = s0, X1 = s1, · · · , XN = sN

])
N≥0,s0,...,sN∈S

.

(This is a consequence of Kolmogorov extension theorem.)

13.1. The Markov property.

Definition 13.1. A random process (Xn)n≥0 with values in a countable space S has the Markov property if
one has

P
[
Xn+1 = sn+1

∣∣X0 = s0, · · · , Xn = sn
]
= P

[
Xn+1 = sn+1

∣∣Xn = sn
]
,

for all n ≥ 0, s0, s1, · · · , sn, sn+1 ∈ S such that P[X0 = s0, · · · , Xn = sn] > 0.
A random process (Xn)n≥0 with the Markov property is called a Markov process.

https://en.wikipedia.org/wiki/Kolmogorov_extension_theorem
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In words, the law of Xn+1 knowing (X0, · · · , Xn) is the same as that knowing Xn. This means that if, at
time n, you want to predict the next state Xn+1 and if you know the current state Xn, then the previous
states X0, · · · , Xn−1 will not bring you extra information. Such models are sometimes called memoryless:
knowing the present, the future is independent from the past.

The Markov property in fact implies more generally the following:

Lemma 13.2. Let (Xn) be a Markov process. Then, for any A ⊆ Sn and B ⊆ Sp, we have
(14) P

[
(Xn+1, · · · , Xn+p) ∈ B

∣∣Xn = sn, (X0, · · · , Xn−1) ∈ A
]
= P

[
(Xn+1, · · · , Xn+p) ∈ B

∣∣Xn = sn,

as soon as the conditioning events have nonzero probability.

We will use the above lemma repeatedly saying only “using the Markov property”.

Proof. We first want to prove, that, for any n ≥ 0, sn, sn+1 in S and A ⊆ Sn, we have
(15) P

[
Xn+1 = sn+1

∣∣Xn = sn, (X0, · · · , Xn−1) ∈ A
]
= P

[
Xn+1 = sn+1

∣∣Xn = sn
]

The Markov property corresponds to (15) when A is a singleton (such that the conditioning event is nonzero).
Assume (15) holds for two disjoint sets A1 and A2: then, we have

P
[
Xn+1 = sn+1, Xn = sn, (X0, · · · , Xn−1) ∈ A1

]
P
[
Xn = sn, (X0, · · · , Xn−1) ∈ A1

] = P
[
Xn+1 = sn+1|Xn = sn

]
=

P
[
Xn+1 = sn+1, Xn = sn, (X0, · · · , Xn−1) ∈ A2

]
P
[
Xn = sn, (X0, · · · , Xn−1) ∈ A2

]
Using the easy fact that a

b = X = c
d implies a+c

b+d = X as well, we have

P
[
Xn+1 = sn+1, Xn = sn, (X0, · · · , Xn−1) ∈ (A1 ⊎A2)

]
P
[
Xn = sn, (X0, · · · , Xn−1) ∈ (A1 ⊎A2)

] = P
[
Xn+1 = sn+1|Xn = sn

]
.

This proves that Eq. (15) holds for A1 ⊎ A2. We conclude that it holds for all A ⊆ Sn (such that the
conditioning event is nonzero).

Now, taking in addition sn+2 in S, we have, using the definition of conditional probabilities

P
[
Xn+1 = sn+1, Xn+2 = sn+2

∣∣(X0, · · · , Xn−1) ∈ A,Xn = sn
]

= P
[
Xn+2 = sn+2

∣∣Xn+1 = sn+1, (X0, · · · , Xn−1) ∈ A,Xn = sn
]

· P
[
Xn+1 = sn+1

∣∣(X0, · · · , Xn−1) ∈ A,Xn = sn
]
.

We can apply twice (15) (once with n and A, and once with n+ 1 and A× sn) and get

P
[
Xn+1 = sn+1, Xn+2 = sn+2

∣∣(X0, · · · , Xn−1) ∈ A,Xn = sn
]

= P
[
Xn+2 = sn+2

∣∣Xn+1 = sn+1

]
P
[
Xn+1 = sn+1

∣∣Xn = sn
]

But applying again (15), we have
P
[
Xn+2 = sn+2

∣∣Xn+1 = sn+1

]
= P

[
Xn+2 = sn+2

∣∣Xn+1 = sn+1, Xn = sn
]
.

This implies

P
[
Xn+1 = sn+1, Xn+2 = sn+2

∣∣(X0, · · · , Xn−1) ∈ A,Xn = sn
]

= P
[
Xn+2 = sn+2

∣∣Xn+1 = sn+1, Xn = sn
]
· P
[
Xn+1 = sn+1

∣∣Xn = sn
]

= P
[
Xn+1 = sn+1, Xn+2 = sn+2

∣∣Xn = sn
]
,

where the last equality is a simple manipulation of conditional expectation.
An easy induction on p with similar arguments proves

P
[
Xn+1 = sn+1, · · · , Xn+p = sn+p

∣∣(X0, · · · , Xn−1) ∈ A,Xn = sn
]

= P
[
Xn+1 = sn+1, · · · , Xn+p = sn+p

∣∣Xn = sn
]
.

Summing over tuples (sn+1, · · · , sn+p) in some set B we get (14). □
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Warning: however, taking C ⊂ S, in general we have
P
[
Xn+1 = xn+1

∣∣Xn ∈ C,Xn−1 = xn−1

]
̸= P

[
Xn+1 = xn+1

∣∣Xn ∈ C
]

Example: let Xn = Y1 + · · ·+ Yn be a simple random walk on Z (i.e. the Yi are i.i.d. uniform in {−1,+1}).
It is a Markov chain (see Section 14.4.2 later). Note that

(X2 ∈ {−2, 2}) ∧ (X1 = 1)⇒ X2 = 2,

so that
P
[
X3 = 3|X2 ∈ {−2, 2}, X1 = 1

]
= P

[
X3 = 3|X2 = 2, X1 = 1

]
= P

[
X3 = 3|X2 = 2] = 1/2.

On the other hand

P
[
X3 = 3|X2 ∈ {−2, 2}

]
=

P
[
X3 = 3 ∧ X2 ∈ {−2, 2}

]
P[X2 ∈ {−2, 2}]

=
P
[
X3 = 3 ∧ X2 = 2

]
P[X2 = −2] + P[X2 = 2]

=
1/8

1/2
= 1/4.

13.2. Transition matrices. Let (Xn)n≥0 be a random process with values in S. For x, y in S and i ≥ 0,
we denote

(16) Qi(x, y) =

{
P[Xi+1 = y|Xi = x] when P[Xi = x] > 0;

any value otherwise.
Qi is a function S × S → R. We will think at Qi as a matrix (possibly of infinite size, whose rows and
columns are indexed by S) and call Qi the transition matrix at time i.
Lemma 13.3. If (Xn)n≥0 has the Markov property, then

P
[
X0 = s0, X1 = s1, · · · , XN = sN

]
= P[X0 = s0]Q0(s0, s1) · · ·QN−1(sN−1, sN )

In particular the distribution of a Markov process (Xn) is determined by its initial distribution (P[X0 =
s0])s0∈S and the transition matrices (Qi)i≥0.

Proof. Assuming the probability of the conditioning events are non-zero, we have
P
[
X0 = s0, X1 = s1, · · · , XN = sN

]
= P

[
XN = sN |X0 = s0, · · · , XN−1 = sN−1

]
P
[
X0 = s0, · · · , XN−1 = sN−1

]
= P

[
XN = sN |XN−1 = sN−1

]
P
[
X0 = s0, · · · , XN−1 = sN−1

]
= Q(sN−1, sN )P

[
X0 = s0, · · · , XN−1 = sN−1

]
,

where we used the Markov property in the second line. Note that the last equality holds also in the case
P
[
X0 = s0, · · · , XN−1 = sN−1

]
= 0. Iterating it, we get the formula in the lemma. □

Definition 13.4. Let S be a countable set. A “matrix” Q : S × S → R is called stochastic if it has
nonnegative entries and row sums equal to 1.

In equation, Q(x, y) ≥ 0 for all x, y in S, and for x in S,∑
y∈S

Q(x, y) = 1.

Lemma 13.5. The transition matrices Qi defined in (16) can be chosen as stochastic matrices.
From now on, we assume that choices in (16) have been done such that Qi is stochastic matrix.

Proof. It is clear that rows corresponding to some x with P[Xi = x] > 0 (those whose entries are well-defined)
have nonnegative entries, which sum up to 1 (they are conditional probabilities). The rows corresponding
to some x with P[Xi = x] = 0 can be filled with arbitrary values without any constraints: it is therefore
straightforward to choose nonnegative values with sum 1. □

Given two S × S matrices R1 and R2, we want to define their product as
(17) R1R2(x, y) =

∑
z∈S

R1(x, z)R2(z, y).

However, when |S| =∞, the sum might not be defined. This problem never occurs with stochastic matrices,
as stated in the following lemma.
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Lemma 13.6. If R1 and R2 are stochastic matrices, then the product R1R2 is well-defined (in the sense
that the RHS of (17) is convergent) and is a stochastic matrix.

Proof. Assuming that R1 and R2 are stochastic matrices, the RHS of (17) is a sum of nonnegative terms
and therefore is defined as an element of R+ ∪ {+∞}. Moreover, since entries of R2 are all at most 1, we
have

R1R2(x, y) =
∑
z∈S

R1(x, z)R2(z, y) ≤
∑
z∈S

R1(x, z) = 1,

so that the product has in fact finite entries in [0, 1]. Moreover, for x in S,

∑
y∈S

R1R2(x, y) =
∑

y,z∈S

R1(x, z)R2(z, y) =
∑
z∈S

R1(x, z)

∑
y∈S

R2(z, y)

 =
∑
z∈S

R1(x, z) = 1,

where we used the fact that all summands are nonnegative to change the order of summation. □

13.3. Chapman-Kolmogorov equations. Let (Xn) be a random process. For i ≤ j, we denote

(18) Qj
i (x, y) =

{
P[Xj = y|Xi = x] if P[Xi = x] > 0;

arbitrary value otherwise.

Proposition 13.7 (Chapman-Kolmogorov equations). When (Xn)n≥0 is a Markov process, the arbitrary
values in (18) can be chosen so that, for all i < j < k, we have

Qk
i = Qj

i Q
k
j .

Proof. To simplify, we consider only the case where the relevant events have positive probability. For x, y ∈ S,
we have

Qk
i (x, y) = P[Xk = y|Xi = x] =

∑
z∈S

P[Xk = y|Xj = z,Xi = x]P[Xj = z|Xi = x],

where we use the law of total probability for conditional probabilities. Using the Markov property, we have
P[Xk = y|Xj = z,Xi = x] = P[Xk = y|Xj = z]. Therefore

Qk
i (x, y) =

∑
z∈S

P[Xk = y|Xj = z]P[Xj = z|Xi = x] =
∑
z∈S

Qk
j (z, y)Q

j
i (x, z) = Qj

iQ
k
j (x, z),

where we used the definition of the Q·
· and of a product of stochastic matrices. □

13.4. Homogeneity.

Definition 13.8. A Markov process (Xn)n≥0 is (time-)homogeneous if one can choose arbitrary values in
(16) such that Qi is independent of i.

From now on, we only consider homogeneous Markov processes, which we call Markov chain. We denote Q
the common values of the Qi. We take it as a stochastic matrix, called the transition matrix of the Markov
chain.

Important facts:
• The distribution of a Markov chain (Xn)n≥0 is determined by the stochastic matrix Q and by the

distribution of X0 (called initial distribution). Conversely, given a probability distribution ν on a
countable set S and an S × S stochastic matrix Q, one can construct a Markov chain (Xn)n≥0 with
initial distribution ν and transition matrix Q (admitted).

• Chapman-Kolmogorov equations for Markov chains give: for i ≤ j,
Qj

i = Qj−i, i.e., for all x, y in S, one has P[Xj = y|Xi = x] = Qj−i(x, y)

(whenever P[Xi = x] > 0).

13.5. Examples. From now on, we use the matrix notation Q = (Qx,y)x,y∈S for transition matrices (instead
of the above function notation Q(x, y)).

General pattern: when Xn+1 is defined as a function of Xn and of some additional r.v. independent from
X0, · · · , Xn, then (Xn) has a Markov property. If furthermore, this function and the law of the additional
r.v. do not depend on n, then we have a Markov chain.

https://en.wikipedia.org/wiki/Law_of_total_probability
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13.5.1. I.i.d. random variables. Let (Xi)i≥0 be a sequence of i.i.d. r.v. on a countable set S with common
distribution µ. Then (Xi)i≥0 is a Markov chain with initial distribution µ and transition matrix Qx,y = µ(y).

13.5.2. Random walk on Zd. Let S = Zd and (Yi)i≥1 be i.i.d. r.v. on Zd with common distribution µ. Set
Xn = Y1 + · · ·+ Yn for n ≥ 0. Then (Xn)n≥0 is a Markov chain with transition matrix Qx,y = µ({y − x}).
Indeed, the Markov property is clearly satisfied and

P[Xn+1 = y|Xn = x] = P[Yn+1 = y − x|Xn = x] = P[Yn+1 = y − x] = µ({y − x}),

where the second equality uses the independence of Yn+1 and Xn.

13.5.3. Simple random walk on a graph. Let G = (V,E) be a graph. We assume V is countable and that for
every v in V , one has 0 < deg(v) <∞. Fix a vertex v0 and set ν = δv0 , the Dirac measure in v0. For x, y in
V , we set

Qx,y =

{
1

deg(x) if {x, y} ∈ E;

0 otherwise.
Fig. 3 shows these transition probabilities for a concrete graph G.

1

1/2

1/2

1/3

1/31/3

1/2

1/2

1/2

1/2

Figure 3. Transition probabilities of the simple random walk on a 5-vertex graph G

For any graph G, the associated Q is a stochastic matrix. The Markov chain (Xn)n≥0 with initial
distribution ν = δv0 and transition matrix Q is called the simple random walk on G starting at v0.

Informally, we start at v0, i.e. X0 = v0 a.s. At each time n ≥ 0, we choose Xn+1 uniformly at random
among the neighbours of Xn.

13.5.4. Galton-Watson (GW) branching process. Recall that the GW process with offspring distribution µ
is defined by X0 = 1 a.s. and n ≥ 0,

Xn+1 =

Xn∑
k=1

ξ
(n+1)
k ,

where the (ξ
(n)
k )k,n≥1 are i.i.d. random variables with law µ.

This is a Markov chain, with initial distribution δ1 and transition matrix

Qx,y = P
[
Z1 + · · ·+ Zx = y

]
= µ∗x(y),

where in the first expression, (Z1, · · · , Zx) are i.i.d. random variables of law µ and in the second one, µ∗x is
the x-th convolution power of the µ.

14. Classification of states

Setting: we fix a transition matrix Q (=stochastic matrix) on a countable set S (=state space). For any
initial distribution ν, there is a Markov chain (Xn)n≥0 with initial distribution ν and transition matrix Q.
We will denote probabilities/expectations with respect to this Markov chain as Pν and Eν . For x in S, we
simplify Pδx and Eδx to Px and Ex. Informally the index x means that the chain starts in x. (Some authors
also write P[· · · |X0 = x].)
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14.1. Transience/recurrence.

Definition 14.1. A state x in S is called
• recurrent (or persistent) if Px

[
∃n ≥ 0 : Xn = x

]
= 1;

• transient if Px

[
∃n ≥ 0 : Xn = x

]
< 1;

In words, Px

[
∃n ≥ 0 : Xn = x

]
is the probability that, when starting at x, the chains comes back to x at

some time (not specified in advance).
Goal: given a transition matrix Q, determine which states are transient/recurrent.

14.2. The generating function approach. We introduce additional notation: for x, y in S

F (n)
x,y = Px

[
Xn = y ∧ (∀k ∈ {1, · · · , n− 1}, Xk ̸= y)

]
.

In words, F (n)
x,y is the probability that, starting at x, the first “visit” in state y occurs at time n (if y = x, we

do not consider n = 0 as the first visit time; we will speak of the first “return” at x). Summing over n, we
get the probability that the chain ever visit y (resp. ever returns at x), i.e.

Fx,y :=
∑
n≥0

F (n)
x,y = Px

[
∃n > 0, Xn = y

]
.

By definition x is recurrent if and only if Fx,x = 1.
We would like a relation between Q and F (to get a recurrence criterion in terms of Q). To this end, we

need to introduce generating series: for t ∈ [0, 1), we set

Qx,y(t) =
∑
n≥0

tnQn
x,y;

Fx,y(t) =
∑
n≥0

tnF (n)
x,y .

Since Qn
x,y and F

(n)
x,y are smaller than 1, both series converge for t < 1.

Why generating series? For this to be interesting, we need two ingredients:
(1) One can find relations between the generating series;
(2) one can extract information on the object we are interested in (here Fx,x) from the generating series.

Proposition 14.2. For t in (0, 1) and x, y in S with x ̸= y, we have
(i) Qx,x(t) = 1 + Fx,x(t)Qx,x(t)

(ii) Qx,y(t) = Fx,y(t)Qy,y(t).

Proof. Take x, y in S possibly equal. For m, r ≥ 1, we write Am = {Xm = y} and
Br = {Xr = y, X1 ̸= y, · · · , Xr−1 ̸= y}.

In words, Am means that the Markov chain visits y at time m, while Br means that the Markov chain visits
y for the first time at time r. Using Am = B1 ⊎ · · · ⊎Bm, we have, for m ≥ 1,

Qm
x,y = Px[Xm = y] = Px[Am] =

m∑
r=1

Px[Am ∩Br] =

m∑
r=1

Px[Am|Br]Px[Br]

Let us consider the conditional probability Px[Am|Br]; assume first r < m and imagine we are at time r.
The event Br contains the information on the state at time r (Xr = y) and some information on the past
(we never visited y before), while Am is an event about the future (Xm = x recall that m > r). By the
Markov property, we can forget about the past and we have

Px[Am|Br] = P[Xm = x|Xr = y] = Qm−r
y,y ,

where the last equality is an application of the Chapman-Kolmogorov equations. On the other hand, by
definition Px[Br] = F

(r)
x,y , so that we get

Qm
x,y =

m∑
r=1

Qm−r
y,y F (r)

x,y .
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We multiply both sides by tm and sum over m ≥ 1,

Qx,y(t)−Q0
x,y =

∑
m≥1

Qm
x,yt

m =
∑
m≥1

(
m∑
r=1

Qm−r
y,y tm−r F (r)

x,y t
r

)

Setting p = m− r the sum over m ≥ 1 and r ∈ {1, · · · ,m} can be rewritten as a double sum over r ≥ 1 and
p ≥ 0:

Qx,y(t)−Q0
x,y =

∑
p≥0

Qp
y,yt

p

 ∑
r≥1

F (r)
x,y t

r

 = Qy,y(t)Fx,y(t).

Using Q0
x,y = 1[x = y], this proves both (i) and (ii). □

The following lemma addresses item 2. above, i.e. how to extract the relevant information from the generating
series.

Lemma 14.3 (Abel). Assume an ∈ [0, 1] for all n ≥ 0. Then

lim
s↑1

∑
n≥0

ans
n

 =
∑
n≥0

an.

The notation s ↑ 1 means that we take the limit as s increases and tends to 1, i.e. with s < 1; as said
above the sum

∑
n≥0 ans

n is absolutely convergent for s < 1 and hence
∑

n≥0 ans
n is a finite real number.

Since this is an increasing function of s (recall an ≥ 0), the limit as s ↑ 1 exists, as an extended real number
(it might be +∞). Similarly, as an infinite sum of nonnegative real numbers, the RHS always exists as an
extended real number.

Proof. Assume first
∑

n≥0 an < +∞. Then the series
∑

n≥0 ans
n of functions on [0, 1] is normally convergent,

so that the sum
∑

n≥0 ans
n is a continuous function on [0, 1]. This proves the lemma in this case.

We consider now the case
∑

n≥0 an = +∞. Fix M > 0, there exists N > 0 s.t.
∑N

n=0 an ≥ M . We can
then choose ε > 0 s.t. (1− ε)N ≥ 1

2 . For s ≥ 1− ε, it holds that

∑
n≥0

ans
n ≥

N∑
n=0

ans
N ≥ 1

2

N∑
n=0

an ≥ 1
2M.

Such an ε > 0 can be found for each M > 0, proving lims↑1

(∑
n≥0 ans

n
)
= +∞. □

Theorem 14.4. Let Q be a transition matrix on S and x, y be states in S. Then
(i) x is recurrent if and only if

∑
n≥0 Q

n
x,x = +∞;

(ii) if y is transient, then
∑

n≥0 Q
n
x,y < +∞ (in particular Qn

x,y → 0, as n tends to ∞);
(iii) if y is recurrent and Fx,y > 0, then

∑
n≥0 Q

n
x,y = +∞.

Proof. By Proposition 14.2, for t in (0, 1), we have

Qx,x(t) =
1

1− Fx,x(t)
.

Using Abel’s lemma, as t ↑ 1, the quantity Fx,x(t) tends to Fx,x. and Qx,x(t) tends to
∑

n≥0 Q
n
x,x. Therefore∑

n≥0

Qn
x,x =

1

1− Fx,x
,

with the convention 1
0 = +∞. We recall that x is recurrent if and only if Fx,x = 1. This implies that x is

recurrent if and only if
∑

n≥0 Q
n
x,x = +∞, proving (i).

(ii) and (iii) follow easily using again Abel’s lemma and Proposition 14.2, item (ii). □

https://en.wikipedia.org/wiki/Normal_convergence
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14.3. Relations between states.

Definition 14.5. Let x, y be in S with x ̸= y, we say that
• x communicates with y if Fx,y > 0 or equivalently Qn

x,y > 0 for some n ≥ 0 (notation: x −→ y);
• x and y intercommunicate if x −→ y and y −→ x (notation x←→ y).

By convention, x −→ x and x←→ x.

Informally, x −→ y means that we can go from x to y. The relation x −→ y is transitive, while x←→ y is
an equivalence relation. Equivalence classes are in many examples of Markov chains immediate to determine.

Lemma 14.6. If x is recurrent and x −→ y, then y is recurrent and necessarily, y −→ x.

Proof. Since x −→ y, there exists p ≥ 0 such that Qp
x,y ≥ 0. We set C = Qp

x,y. For n ≥ 0, we have

Qn+p
x,y =

∑
z∈S

Qn
x,z Q

p
z,y ≥ Qn

x,x Q
p
x,y = C Qn

x,x.

This implies ∑
n≥0

Qn
x,y ≥

∑
n≥0

Qn+p
x,y ≥ C

∑
n≥0

Qn
x,x

 .

But the latter sum is infinite (Theorem 14.4). We conclude that
∑

n≥0 Q
n
x,y = +∞, proving that y is

recurrent (contrapositive of Theorem 14.4, item (ii)).
We now prove that y −→ x (wlog, we assume x ̸= y). To this end, take n0 to be the minimal n > 0 such

that Qn
x,y > 0 (such an n exists since X −→ y). For i in {1, · · · , n0 − 1}, we have

Px

[
Xi = x,Xn0 = y

]
= Px

[
Xi = x

]
Px

[
Xn0 = y|Xi = x

]
.

Using the Markov property, the second factor is Qn0−i
x,y . The latter is 0 by minimality of n0. Thus, for any

i in {1, · · · , n0 − 1}, we have Px

[
Xi = x,Xn0

= y
]
= 0. On the other hand Px

[
Xn0

= y
]
= Qn0

x,y > 0. Both
statements together imply

Px

[
Xn0

= y,X1 ̸= x, · · · , Xn0−1 ̸= x
]
> 0,

i.e. we hit y (at time n0) before coming back to x with positive probability.
Assume now for the sake of contradiction, that we cannot go from y to x (i.e. y ̸→ x). Then, whenever

we hit y before coming back to x, we never go back to x. Formally, for j > n0, Px

[
Xn0 = y,Xj = x

]
=

Qj−n0
x,y = 0. Combining with the above, we have

Px

[
Xn0

= y,X1 ̸= x, · · · , Xn0−1 ̸= x,Xn0+1 ̸= x,Xn0+2 ̸= x, · · ·
]
> 0.

Consequently, with positive probability, we never go back to x. This contradicts x being recurrent. We
conclude that y −→ x. □

The lemma has the two following consequences, useful to identify transient/recurrent states.

Corollary 14.7. If x→ y but y ̸→ x, then x is transient.

Corollary 14.8. If x←→ y, then x and y are either both recurrent or both transient.

Definition 14.9. A subset C of S is called:
• closed if for any x in C and y in S such that x −→ y, we have y ∈ C.
• irreducible if for any x, y in C, we have x←→ y.

When the whole space state S is irreducible, we simply say that the Markov chain is irreducible.

Theorem 14.10 (decomposition theorem for Markov chains). Let Q be a transition matrix on S. The state
space S can be uniquely partitioned as
(19) S = T ⊎ C1 ⊎ C2 ⊎ · · · ,

where T is the set of transient states, and the Ci are closed irreducible subsets of recurrent states (there can
be finitely many or infinitely many of them).
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Here is a schematic illustration of the theorem, where the dotted arrow represent possible transitions and
plain arrows are sure transitions (when you are in some Ci, you stay in Ci with probability 1).

We note that the transient part can be one or several equivalence classes. It might be possible to jump from
one to another of these classes.

Proof. Let (Ci)1≤i≤k be the equivalence classes for ←→ on the set of recurrent states (k ∈ N0 ∪ {+∞}). By
definition, each Ci is irreducible and (19) holds. We need to show that the Ci’s are closed.

Take x in Ci and y in S such that x −→ y. From Lemma 14.6, we know that y is recurrent and that
y −→ x. Therefore, we have x ←→ y, and y is in the same ←→ equivalence class as x, i.e. in Ci. This
concludes the proof. □

We finish by a simple lemma, useful in some examples

Lemma 14.11. Let C be a closed finite subset of S. Then C contains at least a recurrent state.

Proof. For the sake of contradiction, we assume that all states in C are transient. Fix x in C and consider
Qn

x,y for all y and large n:
• if y is not in C, then Qn

x,y = 0 since C is closed;
• if y is in C, then y is transient and Qn

x,y → 0.
We conclude that

∑
y Q

n
x,y → 0 (each of the finitely many non-zero terms tends to 0). But the

∑
y Q

n
x,y = 1

for each n. We have reached a contradiction, proving that C contains at least one recurrent state. □
14.4. Examples. We discuss recurrence and transience in the examples of the previous chapter.

14.4.1. I.i.d. r.v. Here (Xn) is a sequence of i.i.d. r.v. of distribution µ. We have Qn
x,y = µ(y) for all x, y in

S and n ≥ 0. Then x −→ y if and only if µ(y) > 0 and, similarly, y is recurrent if and only if µ(y) > 0.
We have the decomposition S = T ⊎ C1, where the set of transitive states T = {y ∈ S : µ(y) = 0} is a

union of singleton equivalence class, while the set of recurrent states consists of a unique close irreducible
component C1 = {y ∈ S : µ(y) > 0}.

14.4.2. Random walk on Zd. Here Xn = Y1 + · · · + Yn, where the Yi’s are i.i.d. r.v. of distribution µ. We
recall that Xn is a Markov chain with transition matrix Qx,x′ = µ({x′ − x}).

We have x −→ x′ if there exists n and y1, · · · , yn such that
µ(y1), · · · , µ(yn) > 0 and x′ = x+ y1 + · · ·+ yn.

Defining Supp(µ) = {y ∈ Zd : µ(y) > 0}, this happens if and only if x′− x is in the semigroup Gµ generated
by Supp(µ).

Case 1: G is not a group, i.e there exists g in G such that −g is not in G (since G is a semi-group, this
is the only group axiom that might fail). Then, for any x in Zd, we have x −→ x+ g but x+ g ̸→ x. From
Lemma 14.6, this proves that x is transient.

Case 2: G is a group. There is no general answer, for some d and µ, the random walk is transient (i.e. all
states are transient), in other cases it is recurrent (i.e. all states are recurrent); see Section 14.5 for examples.

14.4.3. Random walk on a graph. Here, states are vertices, and x −→ y if there is a path from x to y. In
particular x −→ y, is a symmetric relation and the closed and irreducible subsets of S are the same. The
−→ equivalence classes are the vertex-sets of the connected components of the graphs.

We claim that when |V | <∞, all states are recurrent. Indeed, by Lemma 14.11, each connected component
contains at least one recurrent state (since it’s finite and closed). But since all states in a connected
components are equivalent, every state in the component is recurrent (Corollary 14.8). This is valid for each
component, so for each state of the Markov chain.

For infinite graphs, we can have both transient or recurrent connected components (see, again, Section 14.5,
for examples).
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14.4.4. Branching processes. Here, Xn is a Markov chain with transition matrix Qx,y = µ∗x(y). In particular
for any x > 0, we have Qx,0 = µ(0)x > 0 (we assumed µ(0) > 0 so that extinction can happen). On the
other hand Q0,0 = 1, and Q0,x = 0 for any x > 0 (such a state is called an absorbing state). This shows that
any x > 0 is transient; 0 is trivially recurrent.

14.5. The simple random walk on Zd. Determining recurrence or transience is in general a difficult
problem and might need important computations. We study here the classical setting of the simple random
walk on Zd. Calling (ej)j≤d the unit vectors of Zd, we let (Yi)i≥1 be i.i.d. r.v. with P[Yi = ±ej ] = (2d)−1

and set Xn = Y1 + · · ·+ Yn.

Theorem 14.12. [Pólya recurrence theorem, 1921] The simple random walk on Zd is recurrence for d = 1
or d = 2, and transient for d ≥ 3.

Note: this is one of the most well-known theorem in probability theory. The change of qualitative
behaviour of the simple random walk depending on the dimension is remarkable.

Proof. Let 0d = (0, . . . , 0) ∈ Zd. We say that (x1, · · · , x2n is a path of length 2n starting at 0d if, for each
i ≤ 2n, |xi − xi−1| = 1 (setting x0 = 0d). For such a path, we have

P0d

[
X1 = x1, · · · , X2n = x2n

]
= (2d)−2n,

while this probability is 0 for other lists (x1, · · · , x2n). Therefore we have

Q2n
0d,0d

= P0d

[
X2n = 0d

]
=

∑
x1,...,x2n−1∈Zd

P0d

[
X1 = x1, · · · , X2n = 0d

]
= (2d)−2np2n(d),

where p2n(d) is the number of paths of length 2n starting and ending at 0d. (For obvious parity reasons,
Q2n+1

0d,0d
= 0 for all n.)

We count such paths as follows. A path starting at 0d is a word in the alphabet {I1, D1, · · · , Dd, Dd}, a
letter Ij (resp. Dj) at position i indicating that xi − xi−1 = ej (resp. xi − xi−1 = −ej). The path ends at
0d, if and only if, for all j ≤ d, there are as many Ij as Dj . We call aj this number. Then a1, · · · , ad satisfies
a1 + · · · + ad = n: indeed the total number of letters is 2a1 + . . . + 2ad, and is also the length of the path,
i.e. 2n. Given a1, · · · , ad with a1 + · · ·+ ad = n, the number of words with a1 times the letter I1, a1 times
the letter D1, a2 times the letter I2, and so on, is the multinomial(

2n

a1, a1, a2, a2, . . . , ad, ad

)
=

(2n)!

(a1!)2 · · · (ad!)2
.

Since the numbers a1, · · · , ad are not prescribed in advance, we should sum over their possible values to get
the total number of paths, i.e.

p2n(d) =
∑

a1,...,ad≥0
a1+...+ad=n

(2n)!

(a1!)2 · · · (ad!)2
.

We now analyze the convergence of
∑

n≥0 Q
2n
0d,0d

=
∑

n≥0(2d)
−2np2n(d), splitting the discussion depending

on the dimension.
d = 1: in this case, we have

p2n(1) =
(2n)!

(n!)2
, Q2n

0,0 = 2−2n (2n)!

(n!)2
.

Using Stirling formula we get Q2n
0,0 ∼ (πn)1/2. Since the latter is the general term of a divergent series, so is

Q2n
0,0. This implies that 0 is recurrent (Theorem 14.4). Using the irreducibility (or the translation invariance)

of the chain, we know that all states are recurrent.
d = 2: in this case we can prove that p2n(2) simplifies to

p2n(2) =

(
(2n)!

(n!)2

)2

.

This implies Q2n
02,02

∼ (πn)−1. This is the term of a divergent series, and we conclude as for d = 1, that the
chain is recurrent.
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d ≥ 3: here, it is not easy to find an asymptotic equivalent for p2n(d), but we will give an upper bound
(since we want to prove transient here, i.e. that

∑
n≥0(2d)

−2np2n(d), we need only an upper bound). We
start by the case where n is divisible by d, i.e. n = dr. Observe that if a1 + · · · + ad = dr, we have the
inequality a1! · · · ad! ≥ (r!)d (to see that, compare the factors on both sides). We therefore have

p2dr(d) ≤
(2dr)!

(r!)d

∑
a1,...,ad≥0

a1+...+ad=dr

1

(a1!) · · · (ad!)
.

But the sum is easily seen to be equal to ddr/(dr)!. We therefore have

p2dr(d) ≤
(2dr)! ddr

(r!)d(dr)!
∼n→∞ (2d)2dr

2
√
2πr

d
.

This implies that the sum
∑

r≥0 Q
2dr
0d,0d

is convergent for d ≥ 3.
To generalize this to the sum of all values p2n(d) of n (not only multiple of d), we observe that p2n(d) is

increasing in n (appending I1D1 at the end of a path of length 2n gives a path of length 2n + 2 with the
same ending point, and defines an injective procedure). Thus if n is in {(r − 1)d+ 1, · · · , rd}, we have

p2n(d) ≤ p2dr(d), Q2n
0d,0d

≤ (2d)2dr−2nQ2dr
0d,0d

≤ (2d)2dQ2dr
0d,0d

.

To each value of r correspond d values of n, i.e. n in {(r − 1)d+ 1, · · · , rd}. We get∑
n≥0

Q2n
0d,0d

≤ d
∑
r≥0

(2d)2dQ2dr
0d,0d

< +∞.

We conclude that 0d is transient (Theorem 14.4). Since the chain is irreducible (or using translation invar-
ince), we know that all states are transient. □

15. The strong Markov property

15.1. Statement. Let (Xn)n≥0 be a Markov chain with transition Q and initial distribution µ. Fix some
time k ≥ 0 and a state s such that P[Xk = s] > 0. The Markov property and the time homogeneity implies
the following:

Conditionally on {Xk = s}, the time-shifted process (Xk+p)p≥0 has distribution Ps and is
independent from (Xn)n<p.

This is sometimes referred to as the weak Markov property.
We would like to replace the time n by a random time; as for martingale, we use the notion of stopping

time We denote the standard filtration associated to (Xn) as Fn = σ(X0, . . . , Xn). Given a stopping time
T , we define FT as the σ-algebra generated by{

{T = n} ∩A, n ∈ N ∪ {+∞} and A ∈ Fn}.
Informally, this is the σ-algebra corresponding to everything that happens before the (random) time T .

Proposition 15.1 (strong Markov property). Let x be a state in S and T be a stopping time such that
T < +∞ implies XT = x. Then conditionally on T < +∞, we have (XT+p)p≥0 has distribution Px and is
independent from FT .

Note: the statement does not depend of the initial distribution µ.

Proof. Since X0, . . . , Xn takes values in the countable space S, events in Fn are exactly the disjoint unions
of atomic events

{X0 = x0, . . . , Xn = xn}, for x0, . . . , xn ∈ S.

We are interested in events A in FT such that A ⊆ {T < +∞} Such events are disjoint unions of events in
the family

An,x0,...,xn
:= {T = n,X0 = x0, . . . , Xn = xn}, for n ≥ 0, x0, . . . , xn ∈ S.

With this observation, the statement in the theorem rewrites as: for any An,x0,...,xn
with nonzero probability

and any s0, . . . , sk, we have
Pµ

(
XT = s0, . . . , XT+k = sk|An,x0,...,xn

)
= Px(X0 = s0, . . . , Xk = sk).



38 VALENTIN FÉRAY

Fix an event An,x0,...,xn with nonzero probability. We recall that since T is a stopping time, {T = n} is in
Fn. Using the above description of events in Fn, we know that

• either {X0 = x0, . . . , Xn = xn} ⊆ {T = n};
• or {X0 = x0, . . . , Xn = xn} ∩ {T = n} = ∅.

The second case cannot occur since Pµ(An,x0,...,xn
) > 0. We are therefore in the first case and

An,x0,...,xn = {X0 = x0, . . . , Xn = xn}.

(The information T = n in An,x0,...,xn is redundant.) Moreover since T <∞ implies XT = x, we must have
xn = x, otherwise An,x0,...,xn

would have probability 0 Therefore, using the Markov property,

Pµ

(
XT = s0, . . . , XT+k = sk|An,x0,...,xn

)
= Pµ

(
Xn = s0, . . . , Xn+k = sk|X0 = x0, . . . , Xn = x)

= Pµ

(
Xn = s0, . . . , Xn+k = sk|Xn = x) = δs0,xQ(s0, s1) . . . Q(sk−1, sk) = Px

(
X0 = s0, . . . , Xk = sk). □

Comment on the terminology: While these are called weak and strong Markov property, it relies on the
time homogeneity and not only on the Markov property.

15.2. First application: visiting recurrent states.

Proposition 15.2. Let Q be a transition matrix on S and x, y be intercommunicating recurrent states in
S. Then

Px[∃n > 0 : Xn = y] = 1.

Proof. Assume w.l.o.g. that x ̸= y. Let Tx be, as usual, the first return time of the chain at x: Tx < +∞
a.s. since x is recurrent. We set

p = Px

[
∃n > 0 : Xn = y

]
, q = Px

[
∃n < Tx : Xn = y

]
.

We have seen in the proof of Lemma 14.6 that q > 0. Moreover, we have

p− q = Px

[
∃n > Tx : Xn = y, ̸ ∃n < Tx : Xn = y

]
= Px

[
∃n > Tx : Xn = y | ̸ ∃n < Tx : Xn = y

]
· (1− q).

The event ∃n > Tx : Xn = y can be rewritten in term of X̃p = XTx+p as ∃p > 0 : X̃p = y. On the other
hand, the conditioning event ̸ ∃n < Tx : Xn = y is in FTx

. By Proposition 15.1, we know that (X̃p)p≥0 has
the same distribution as (Xn)n≥0 and is independent from FTx

. We conclude that

p− q = Px[∃n > 0 : Xn = y] · (1− q) = p(1− q) = p− pq.

Since q > 0, this implies p = 1, which is what we wanted to prove. □

15.3. Second application: numbers of visits. Let (Xn)n≥0 be a Markov cahin on S. For y in S, we
define

Ny =
∣∣{n > 0 : Xn = y}

∣∣ =∑
n>0

1{Xn = y} ∈ N0 ∪ {+∞}.

In words, this is the number of visits of the process in the state y. Its expectation under Px is given by

Ex[Ny] = Ex

[∑
n>0

1{Xn = y}

]
=
∑
n>0

Px[Xn = y] =
∑
n>0

Qn
x,y.

• If y is transient, we know that
∑

n>0 Q
n
x,y < +∞ (Theorem 14.4), i.e. Ex[Ny] < +∞. This implies

Ny < +∞ a.s.
• If y is recurrent and x −→ y, we know that

∑
n>0 Q

n
x,y = +∞ (again by Theorem 14.4), i.e.

Ex[Ny] = +∞. It might still be the case that Ny < +∞ a.s. We will prove with the strong Markov
property that this is not the case.

We start by the case y = x.

Proposition 15.3. If x is a recurrent state, then, Px-a.s., we have Nx = +∞.

By definition of recurrence, under distribution Px, we have Nx ≥ 1 a.s. The proposition tells us that in
fact Nx = +∞ a.s.
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Proof. Let (Xn)n≥0 be a Markov chain on S with transition matrix Q and initial distribution δx. We set
T = min{n > 0 : Xn = x}. In words, T is the first return time in x. Since x is recurrent, we have T < +∞
a.s. Furthermore, we note that XT = x a.s.

We consider the random sequence (XT+p)p≥0 and denote

Ñx =
∣∣{p > 0 : XT+p = x}

∣∣
the number of visits of this process in x. We have Nx = Ñx + 1 a.s. Indeed, both count the visits of (Xn)

at state x, except that, for Ñx, we do not count the first visit (which occurs at time T , by definition).
On the other hand, the strong Markov property (Proposition 15.1) implies that (XT+p)p≥0 has distribution

Px, i.e. the same as (Xn). This implies Nx
d
= Ñx.

Bringing everything together we have Nx
d
= Ñx

d
= Nx − 1. We claim that this implies Nx = +∞ a.s.

Indeed, we first write
Px[Nx ≥ k + 1] = Px[Nx − 1 ≥ k] = Px[Nx ≥ k].

Iterating, we get that for all k ≥ 0, it holds that Px[Nx ≥ k] = Px[Nx ≥ 1] = 1. Since this is valide for all k,
this yields

Px[Nx = +∞] = lim
k→+∞

Px[Nx ≥ k] = 1.

The first equality follows from {Nx = +∞} being the countable intersection of {Nx ≥ k} (for k ≥ 1). □

In the general case where y is possibly different from x, we have the following result.

Proposition 15.4. If y is a recurrent state, then

Px

[
Ny = 0 or Ny = +∞

]
= 1.

Note: combining with Proposition 15.2, if we assume x recurrent as well and x ↔ y, we have Px

[
Ny =

+∞
]
= 1.

Proof. We let T = min{n > 0 : Xn = y} be the first visit time in y. If T = +∞ (which might happen with
positive probability), we have Ny = 0.

We now work conditionally on T < +∞ (assuming that this has positive probability, otherwise the
proposition is trivial). We have XT = y. Applying the strong Markov property (Proposition 15.1) tells us
that (XT+p)p≥0 has distribution Py. Using Proposition 15.3, we know that a.s., (XT+p)p≥0 visits y infinitely
many times. Therefore, conditionally on T < +∞, we have Ny = +∞. □

A consequence. We consider a random walk on Z, i.e. Xn = Y1 + · · · + Yn, where the (Yi)i≥1 are i.i.d.
r.v. Assume that E[Y1] = m ̸= 0. Then, Xn/n tends to m a.s. (strong law of large numbers), which
implies |Xn| → +∞ a.s. In particular, a.s., Xn = 0 for finitely many n, i.e. N0 < +∞ P0-a.s. From the
above results, this implies that 0 is transient. Using the invariance by translation of the model (if Xn has
distribution P0, then Xn + a has distribution Pa), we deduce that all states are transient.

16. Stationary distribution, expected return times and null-recurrence

16.1. The distribution of Xn. Let µn be the distribution of Xn. Since Xn takes values in the countable
set S, this distribution is determined by the point probabilities (µn(y))y∈S . We will think at this as a
row vector.

Using the law of total probability and the definition of the transition matrix Q, we have

µn+1(y) = P[Xn+1 = y] =
∑
x∈S

P
[
Xn+1 = y|Xn = x

]
P[Xn = x] =

∑
x∈S

Q(x, y)µn(x) = (µn ·Q)(y).

(In the last expression, the product of a row vector and a matrix is defined as usual, i.e. (v · M)(y) =∑
x∈S v(x)M(x, y); if the matrix is stochastic and the vector has nonnegative coordinates summing to 1,

then the sum is convergent and the resulting vector has coordinates summing to 1.)
The above relation simply writes µn+1 = µn ·Q. Iterating this relation, we get

Lemma 16.1. The distribution µn of Xn is given by µn = µ0Q
n.
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16.2. Stationary distribution. Assume for a moment that µn tends to some limiting distribution µ∞
(µn(x)→ µ∞(x) for all x in S). Then the relation µn+1 = µn ·Q implies µ∞ = µ∞ ·Q (at least heuristically,
but one can justify the exchange of limits and of the infinite sum contained in the definition of Q).

This motivates the following definition:

Definition 16.2. Let Q be a transition matrix on S and µ be a measure on S. Assume µ is nonzero (i.e.
µ(S) > 0) and locally finite (i.e. µ(x) <∞ for all x in S). Then µ is called stationary (or invariant) if we
have µ = µ ·Q.

Note: µ = µ ·Q implies µ = µ ·Qn for all n ≥ 0. We will use this naive remark repeatedly.
Though we are merely interested in stationary probability distribution (for the reason explained above),

we define the notion of being stationary not only for probability distributions, but for all (locally finite)
measures on S (possibly infinite, i.e. of infinite mass).

If µ is a stationary measure and α a positive real number, then αµ is also a stationary measure. In
particular, if there exists a stationary measure µ which is finite (i.e. of finite mass), then 1

µ(S)µ is stationary
probability distribution.

It turns out that the existence of stationary measures is related to transience/recurrence.

Theorem 16.3. Let Q be an irreducible transition matrix, then
a. if states are transient, there are no finite stationary measures;
b. if states are recurrent, there exists a stationary measure which is unique up to multiplication by a constant.

Comments:
• In the transient case (a.), we have no information about the existence of infinite stationary measures.

There are examples of transient irreducible Markov chains, for which no such measures exist, some
for which there are several non-equivalent ones (i.e. which cannot be obtained one from another by
multiplication by a constant).

• In the recurrent case (b.), we do not know whether the unique stationary measure is finite or infinite.
Again, both might happen.

• The theorem can be used to prove transience/recurrence in some cases. If there is a finite stationary
measure, then the states are necessarily recurrent. On the other hand, if one can find two non-
equivalent stationary distribution, then states are necessarily transient. (In both cases, we assume
Q irreducible, or apply the criterion within a close irreducible component.)

Proof. a. We proceed by contradiction: assume that there exists a finite stationary measure µ. By definition,
we have µ = µQ, which implies that for all n ≥ 0, µ = µQn. Unwrapping notation, we have that, for all y
in S,

µ(y) =
∑
x∈S

µ(x)Qn
x,y.

But since states are transient, for any x, y in S, we have limn→∞ Qn
x,y = 0 (Theorem 14.4), item (ii)). Using

the dominated convergence theorem, we have

lim
n→∞

∑
x∈S

µ(x)Qn
x,y =

∑
x∈S

(
lim

n→∞
µ(x)Qn

x,y

)
= 0.

Indeed, using the inequality |Qn
x,y| ≤ 1, we see that the summand x 7→ µ(x)Qn

x,y is dominated by x 7→ µ(x),
which an integrable (or here rather a summable) function independent of n; hence we can apply the dominated
convergence theorem.

From the two above displays, we conclude that µ(y) = 0. This holds for all y in S, implying µ(S) = 0.
This is a contradiction since we excluded the null measure in the definition of stationary measures.

b. Existence. We fix x in S and consider, under distribution Px, the first return time Tx in x. In formula,
Tx = min{n > 0 : Xn = x}. We recall that Tx < +∞ a.s. since x is recurrent.

Now, for y in S, we define

ν(x)(y) =

∞∑
i=0

Px [Xi = y, i < Tx] .

We claim that ν(x) is a stationary measure on S.
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First, we observe that ν(x) is nonzero since trivially, ν(x)(x) = 1 (the summand for i = 0 is 1, other
summands are 0). We postpone the proof that ν(x) is locally finite since we will prove this as a consequence
of the identity ν(x) = ν(x)Q. So let us prove ν(x) = ν(x)Q.

Fix y in S and consider

(20)
∑
z∈S

Qz,y ν
(x)(z) =

∑
z∈S

∞∑
i=0

Px

[
Xi = z, i < Tx

]
Px

[
Xi+1 = y|Xi = z

]
Note that Tx > i gives information on the Markov chain until time i (it has not yet returned to x). Using
the Markov property, we have Px

[
Xi+1 = y|Xi = z

]
= Px

[
Xi+1 = y|Xi = z, i < Tx

]
, so that the above

product of probabilities simplifies as

Px

[
Xi = z, i < Tx

]
Px

[
Xi+1 = y|Xi = z

]
= Px

[
Xi = z, i < Tx

]
Px

[
Xi+1 = y|Xi = z, i < Tx

]
= Px

[
Xi = z, i < Tx, Xi+1 = y

]
.

Putting this back into Eq. (20), exchanging the summation order (everything is nonnegative) and using the
law of total probability with the partition

⊎
z∈S{Xi = z} = Ω, we have

(21)
∑
z∈S

Qz,yν
(x)(z) =

∞∑
i=0

∑
z∈S

Px

[
Xi = z, i < Tx, Xi+1 = y

]
=

∞∑
i=0

Px

[
i < Tx, Xi+1 = y

]
For y = x, we have the equality of events {i < Tx, Xi+1 = y} = {Tx = i + 1}. But, when i goes from 0
to +∞, the latter is a partition of the probability space Ω (recall that Tx < +∞ a.s.). It follows that the
probabilities in (21) sum up to 1 and that∑

z∈S

Qz,xν
(x)(z) = 1 = ν(x)(x).

For y ̸= x, we cannot have both Xi+1 = y and Tx = i + 1, so that we can replace i < Tx by i + 1 < Tx in
(21). Setting j = i+ 1, we have ∑

z∈S

Qz,yν
(x)(z) =

∞∑
j=1

Px

[
j < Tx, Xj = y

]
.

But Px

[
X0 = y

]
= 0 so that starting the sum at j = 0 or j = 1 does not change its value. Up to this

irrelevant change, the right hand side is the definition of ν(x)(y), so that we have

(22)
∑
z∈S

Qz,yν
(x)(z) = ν(x)(y)

also when y ̸= x.
It remains to prove that ν(x) is locally finite. As already explained, (22) rewrites as ν(x) = ν(x)Q and

thus implies ν(x) = ν(x)Qn for all n. Looking at the x-coefficient, we get

1 = ν(x)(x) =
∑
z∈S

Qn
z,xν

(x)(z).

Fix now z0 in S. Since the Markov chain is irreducible, one can find n such that Qn
z0,x > 0. For such n, we

have
Qn

z0,xν
(x)(z0) ≤

∑
z∈S

Qn
z,xν

(x)(z) = 1,

implying ν(x)(z0) ≤ 1/Qn
z0,x < +∞. Since this holds for any z0 in S, this proves that ν(x) is locally finite, as

wanted.

Uniqueness. Let µ be a stationary measure and x be an element of S. We want to prove that µ = µ(x)·ν(x).
We first prove the inequality: for any y in S

(23) µ(y) ≥ µ(x) · ν(x)(y).
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To this end, we prove by induction on p the following statement:

(Hp) µ(y) ≥ µ(x)

[
p∑

i=0

Px[Xi = y, i < Tx]

]
.

For y = x and i > 0, we cannot have both Xi = y = x and Tx > i. Hence, for y = x, summands
corresponding to i > 0 above are zero and the sum in the bracket is 1. The inequality is trivially verified
(for all p).

We now assume that y ̸= x, implying in particular Px[X0 = y] = 0. Then the RHS of (H0) is 0 and
(H0) trivially holds. By induction we assume that (Hp) holds for all y and we want to prove (Hp+1). (The
following arguments are similar to the existence proof.) Using the invariance of µ, the induction hypothesis
for µ(z) and the definition of Q, we have

µ(y) =
∑
z∈S

µ(z)Qz,y ≥
∑
z∈S

µ(x)

(
p∑

i=0

Px{Xi = z, i < Tx}Px

[
Xi+1 = y|Xi = z

])
.

Using the Markov property, we have Px

[
Xi+1 = y|Xi = z

]
= Px

[
Xi+1 = y|Xi = z, i < Tx

]
, so that the

above inequality rewrites

µ(y) ≥ µ(x)

(
p∑

i=0

∑
z∈S

Px

[
Xi+1 = y,Xi = z, i < Tx

])
.

Note that since x ̸= y we cannot have both Xi+1 = y and Tx = i + 1. Therefore we can replace i < Tx by
i+1 < Tx in the above probability. We also use that

⊎
z∈S{Xi = z} = Ω to simplify the above expression to

µ(y) ≥ µ(x)

(
p∑

i=0

Px

[
Xi+1 = y, i+ 1 < Tx

])

Setting j = i+ 1, we get

µ(y) ≥ µ(x)

p+1∑
j=1

Px

[
Xj = y, j < Tx

] .

Since y ̸= x and X0 = x, we have Px

[
X0 = y, 0 < Tx

]
= 0 and starting the above sum at j = 0 or j = 1

does not change its value. in the above sum would be 0 and we can add it for free, This proves (Hp+1) and
concludes the induction: (Hp) holds for all p.

Making p go to infinity in (Hp) shows that for any y in S

(24) µ(y) ≥ µ(x)

[
+∞∑
i=0

Px[Xi = y, i < Tx]

]
≥ µ(x) · ν(x)(y).

(The sum is finite, as proved in the existence part.)
We still need to prove the reverse inequality: using the stationarity of µ and ν(x) and the above inequality,

we have the following: for any n ≥ 0

µ(x) =
∑
y∈S

µ(y)Qn
y,x ≥ µ(x)

∑
y∈S

ν(x)(y)Qn
y,x = µ(x)ν(x)(x) = µ(x).

Thus the inequality above is in fact an equality: this means that for all y in S (and all n ≥ 0), we have

µ(y)Qn
y,x = µ(x)ν(x)(y)Qn

y,x.

For any y in S we can find n such that Qn
y,x ̸= 0 (since the Markov chain is irreducible); the above equation

then simplifies to µ(y) = µ(x)ν(x)(y). □
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16.3. Null and nonnull recurrent states. Consider a recurrent irreducible Markov chain Q. The above
proof of existence of a stationary measure gives in fact more information since we have an explicit formula
for it. In particular, the stationary measure ν(x) constructed in the proof has total mass

ν(x)(S) =
∑
y∈S

∞∑
i=0

Px [Xi = y, i < Tx] =

∞∑
i=0

Px [i < Tx] = Ex[Tx].

Two cases might occur:
• either the chain admit a stationary probability distribution µ. By uniqueness, all stationary measures

are finite and proportional to it; in particular, for all x in S, we have ν(x)(S) = Ex[Tx] < +∞ and
µ = 1

Ex[Tx]
ν(x). In particular, evaluating at x, we have the important relation

µ(x) =
(
Ex[Tx]

)−1
.

We call such chains or, equivalently, their states, nonnull recurrent.
• or the chain has no stationary probability distribution and hence no finite stationary measures. In

particular, for all x in S, the measure ν(x) is infinite, i.e. ν(x)(S) = Ex[Tx] = +∞. We call such
chains or, equivalently, their states, null recurrent.

We generalize the definition beyond the irreducible case.

Definition 16.4. Let Q be a transition matrix on S. Then a recurrent state x in S is
• null recurrent if Ex[Tx] = +∞;
• nonnull recurrent if Ex[Tx] < +∞.

Lemma 16.5. Let x, y be recurrent states with x ↔ y. Then x is null recurrent if and only if y is null
recurrent.

Proof. In the discussion above, we have seen that, for irreducible recurrent Markov chains, either all states
are null recurrent or all are nonnull recurrent.

For the general case, we consider the decomposition theorem Theorem 14.10 and write

S = T ⊎ C1 ⊎ C2 ⊎ · · · ,

where T is the set of transient states and the Ci are closed irreducible sets of recurrent states. Then for each
i, Q/(Ci×Ci) is a stochastic matrix (since Ci is closed). The corresponding Markov chain on Ci is irreducible
and its states are recurrent. We also note that the return time in x starting from x for the original Markov
chain or for the one restricted to Ci have the same distribution (since we never leave Ci when starting in
Ci).

From the irreducible case, either all x in Xi fulfill Ex[Tx] = +∞ or all fulfill Ex[Tx] < +∞. In other
words, either all x in Ci are all null recurrent or they are all nonnull recurrent. This holds for all closed
irreducible components Ci, proving the lemma. □

Finite case: let Q be a transition matrix on a finite state space S. Then for each closed irreducible
component Ci of recurrent states, the Markov chain Q/(Ci×Ci) has a stationary measure. But locally finite
measures on a finite set are necessarily finite; so this stationary measure is finite and elements of Ci are
nonnull recurrent.

We conclude that finite Markov chains have only transient or nonnull recurrent states. Recall in addition
(Lemma 14.11) that such chains always have at least one recurrent state (which is thus nonnull recurrent).
Consequently, all states of irreducible finite Markov chains are nonnull recurrent.

16.4. Reversible Markov chains. Finding stationary distributions (and checking that they are indeed
stationary) is not always easy. We give here an easy sufficient condition (but not necessary, see Section 16.5.2).

Definition 16.6. Let Q be a transition matrix on S. A nonzero locally finite measure µ on S is called
reversible with respect to Q if, for all x, y in S, we have µ(y)Qy,x = µ(x)Qx,y.

Proposition 16.7. If µ is reversible with respect to Q, then µ is stationary.
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Proof. Let y be in S, we have

(µQ)y =
∑
x∈S

µ(x)Qx,y =
∑
x∈S

µ(y)Qy,x = µ(y)
∑
x∈S

Qy,x = µ(y),

where the second equality use the reversibility of µ and the last one the fact that Q is a stochastic matrix.
Since the above holds for all y in S, we have µQ = µ, i.e. µ is stationary. □

16.5. Examples.

16.5.1. I.i.d. r.v. Let (Xn)n≥0 be i.i.d. random variables with distribution. This is a Markov chain with
transition matrix Qx,y = µ(y). We recall that s in S is recurrent if and only if µ(s) > 0. We assume µ(s) > 0
for all s in S so that the chain is irreducible and consists only of recurrent states.

It is easy to check that µ is a stationary measure for Q. Since it is a probability distribution, the states
are all nonnull recurrent. Furthermore, for all x in S, we have Ex[Tx] = 1/µ(x), which can either be seen
as a consequence of the general theory, or directly in this case, since Tx has the distribution of a geometric
random variable of parameter µ(x).

16.5.2. Random walk on Zd. Let (Yi)i≤1 be i.i.d. random Zd valued r.v. with distribution µ and Xn =
Y1+ · · ·+Yn. Recall that (Xn)n≥0 is a Markov chain with transition matrix Qx,y = µ(y−x). For simplicity,
we assume the chain to be irreducible.

Consider the counting measure π on Zd, i.e. π(x) = 1 for all x in Zd. This is a stationary distribution:
indeed, for any y in Zd, we have∑

x∈Zd

π(x)Qx,y =
∑
x∈Zd

µ(y − x) =
∑
z∈Zd

µ(z) = 1 = π(y),

where, in the second equality, we set z = y− x, and in the third, we use that µ is a probability distribution.
We note that π is reversible if and only if µ is symmetric (µ(−z) = µ(z) for all z in Zd), providing examples
of stationary non-reversible measures (when µ is not symmetric). Since π is infinite, the states are either
null recurrent or transient: in fact, both cases can append (recall Polya’s recurrence theorem for Zd). In
both cases, we have Ex[Tx] = +∞.

We now focus on the case d = 1 and P[Y1 = 1] = 2/3 = 1 − P[Y1 = −1]. Let ρ be the measure on Zd

giving weight ρ(k) = 2k to any integer k. We claim that ρ is reversible. Indeed, if y = x+ 1

ρ(y)Qy,x = 2x+11/3 = 2x2/3 = ρ(x)Qx,y;

when y = x−1, the equality ρ(y)Qy,x = ρ(x)Qx,y also holds by exchanging x and y; finally, when |y−x| ̸= 1,
both sides equal 0.

Consequently, ρ is a stationary measure. We therefore have two non-proportional stationary measures
π and ρ. We conclude that states are transient (which we had already proved with another argument in
Section 15.3).

16.5.3. Random walk on graphs. Here, G = (V,E) is a (locally finite) graph (without isolated vertices) and
we consider the Markov chain (Xn)n≥0 on S = V with initial distribution δx0 (for some x0 in V ) and

Qx,y = 1[{x,y}∈E]
deg(x) .

Let µ be the measure on V giving weight µ(x) = deg(x) to any x in V . Clearly µ(x)Qx,y = µ(y)Qy,x =
1[{x, y} ∈ E], i.e. µ is reversible. Hence, it is stationary.

We now assume that G is connected, implying that the Markov chain is irreducible.
• if |V | < +∞ (implying E finite, since the graph is locally finite), then µ(V ) =

∑
x∈V deg(x) = 2|E|

is finite and the chain has a stationary probability distribution π = 1
2|E| µ. Hence all states are

nonnull recurrent and we have Ex[Tx] = 1/π(x) = (2|E|)/deg(x).
• If |V | = +∞ (implying E infinite as well, since we have no isolated vertices), then µ(V ) =∑

x∈V deg(x) = 2|E| is infinite. Hence states are null recurrent or transient (both cases indeed
happen).
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16.5.4. A Markov chain without stationary measure. Let S = {0, 1, 2, · · · } and fix a sequence (pi)i≥0 in (0, 1)
with

∏∞
i=0 pi > 0. We consider the transition matrix given by

Qi,j =


pi if j = i+ 1;

1− pi for j = 0;

0 otherwise.
We prove by contradiction that there is no stationary measure. Let (π(x))x≥0 be one. Then we have, for
j > 0,

π(j) =
∑
i

Qi,jπ(i) = pj−1π(j − 1).

This implies π(j) = π(0)
∏j−1

i=1 pi. On the other hand,

π(0) =

∞∑
i=0

Qi,0π(i) =

∞∑
i=0

π(i)(1− pi) =

∞∑
i=0

(π(i)− π(i+ 1)) = π(0)− lim
i→∞

π(i).

But limi→∞ π(i) = π(0)
∏∞

i=0 pi ̸= 0, which leads to a contradiction.

17. The limit theorem

In this section, we are interested in a limit in distribution for Markov chains. I.e. given a transition matrix
Q and states x, y, does Qn

x,y = Px[Xn = y] converge?

17.1. Aperiodicity. We first see an example where it does not converge: take

S = {1, 2, 3}, Q =

0 1/2 1/2
1 0 0
1 0 0

 , x = y = 1.

In words: if the Markov chain is in state 1 at some time n, it choses uniformly at random between states 2 and
3 at time n+1; if it is in state 2 or 3, it goes back to 1. Starting at time 1, we will clearly come back to state
1 at even times, and be either in 2 or 3 at odd times. Therefore we have Qn

1,1 = P1[Xn = 1] = 1[n is even].
In particular Qn

1,1 does not have a limit.
Let us note that this Markov chain is irreducible. Since the state space is finite, states are nonnull

recurrent, and there is a unique stationary probability distribution π, with π(1) = 1/2 and π(2) = π(3) = 1/4.

Conclusion: to get a limit theorem, we need some aperiodicity assumption.

Definition 17.1. For x in S, we define the period of x as follows:
P (x) = gcd(Ax), where Ax = {n ≥ 0 : Qn

x,x > 0}.

Note: Qn
x,x > 0 means Px[Xn = x] > 0, i.e. it’s possible to be back at state x in n steps. This is how we

think at it to determine Ax in examples (we don’t need to compute Qn
x,x).

In the above example, we have A1 = A2 = A3 = 2N0, giving P (1) = P (2) = P (3) = 2.

Definition 17.2. A state x in S is aperiodic if P (x) = 1. A Markov chain (or equivalently, its transition
matrix) is aperiodic if all its states are aperiodic.

A sufficient condition for aperiodicity is that Qx,x > 0. This is however not necessary, as shown in the
following example. Take

Q =

 0 0 1
1 0 0

1/2 1/2 0


We have 1 /∈ Ax (since Q1,1 = 0), but one easily checks that {2, 3, 4} ⊂ Ax, implying nevertheless P (x) = 1.

As for recurrence/transient, the following helps finding the periods of states.

Proposition 17.3. If x↔ y, then P (x) = P (y).
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Proof. We have to show that gcd(Ax) = gcd(Ay). This follows from the two following claims (using that Ax

and Ay always contain 0):
i) if S is a subset of Z containing 0, then gcd(S) = gcd(S − S), where S − S denotes the set of differences

among elements in S, i.e. S − S = {s1 − s2, for s1, s2 in S}.
ii) Ax −Ax = Ay −Ay

Proof of i). Since 0 is in S, we have S ⊆ S − S, implying that gcd(S − S) divides gcd(S). Conversely,
gcd(S) divides any element of S, hence any element of S − S, and therefore it divides gcd(S − S)

Proof of ii). By symmetry it is enough to prove Ax −Ax ⊆ Ay −Ay.
The assumption x↔ y tells us that there exists p and r such that Qp

x,y > 0 and Qr
y,x > 0. Then for any

n in Ax, we have
(25) Qr+n+p

y,y ≥ Qr
y,xQ

n
x,xQ

p
x,y > 0,

proving that r + n+ p is in Ay.
Take a generic element n1 − n2 in Ax − Ax, where n1 and n2 are in Ax. From the above, we know that

r + n1 + p and r + n2 + p is in Ay. Therefore (r + n1 + p)− (r + n2 + p) = n1 − n2 is Ay −Ay. This proves
Ax −Ax ⊆ Ay −Ay, as wanted. □

We end this section with a useful lemma.

Lemma 17.4. Let y be an aperiodic element in S and x be such that x −→ y. Then the set Ax,y = {n ≥
0 : Qn

x,y > 0} contains all integers bigger than some threshold value n0(x, y).

Proof. We start with the case x = y; then Ax,y = Ay. Since y is aperiodic, the subgroup Ay − Ay of Z is
equal to Z itself. In particular there exists n1 such that both n1 and n1 + 1 are in A1. It is easy to see that
every integer bigger than n2

1 is a nonnegative integer combination of n1 and n1 + 1 and hence belong to A1.
This proves the case x = y.

In general, since x −→ y, we know that there exists p such that Qp
x,y > 0. With the same argument as

above, we have
Ax,y ⊆ p+Ay,y.

The lemma follows directly. □

17.2. The main limit theorem.

Theorem 17.5. Let Q be an irreducible aperiodic transition matrix. Then for all states x,y in S, we have

lim
n→∞

Px[Xn = y] =
1

Ey[Ty]
,

where as usual, Ty = min{n > 0 : Xn = y}.

We note that the RHS is also (maybe better) described as:
• 0 in the transient and null recurrent cases;
• π(y), where π is the unique stationary probability distribution, in the nonnull recurrent case.

An interesting remark is that the limit is independent from the starting point x. Informally, when run during
a long time, an irreducible aperiodic chain forgets about its initial condition.

Irreducible nonnull recurrent aperiodic Markov chains are sometimes called ergodic.

Proof. We consider the three cases (transient, null recurrent and nonnull recurrent) separately.
Transient case. Already proved (see Theorem 14.4, item ii)).
Nonnull recurrent case We let as usual (Xn)n≥0 be a Markov chain with transition matrix Q and initial

distribution δx. In addition, let (X ′
n)n≥0 be independent from Xn and be a Markov chain with transition

matrix Q and stationary initial distribution: i.e. the distribution µ0 of X ′
0 is the stationary probability

distribution π of Q (we know that it exists and is unique since Q is irreducible and nonnull recurrent). The
distribution of X ′

n is πQn = π, see Section 16.1, i.e. P[X ′
n = y] = π(y).

The idea of the proof is to show that P[Xn = y] is close to P[X ′
n = y].



PROBABILITY II 47

For this we consider the pair Zn = (Xn, X
′
n). It is a Markov chain on S×S with initial distribution δx⊗π

(⊗ is the direct product of measure) and transition matrix R defined by
R(x,x′),(y,y′) = Qx,yQx′,y′ .

We claim that R is irreducible. To prove this, take (x, x′) and (y, y′) in S × S, we want to prove that
there exists n ≥ 0 s.t. (Rn)(x,x′),(y,y′) > 0. Using the definition of product of matrices, we see easily that
(Rn)(x,x′),(y,y′) = (Qn)x,y(Q

n)x′,y′ . We consider
Ax,y = {n ≥ 0 : Qn

x,y > 0}
and want to show that Ax,y ∩ Ax′,y′ ̸=. From Lemma 17.4, Ax,y and Ax′,y′ contains all integers bigger
than some n0(x, y) and n0(x

′, y′), respectively. In particular, Ax,y ∩ Ax′,y′ contains all integers bigger
than max

(
n0(x, y), n0(x

′, y′)
)

and hence is nonempty. This concludes the proof of the claim, i.e. of the
irreducibility of R.

A direct computation shows that π ⊗ π is a stationary probability measure for R. This implies that the
chain Zn is (nonnull) recurrent.

We fix some x• in S and consider the state (x•, x•) in S × S. Let T(x•,x•) = inf{n ≥ 0|Zn = (x•, x•)}
be the first passage time in (x•, x•). By Proposition 15.2, we have T(x•,x•) < +∞ (Proposition 15.2 in fact
works with a Dirac initial distribution, but this generalizes to any distribution by conditioning on the value
of X0).

For p < n, let us consider P
[
Xn = y |T(x•,x•) = p

]
. The event T(x•,x•) = p contains complete information

about Xp, namely Xp = x•. It contains also information on (Xi)i<p and Y . But Xn is independent from
(X ′

i)i≥0, and, knowing Xp, it is also independent from (Xi)i<p. Therefore knowing Xp, it is independent
from {(X ′

i)i≥0, (Xi)i<p}. We therefore have
P
[
Xn = y |T(x•,x•) = p

]
= P

[
Xn = y |Xp = x•

]
= Qn−p

x•,y,

where the last equality is an application of Chapman-Kolmogorov equation. Similarly,
P
[
X ′

n = y |T(x•,x•) = p
]
= P

[
X ′

n = y |Yp = x•
]
= Qn−p

x•,y.

We conclude that
P
[
Xn = y, T(x•,x•) = p

]
= P

[
X ′

n = y, T(x•,x•) = p
]
= Qn−p

x•,yP[T(x•,x•) = p].

Summing over p > n, we have
(26) P

[
Xn = y, T(x•,x•) < n

]
= P

[
X ′

n = y, T(x•,x•) < n
]
.

But ∣∣∣P[Xn = y]− P
[
Xn = y, T(x•,x•) < n

]∣∣∣ = ∣∣∣P[Xn = y, T(x•,x•) ≥ n
]∣∣∣ ≤ ∣∣∣P[T(x•,x•) ≥ n

]∣∣∣.
As n tends to +∞ the right-hand side tends to P[T(x•,x•) = +∞] = 0. Similarly

lim
n→∞

P
[
X ′

n = y]− P
[
X ′

n = y, T(x•,x•) < n
]
= 0.

Going back to eq. (26), we have
lim
n→∞

P
[
Xn = y]− P

[
X ′

n = y] = 0.

We conclude the proof using that P
[
X ′

n = y] = π(y), as observed at the beginning of the proof.

Null recurrent case. In this case, we use a similar strategy as before, comparing two Markov chains, both
with transition matrix Q but different initial distribution. Since there is no stationary measure, we use initial
distributions δx0

and δx′
0
, with x ̸= x′

0. Formally we let Xn and X ′
n be Markov chains on S with initial

distributions δx0 and δx′
0
, respectively, independent from each other. Let Zn = (Xn, X

′
n). As before Zn is

an irreducible Markov chain on S × S with transition matrix R.
Again, if π is a stationary measure for Q (since we assumed Q null recurrent, there exists such a measure,

which is infinite), then π ⊗ π is stationary for R. But π ⊗ π is an infinite measure. This implies that R is
either transient or null recurrent.

Subcase where R is transient: in this subcase, we know (Theorem 14.4, item ii)) that, for any (x, y) and
(x′, y′) in S × S, we have

lim
n→∞

Rn
(x,x′),(y,y′) = 0.
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Taking x′ = x and y′ = y, we have Rn
(x,x′),(y,y′) = (Qn

x,y)
2, so that we have

lim
n→∞

Qn
x,y = 0,

which is what we wanted to prove.
Subcase where R is null recurrent: Copying the proof in the nonnull recurrent case, we get that, for all y,

lim
n→∞

P
[
Xn = y]− P

[
Yn = y] = 0.

i.e. limn→∞ Qn
x0,y −Qn

x′
0,y

= 0.
We want to prove that for any x, y, we have limn→+∞ Qn

x,y = 0. We proceed by contradiction. Assume
that there exists (x⋆, y⋆) such that Qn

x⋆,y⋆ does not tend to 0. Since Qn
x⋆,y⋆ takes value in [0, 1], this implies

that there exists a subsequence Qnk
x⋆,y⋆ which converges to a nonzero value αx⋆,y⋆ . Taking another pair (x•, y•)

in S × S, since Qnk
x•,y• takes value in [0, 1], we can further extract a subsequence Q

nkj

x•,y• , which converges to
some value αx•,y• (possibly zero). Using the diagonal extraction principle, we can find a subsequence, that
we abusively denote nk for simplicity, so that Qnk

x,y converges to some value αx,y for all (x, y) in S×S (since
S ×S is countable). Furthermore the vector (αx,y)x,y∈S is not identically zero because αx⋆,y⋆ ̸= 0 (however,
other coordinates can be zero).

Recall that Qn
x0,y −Qn

x′
0,y

tends to 0 for any X0, x′
0 and y. This implies αx0,y = αx′

0,y
, i.e. αx,y is in fact

independent of x; we denote it βy. The vector (βy)y∈S is not identically zero and can be seen as a (locally
finite) measure on S.

We claim that (βy)y∈S is a finite stationary measure for Q, leading to a contradiction, since Q was assumed
to be null recurrent.

Proof of the claim.
Finiteness: We have, using the construction of β and Fatou’s lemma,

∑
y∈S

βy =
∑
y∈S

(
lim
k→∞

Qnk
x,y

)
≤ lim inf

k→∞

∑
y∈S

Qnk
x,y

 .

But for any k, the sum
∑

y∈S Qnk
x,y is identically 1 (Qnk is a stochastic matrix), so that the RHS is

1. We have
∑

y∈S βy ≤ 1 proving that (βy)y∈S is a finite measure.
Stationarity: Using again the construction of β and Fatou’s lemma,

(β ·Q)z =
∑
y∈S

βyQy,z =
∑
y∈S

(
lim
k→∞

Qnk
x,y

)
Qy,z ≤ lim inf

k→∞

∑
y∈S

Qnk
x,yQy,z

 = lim inf
k→∞

Qnk+1
x,z

But we can also write
Qnk+1

x,z =
∑
y∈S

Qx,yQ
nk
y,z.

We know that each summand Qx,yQ
nk
y,z has a limit Qx,yβz as n tends to +∞. In addition Qx,yQ

nk
y,z

is bounded independently on k by Qx,y, which is summable on y for x fixed (
∑

y∈S Qx,y = 1 since
Q is a stochastic matrix). We therefore have

lim
k→∞

Qnk+1
x,z =

∑
y∈S

Qx,yβz = βz

∑
y∈S

Qx,y

 = βz.

We conclude that, for all z in S,
(27) (β ·Q)z ≤ βz

But, on the other hand, using that Q is a stochastic matrix, we have∑
z∈S

(β ·Q)z =
∑

y,z∈S

βyQy,z =
∑
y∈S

βy

(∑
z∈S

Qy,z

)
=
∑
y∈S

βy,

where the exchange of infinite sums is justified by the nonnegativity of the summands. This implies
that the inequalities in (27) are equalities, i.e. β is stationary. □
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Remark. In the nonnull-recurrent case, with a small easy change at the end of the proof, we can show that,
for any x in S,

lim
n→+∞

∑
y∈S

|Px[Xn = y]− π(y)| = 0.

(This is called convergence in total variation distance.)

17.3. Periodic chains. Let (Xn)n≥0 be an irreducible Markov chain, and let d be the common period to
all states (all states have the same period from Proposition 17.3). If d > 1, the above theorem does not
apply. However, we can consider Yn := Xdn, which is a Markov chain of period 1. Note however that Yn is
not necessarily irreducible (see next subsection for a limit theorem for possibly reducible Markov chains).

We also have the following theorem for Cesaró’s means

Theorem 17.6. Let Q be an irreducible transition matrix on S. Then, for all x, y in S, we have

lim
n→∞

1

n

n∑
k=0

Qk
x,y =

1

Ey[Ty]
.

Note that there is no aperiodicity condition here. In the aperiodic case (d = 1), this is a consequence of
Theorem 17.5 (indeed, if a sequence converges, its Cesaro’s means converge to the same limit).

We skip the proof in these notes, see exercises.

17.4. Reducible chains.

Proposition 17.7. Let Q be a transition matrix on S. Let X, y be in S. If y is aperiodic, then

lim
n→∞

Qn
x,y =

Fx,y

Ey[Ty]
,

where we recall that Fx,y is the probability to reach y (at some point) starting at x.

Proof. If y is transient, then Qn
x,y tends to 0 (Theorem 14.4, item ii)) and there is nothing to prove since

Ey[Ty] = +∞.
So let us assume w.l.o.g. y recurrent. We have

Qn
x,y = Px[Xn = y] = Px[Xn = y, Ty = +∞] +

∞∑
k=1

Px[Xn = y, Ty = k].

If Ty > n (including Ty = +∞), we necessarily have Xn ̸= y. Therefore the first summand and all summands
in the sum corresponding to k > n are 0.

On the other hand, for k ≤ n, we have

Px[Xn = y, Ty = k] = Px[Ty = k]Px

[
Xn = y |Ty = k

]
= Px[Ty = k]Px

[
Xn = y |Xk = y

]
= Px[Ty = k]Qn−k

y,y ,

where the middle equality uses the Markov property and that Ty = k means Xk = y,X1 ̸= k, . . . ,Xk−1 ̸= k.
To sum up, we have

(28) Qn
x,y =

∞∑
k=1

Px[Ty = k](1[n ≥ k]Qn−k
y,y )

We claim that limn→∞ Qn
y,y = 1

Ey [Ty ]
. Indeed, let C be the closed irreducible component of recurrent

states containing y (see Theorem 14.10). Then R := Q/(C × C) is a stochastic matrix (since C is closed),
and it is irreducible.

We easily check that Rn
y,y = Qn

y,y. In particular, y is aperiodic for R. The first return time Ty to y under
Py has the same distribution for the original transition matrix Q, and for the restricted one R (since in the
original chain, the chain always stays in C).

Therefore applying Theorem 17.5, we get

lim
n→∞

Qn
y,y =

1

Ey[Ty]
.
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This implies that for any fixed k, the quantity Qn−k
y,y (and hence 1[n ≥ k]Qn−k

y,y ) tends to 1
Ey [Ty ]

as n tends
to +∞. Using (28) the dominated convergence theorem, we have

lim
n→∞

Qn
x,y =

∞∑
k=1

Px[Ty = k]
(
lim

n→∞
1[n ≥ k]Qn−k

y,y

)
=

∞∑
k=1

Px[Ty = k]
1

Ey[Ty]
.

We can indeed exchange the infinite sum and the limit since Px[Ty = k]1[n ≥ k]Qn−k
y,y is bounded by

Px[Ty = k] independently of n and the sum
∑∞

k=1 Px[Ty = k] = P[Ty < +∞] ≤ 1 is finite. The RHS of the
above display can be simplified and we get

lim
n→∞

Qn
x,y =

1

Ey[Ty]

( ∞∑
k=1

Px[Ty = k]

)
=

1

Ey[Ty]
Px[Ty < +∞] =

Fx,y

Ey[Ty]
,

concluding the proof. □

18. Finite Markov chains and Perron-Frobenius theorem

We focus here on the case |S| <∞; the transition matrix Q is then a standard square matrix and we can
use linear algebra to study Markov chains.

Theorem 18.1 (Special case of Perron-Frobenius theorem). Let Q be an aperiodic irreducible transition
matrix, then 1 is a simple eigenvalue and all other eigenvalues have modulus smaller than 1.

Here, simple eigenvalue means that 1 is a simple root of the characteristic polynomial of Q (this implies
that, but is not equivalent to, dim

(
Ker(Q− Id)

)
= 1).

Proof. Since Q row sums equal to 1, we have Q1 = 1, where 1 is the column vector with all entries equal to
1. Hence 1 is a eigenvalue of Q.

Let λ be a possibly complex eigenvalue of Q and u be the associated eigenvector. We consider the maximal
coordinate of u (in absolute value) that is x0 in S such that

|ux0 | = max
x∈S
|ux|.

We have, for any n,

|λnux0 | = |(Qnu)x0 | =

∣∣∣∣∣∣
∑
y∈S

Qn
x0,yuy

∣∣∣∣∣∣ ≤
∑
y∈S

Qn
x0,y|uy| ≤

∑
y∈S

Qn
x0,y|ux0 | = |ux0 |,

where we used that Qn is a stochastic matrix in the last equality. We conclude that |λ| ≤ 1.
Moreover, to have equality, we need that

a. all Qn
x0,yuy have the same complex argument;

b. for all y, Qn
x0,y|uy| = Qn

x0,y|ux0
|.

The second inequality means that |uy| = |ux0
| as soon as Qn

x0,y ̸= 0 for some n. By irreducibility, such an n
exists for any y, meaning that |uy| = |ux0

| for all y in S. We recall that aperiodicity implies that for a given
y, Qn

x0,y ̸= 0 for n large enough (Lemma 17.4). We can choose n such that Qn
x0,y ̸= 0 for all y. Then, by a.,

all uy’s have the same argument as ux0
as soon as Qx0,y ̸= 0 (or Qn

x0,y ̸= 0 for some n). Hence u = C1, for
some C ̸= 0, showing that 1 is the only eigenvalue of modulus 1 and that dim

(
Ker(Q− Id)

)
= 1.

We still have to prove that the block corresponding to 1 in the Jordan reduction of Q has size 1. Otherwise,
there would be a vector u(2) such that Qu(2) = u(2)+1. This implies Qnu(2) = u(2)+n1. This is impossible
since Qn is stochastic and has therefore entries in [0, 1]. □

Consequences.
Q has a unique left-eigenvector corresponding to λ = 1. Such a vector is a stationary measure (π with

π = πQ), so we recover existence and uniqueness of the stationary measure (irreducible finite Markov chains
are always nonnull recurrent).

Furthermore, let λ1, λ2, …be the eigenvalues of Q (with multiplicities) ordered in such a way that
1 = |λ1| > |λ2| ≥ |λ3| ≥ · · ·



PROBABILITY II 51

Assume for simplicity that Q is diagonalizable. We consider the associated left eigenvectors τ (1) = π (the
stationary measure), τ (2),…Fix an initial distribution µ0 and decompose it on this basis

µ0 =

|S|∑
i=1

αiτ
(i).

Multiplying by Qn, we get

µn = µ0Q
n =

|S|∑
i=1

αiλ
n
i τ

(i) = α1π +O(λn
2 ).

Since both µn and π have sum 1, this forces α1 = 1. We therefore get that for any initial distribution µ0

and y,
Pµ0

[Xn = y] = π(y) +O(λn
2 ).

This recovers the limit theorem in the finite case with a strong error bound: the error is exponentially small
and its rate is the second eigenvalue of Q (1− λ2 is sometimes called the spectral gap of Q).

Part D. An introduction to Brownian motion

19. Basics

19.1. Definition. Motivation: Brownian motion (Bt)t∈R+
models the trajectory of a particle in a very rough

unpredictable environment.
(1) Since it is a trajectory, t 7→ Bt should be a continuous function from R+ → Rd;
(2) it should be a random function (since it is unpredictable);
(3) the rough environment makes the particle change speed/direction at all times.

To simplify, we will assume that the direction/speed taken at time t is independent from the past and from
the position.

It is thus a continuous analogue from a random walk. In particular, Brownian motion is an example of
”continuous Markov chain” (continuous both in time and space).

Mathematical formalization. We let C(R+,Rd) be the space of continuous function from R+ → Rd,
equipped with the topology of uniform convergence on compact sets. We can consider the Borel σ-algebra
associated to this topology, making C(R+,Rd) a measured space.

Definition 19.1. A d-dimensional Brownian motion is a C(R+,Rd)-valued random variable t 7→ Bt such
that

(P): B0 = 0 a.s., and for each p ≥ 0 and each t0 < t1 < · · · < tp, the random variables
(Btj − Btj−1

)1≤j≤p are independent and are distributed as Gaussian vectors of covariance matrices
(tj − tj−1) Idd (for 1 ≤ j ≤ p).

Theorem 19.2. Fix d ≥ 1. There exists a d-dimensional Brownian motion on some probability space
(Ω,A,P). Moreover, the distribution of (Bt) is unique.

The distribution of Bt is called the (d-dimensional) Wiener measure. It is a measure on C(R+,Rd)

Proof. Skipped; see, e.g. [LG06, Section 14.1]. □

Here are some examples of
• one-dimensional Brownian motion: link. Here the horizontal axis is the time t and the vertical axis

is the value of Bt.
• two-dimensional Brownian motion: link. Here t does not appear, we see, for each t, Bt plotted in

the plane (Bt lives in R2).

https://www.researchgate.net/figure/Sample-paths-of-one-dimensional-Brownian-motion_fig6_225957856
https://www.researchgate.net/figure/Sample-paths-of-a-two-dimensional-Brownian-motion_fig7_225957856
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19.2. Invariance properties.

Proposition 19.3. Let Bt be a (d-dimensional) Brownian motion. Then
(i) −Bt is also a Brownian motion. More generally, for any isometry φ of Rd fixing 0, φ(Bt) is also a

Brownian motion.
(ii) (self-similarity property): for γ > 0, Bγ

t := 1
γBγ2t defines a Brownian motion.

(iii) (simple Markov property): for s > 0, B(s)
t := Bs+t −Bs defines a Brownian motion independent from

(Bu)u≤s.
(iv) The coordinates of a d-dimensional Brownian motion are independent 1-dimensional Brownian motion.

Proof. We’ll prove (ii), other items are similar. To simplify notation, we suppose d = 1.
It is clear that t 7→ 1

γBγ2t is a continuous function a.s. Let 0 ≤ t0 < · · · < tp. For j ∈ {1, . . . , p},

Bγ
tj −Bγ

tj−1
= 1

γ

(
Bγ2tj −Bγ2tj−1

)
∼ 1

γN (0, γ2tj − γ2tj−1) = N(0, tj − tj−1).

Moreover, when j runs over {1, . . . , p}, these random variables are independent. Therefore t 7→ Bγ
t satisfies

the properties defining a Brownian motion. □

19.3. Blumenthal 0− 1 law and irregularity. Notation: Fs = σ(Bu;u ≤ s), F0+ =
∩

ε>0 Fε.
F0+ represents events that can be determined looking at any neighbourhood of 0, e.g. ”Bt is differentiable

in 0”.

Proposition 19.4 (Blumenthal 0− 1 law). Let A ∈ F0+. Then P[A] ∈ {0, 1}.

Proof. We fix ε > 0 and t > ε. Then Bt−Bε is independent from Fε (simple Markov property) and therefore
from F0+. Making ε tends to 0, we get that Bt is independent from F0+. Since this is true for any t, F0+

is independent from F1. But A ∈ F0+ ⊆ F1, so A is independent from itself, i.e. P[A] ∈ {0, 1}. □

Corollary 19.5. Let (Bt)t≥0 be a 1-dimensional Brownian motion. A.s. we have

(29) ∀ε > 0, inf
s≤ε

Bs < 0 and  sup
s≤ε

Bs > 0.

Informally, this says that a Brownian motion crosses infinitely many times the x-axis in any neighborhood
of 0.

Proof. Call A =
∩

p≥1{infs≤1/p Bs < 0}. For any p0, the event is the same if we restrict the intersection to
p ≥ p0. Therefore A ∈ F1/p0

. Since this holds for any p0, we have that A is in F0+. In particular P[A] is in
{0, 1}.

Since A is a countable intersection of decreasing events, we have

P[A] = lim
n→∞

P[{ inf
s≤1/p

Bs < 0} ≥ lim sup
n→∞

P[B1/p < 0] = 1/2.

The middle inequality uses that infs≤1/p Bs < 0 certainly holds when B1/p < 0. The last equality is that a
Gaussian random variable is negative with probability 1/2 (regardless of its variance).

We conclude that P[A] = 1. This implies the inf statement in the corollary. The sup statement follows
by symmetry (recall that −Bt is a Brownian motion). □

Combining this with the simple Markov property we get that for fixed t > 0,

P
[
∀ε > 0 : sup{Bs, s ∈ (t, t+ ε)} > Bt

]
= 1.

Taking the intersection over rational t, we see that, with probability 1, there is no interval on which (Bt) is
increasing. The same statement holds with decreasing by symmetry.

Conclusion: a.s., there is no interval on which (Bt) is monotone.
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19.4. Asymptotic behaviour.

Proposition 19.6. Let (Bt) be a one dimensional Brownian motion. The following holds a.s.

lim sup
t→+∞

Bt = +∞, lim inf
t→+∞

Bt = −∞.

Proof. We first prove that, for any A > 0,

P
[
sup
t≥0

Bt ≥ A
]
= 1.

Using self-similarity (Proposition 19.3, item ii), for any δ > 0, we have

P
[
sup
t≥0

Bt ≥ A
]
= P

[
sup
t≥0

δ
ABt ≥ δ

]
= P

[
sup
t≥0

B δ2

A2 t
≥ δ
]
= P

[
sup
u≥0

Bu ≥ δ
]
.

We then a limit as δ tends to 0

P
[
sup
t≥0

Bt ≥ A
]
= lim

δ→0
P
[
sup
u≥0

Bu ≥ δ
]
= P

[
sup
u≥0

Bu ≥ 0
]
= 1,

where the last equality follows from Corollary 19.5. We conclude that for any A > 0,

P
[
sup
t≥0

Bt ≥ A
]
= 1.

Taking A = n and building a countable intersection of such events, we have

P

[ ∩
n≥1

{
sup
t≥0

Bt ≥ n
}]

= 1,

i.e., lim supt→+∞ Bt = +∞ a.s. The lim inf statement is proved with similar arguments (or follows by
symmetry). □

20. Donsker’s theorem

The goal here is to prove that rescaled random walks on Z (or more generally on Rd) converge to the
Brownian motion.

Let (Yi)i≥1 be a sequence of i.i.d. r.v. in Rd with mean 0 and covariance matrix Idd. We set Xn =

Y1 + · · ·+ Yn. Furthermore, define W (n) to be the (random) continuous function on [0, 1] such that
(1) if t = i/n for some integer i in {0, 1, . . . , n}, then W (n)(t) = 1√

n
Xnt.

(2) W (n) is linear on the interval [i/n, (i+ 1)/n] for every i in {0, 1, . . . , n− 1}.
In the following, we work in the space C([0, 1],R) of continuous functions on [0, 1], endowed with the

supremum norm.

Theorem 20.1 (Donsker). With the above notation, W (n) converges in distribution to the d-dimensional
Brownian motion (Bt)0≤t≤1 on [0, 1].

Note: all simulations of the Brownian motion are in fact realizations of W (n) for large n.

Incomplete proof. To simplify the notation we assume d = 1. We will prove that for each p ≥ 0 and each
t1 < · · · < tp ≤ 1, we have the following convergence in distribution

(30) (W (n)(tj))1≤j≤p −→ (Btj )1≤j≤p.

This is called convergence of the finite dimensional distributions of W (n) to Bt. This is not enough to
prove the convergence of W (n) to (Bt) in the space C([0, 1],R). We need some additional argument (called
tightness), which is outside the scope of this lecture.

Fix p ≥ 0 and t1 < · · · < tp ≤ 1, and let us prove (30). It is equivalent to prove

(31)
(
W (n)(tj)−W (n)(tj−1)

)
1≤j≤p

−→ (Btj −Btj−1
)1≤j≤p,
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where we set t0 = 0 (by construction, a.s., W (n)(0) = B0 = 0). To simplify again notation, we assume that
i1 := nt1, · · · , ip := ntp are integers. Then

W (n)(tj)−W (n)(tj−1) =
1√
n

ij∑
i=ij−1+1

Xi.

In particular, for different values of j, the variables W (n)(tj) −W (n)(tj−1) are independent since they are
renormalized sums of disjoint sets of the independent variables (Xi)i≥0. Moreover, using the central limit
theorem,

1
√
tj − tj−1

(
W (n)(tj)−W (n)(tj−1)

)
=

1√
ij − ij−1

ij∑
i=ij−1+1

Xi

converges in distribution towards a standard Gaussian random variable. Thus, W (n)(tj)−W (n)(tj−1) tends
towards N (0, tj − tj−1). Using the independence for different values of j, we deduce that(

W (n)(tj)−W (n)(tj−1)
)
1≤j≤p

tends towards a vector of independent centered Gaussian random variables of variance tj − tj−1 respectively.
By definition of the Brownian motion (Definition 19.1), this is the distribution of (Btj − Btj−1

)1≤j≤p. We
therefore have proved (31), or equivalently, (30). □

21. Strong Markov property and reflection principle

We recall the simple Markov property (Proposition 19.3, item ii): for s > 0, B(s)
t := Bs+t −Bs defines a

Brownian motion independent from (Bu)u≤s. We want to replace s by a random stopping time.

Definition 21.1. A random variable T : Ω→ R+ ∪ {+∞} is a stopping time if, for all t in R+, the event
{T ≤ t} is in Ft. Its associated σ-algebra is

FT =
{
A ∈ F : A ∩ {T ≤ t} ∈ Ft

}
.

Proposition 21.2 (Strong Markov property). Let (Bt) be a Brownian motion and T be a stopping time
with P[T < +∞] = 1. Then B

(T )
t := BT+t −BT is a Brownian motion independent from FT .

Proof. Let (B′
u) be another Brownian motion. We need to prove that for integrable X ∈ FT , p > 0,

0 ≤ t0 < t1 < · · · < tp, we have (
B

(T )
t1 , · · · , B(T )

tp

) law
=
(
B′

t1 , · · · , B
′
tp

)
and the LHS is independent from X. Since the distribution of a random variable Y is determined by E[F (Y )]
for bounded continuous function F (Riesz theorem), we have to prove that

E
[
X F

(
B

(T )
t1 , · · · , B(T )

tp

)]
= E

[
X
]
E
[
F
(
B′

t1 , · · · , B
′
tp

)]
.

Up to writing X = X1 −X2, F = F1 − F2, we can assume X and F nonnegative.
We would like to use the law of total probability summing over possible values of T , but it takes uncount-

ably many values. The idea is therefore to use a discrete approximation and to write that, a.s.,

F
(
B

(T )
t1 , · · · , B(T )

tp

)
= lim

n→+∞

∑
k≥1

1
{

k−1
n ≤ T < k

n

}
F
(
Bt1+k/n −Bk/n, . . . , Btp+k/n −Bk/n

)
.

Since X is in FT , the random variable X 1
{

k−1
n ≤ T < k

n

}
belongs to Fk/n. By the simple Markov

property (Bt1+k/n−Bk/n, . . . , Btp+k/n−Bk/n) has the same distribution as (B′
t1 , · · · , B

′
tp) and is independent

from Fk/n. So, using the dominated convergence theorem and exchanging infinite sum and expectation of
nonnegative terms,

E
[
X F

(
B

(T )
t1 , · · · , B(T )

tp

)]
= lim

n→+∞

∑
k≥1

E
[
X 1

{
k−1
n ≤ T < k

n

}]
E
[
F (B′

t1 , · · · , B
′
tp)
]
.

But the second expectation can be factorized out of the sum and, clearly we have∑
k≥1

E
[
X 1

{
k−1
n ≤ T < k

n

}]
= E[X].
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This concludes the proof. □

Comment. In the strong Markov property for Markov chains, we needed to assume XT = x a.s.; For
Brownian motion, we do not need this because of the homogeneity in space; the distribution of BT+t −BT

is independent of BT .

As a first application to the strong Markov property, we can compute the distribution of the supremum of
a one-dimensional Brownian motion until time t. This uses a trick called reflection principle: we can reflect
the Brownian motion after a stopping time, without changing its distribution. We note that the reflection
principle can also be used in the discrete world to count families of lattice paths not crossing a given line,
such as Dyck paths; see, e.g., this wikipedia page.

Proposition 21.3. Let (Bs)s≥1 be a 1-dimensional Brownian motion. We set, for t > 0, St = sups≤t Bs.
Then for a ≥ 0 and b ≤ a, we have

P
[
St ≥ a,Bt ≤ b

]
= P

[
Bt ≥ 2a− b

]
.

Consequently St has the same distribution as |Z|, where Z ∼ N (0, t).

Proof. Consider the stopping time Ta = inf{t ≥ 0, Bt = a}. We know (using Proposition 19.6 and the
continuity of t 7→ Bt) that Ta < +∞ a.s. We also observe that St ≥ a if and only if Ta ≤ t. Therefore,

P
[
St ≥ a,Bt ≤ b

]
= P

[
Ta ≤ t, Bt ≤ b

]
= P[Ta ≤ t]P

[
B

(Ta)
t−Ta

≤ b− a
∣∣Ta ≤ t

]
,

where, using the same notation as above, B(Ta)
s = Bs+Ta

−BTa
= Bs+Ta

−a. But the strong Markov property
(Proposition 21.2) asserts that B

(Ta)
s is distributed as a Brownian motion B′

s and is independent from FTa
,

hence in particular from Ta. We get

P
[
St ≥ a,Bt ≤ b

]
= P[Ta ≤ t]P

[
B′

t−Ta
≤ b− a

]
.

Here comes the reflection trick: we now use the symmetry Law(B′
s) = Law(−B′

s), which implies

P
[
B′

t−Ta
≤ b− a

]
= P

[
B′

t−Ta
≥ a− b

]
.

Making the same reasoning as above in the other direction we have

P
[
St ≥ a,Bt ≤ b

]
= P[Ta ≤ t]P

[
B′

t−Ta
≥ a− b

]
= P[Ta ≤ t]P

[
B

(Ta)
t−Ta

≥ a− b
∣∣Ta ≤ t

]
= P

[
Ta ≤ t, Bt ≥ 2a− b

]
= P

[
Bt ≥ 2a− b

]
,

where in the last equality we used that Bt ≥ 2a− b implies Ta ≤ t (recall that a ≥ b and hence 2a− b ≥ a).
This proves the first part of the proposition.

For the second part, we write (noting that Bt = a is a zero probability event)

P
[
St ≥ a

]
= P

[
St ≥ a,Bt ≥ a

]
+ P

[
St ≥ a,Bt ≤ a

]
.

In the first term, St ≥ a is superfluous (Bt > a implies St ≥ a), so that the first term simplifies to P
[
Bt ≥ a

]
.

For the second term, we apply the formula above and get again P
[
Bt ≥ a

]
. Finally,

P[St ≥ a
]
= 2P

[
Bt ≥ a

]
= P

[
|Bt| ≥ a

]
. □

22. Harmonic functions, recurrence and transient

Question: does the Brownian motion come back near 0 with probability 1?
• In dimension 1, yes (as a consequence of Proposition 19.6);
• we will see that it does in dimension 2 (we say that Brownian motion is recurrent), but not in

dimension 3 and higher (we will see that Brownian motion is transient).
Comment. This result is a continuous analogue of Pólya’s recurrence theorem (Theorem 14.12). Interest-

ingly, his proof involves partial difference equations.
Throughout this section, we admit some proofs, in particular of statements of analytic natures. Complete

proofs can be found e.g. in [LG06], where the presentation is closed to the one used here.

https://en.wikipedia.org/wiki/Catalan_number#Second_proof
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22.1. Dirichlet problem: using Brownian motion to solve a partial differential equation. Some
notation: we write D(x, r) (resp. D(x, r) and ∂D(x, r)) for the open ball (resp. closed ball and circle) of
center x and radius r.

A domain Ω is an open connected subset of Rd

Definition 22.1. Let Ω be a domain in Rd. A function h : Ω→ R is called harmonic if, for all x in D and
r > 0 such that D(x, r) ⊂ Ω, we have

h(x) =

∫
D(x,r)

h(y)σx,r(dy),

where σx,r is the unique probability measure8 on ∂D(x, r) invariant by isometries of Rd fixing x.

In dimension 2, identifying R2 and C, the RHS above rewrites as∫
D(x,r)

h(y)σx,r(dy) =
1

2π

∫ 2π

0

h(x+ r exp(iθ))dθ.

Proposition 22.2. h is harmonic on Ω if and only if h is of class C∞ and
d∑

i=1

∂2

∂x2
i

h = 0.

Proof. Admitted. □

Note: the differential operator
∑d

i=1
∂2

∂x2
i

is usually denoted ∆ and called Laplacian operator on Ω.

A standard problem in partial differential equations, called Dirichlet problem is the following: given a
bounded domain Ω and a continuous function g : ∂Ω→ R, find a function h : Ω→ R such that

• h is harmonic on Ω;
• h is continuous on Ω;
• h ≡ g on ∂Ω.

Lemma 22.3. Fix Ω and g as above. If there is a solution to Dirichlet’s problem, then it is unique.

Brownian motion will help us construct a solution, in some cases. For x in Rd, we denote B̃t := x + Bt

be a ”Brownian motion starting at x”. The starting point x does not appear in the notation B̃t, but we will
use Px and Ex to indicate it (as for Markov chains).

Theorem 22.4. Fix Ω and g as above. For x in Ω, we consider, under Px, the stopping time T = inf{t >
0 : B̃t ̸∈ Ω} and we define

h(x) = Ex

[
g(B̃T )

]
.

Then h is harmonic on Ω

Before proving the theorem, let us justify that h is well-defined: for BT to make sense, we need T <

∞, and for g(B̃T ) to make sense, we need B̃T to be in ∂Ω. But, Ω is a bounded domain, while B̃t is
unbounded with probability 1 (its projection are 1-dimension Brownian motion, which are a.s. unbounded
by Proposition 19.6). Hence B̃t eventually leaves Ω with probability 1, i.e. T < ∞ a.s. Furthermore, when
T < ∞, B̃T is in Ω: indeed, it is the limit of (B̃t; t → T, t < T ), which takes value in Ω by minimality of
T . On the other hand there is a sequence tn tending to T such that Bt is not in Ω (possibly tn = T ). Since
the complement of Ω is closed, this implies that BT = limBtn is not in Ω. We conclude that B̃T is in ∂Ω,
so that g(B̃T ) is well-defined as soon as T <∞, which happens a.s. Finally since g is a continuous function
on the bounded closed set ∂Ω, g is necessarily bounded (we are in Rd, bounded closed sets are compact).
Therefore g(B̃T ) is bounded, and hence integrable; its expectation h(x) is well-defined.

8We admit existence and uniqueness of this measure
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Proof. Take x in Ω and r > 0 such that D(x, r) ⊂ Ω. We need to prove that

(32) h(x) =

∫
D(x,r)

h(y)σx,r(dy).

As above, denote by B̃t a Brownian motion starting at x. We define S = inf{t > 0 : B̃t ̸∈ D(x, r)}. This is
a stopping time and we have S < T <∞ a.s.

We claim that B̃S belong to ∂D(x, r) a.s. and has distribution σx,r. The proof that is belongs to ∂D(x, r)

is similar to the proof that B̃T belongs to ∂Ω. If φ is a isometry of Rd fixing x, φ(B̃t) has the same
distribution as B̃t. We conclude that φ(B̃S) has the same distribution as B̃S (since applying φ does not
change the stopping time S). But σx,r is the unique probability distribution on ∂D(x, r) which is invariant
by all isometries fixing x. We conclude that the distribution of B̃S is σx,r, as claimed.

We know compute h(x) = Ex

[
g(B̃T )

]
by conditioning w.r.t. B̃S , namely we write

h(x) = E
[
Ex

[
g(B̃T )|B̃S

]]
.

By the strong Markov property, conditionally on B̃S the process (BS+t−BS)t≥0 is a Brownian motion, and
hence B̂t = B̃S+t is a Brownian motion starting at B̃S . This Brownian motion leaves Ω at time T̂ = T − S,
taking value B̂T̂ = B̃T at that time. Hence

Ex

[
g(B̃T )|B̃S

]
= EBS

[
g(B̂T̂ )

]
= h(BS).

We conclude that h(x) = E
[
h(BS)

]
, proving (32) since B̃S has distribution σx,r. □

We can extend the above function h by setting h(y) = g(y) for y in ∂Ω. If the resulting h is continuous
on Ω, then it is a solution of Dirichlet’s problem. The continuity holds under reasonable asumptions on Ω
(but not in general), e.g. when Ω contains an open cone in the neighbourhood of each of its boundary point
(we admit this result here).

22.2. Using harmonic function to analyse the recurrence of Brownian motion.

Proposition 22.5. Let x in Rd \ {0} and (Bt)t≥0 a BM in Rd. Set B̃t = x+Bt as above and fix ε,R such
that 0 < ε < ∥x∥ < R. Then

(33) Px

[
B̃t visits ∂D(0, ε)
before ∂D(0, R)

]
=

{ log(R)−log ∥x∥
log(R)−log(ε) if d = 2;

∥x∥2−d−R2−d

ε2−d−R2−d if d ̸= 2.

Proof. We set Ω = {y ∈ Rd : ε < ∥y∥ < R} and T be the first exit time from Ω of the Brownian motion B̃t

starting at x. The probability in the LHS above can be rewritten as Ex

[
g(B̃T )

]
, where g(y) = 1{∥y∥ = ε}

(i.e. g ≡ 1 on ∂D(0, ε) and 0 on ∂D(0, R)). Using the result of the previous section h(x) = Ex

[
g(B̃T )

]
is a

solution of the Dirichlet problem associated to Ω and g (the domain Ω satisfies the cone condition, so that
h is indeed a solution of the Dirichlet problem). But one can check that the RHS of (33) is also a solution
to that Dirichlet problem (by computing its Laplacian). We conclude by uniqueness. □

Corollary 22.6. • In dimension 2, for any fixed ε > 0 and fixed starting point x, the Brownian motion
B̃t visits ∂D(0, ε) with probability 1.

• In dimension 3 of higher, for any fixed ε > 0 and fixed starting point x, the Brownian motion B̃t

visits ∂D(0, ε) with probability smaller than 1.
• Assume x ̸= 0. In dimension 2 or higher, the probability that B̃t visits 0 is 0.

Proof. Since trajectories are continuous, B̃t visits ∂D(0, ε) if and only if there exists R > ∥x∥ such that it
visits ∂D(0, ε) before ∂D(0, R). Therefore

Px

[
B̃t visits ∂D(0, ε)

]
= lim

R→∞
Px

[
B̃t visits ∂D(0, ε)
before ∂D(0, R)

]
Using the formula given in (33), it is immediate that the limit in the RHS is 1 for d ∈ {1, 2} and 0 for d ≥ 3.
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It remains to prove that B̃t visits 0 with probability 0 in dimension 2 and higher. We start again form
(33) and make ε tend to 0 (R being fixed). We have

Px

[
B̃t visits 0

before ∂D(0, R)

]
= lim

ε→0
Px

[
B̃t visits ∂D(0, ε)
before ∂D(0, R)

]
= 0. □

Note: using Markov property and similar argument as for Markov chains, we can prove that the Brownian
motion visits a fixed neighbourhood ∂D(0, ε) of 0 infinitely often in 2D, but only finitely many often in
dimension 3 and higher (counting two visits as different if the Brownian motion leaves the disk ∂D(0, 2ε)
in-between).

Part E. Appendices

Appendix A. Uniform integrability

Definition A.1. Let (Xi)i∈I be a family of r.v. in L1. (Xi)i∈I is uniformly integrable (u.i. for short) if

lim
c→∞

(
sup
i∈I

E
[
|Xi|1{|Xi| ≥ c}

])
= 0.

Comment: Let X be in L1. As c tends to ∞, |X|1{|X| ≥ c} tends a.s. to 0. Moreover, it is a.s. bounded
by the integrable r.v. |X| (uniformly on c). From the dominated convergence theorem, we have

lim
c→∞

E
[
|X|1{|X| ≥ c}

]
= 0.

In summary, a family (X) restricted to a single r.v. is always u.i. Consequently, finite families (|I| <∞) are
always u.i. as well.

The interest of uniform integrability lies in its relation with L1 convergence.

Proposition A.2. Let (Xi)i∈I be a family of r.v. in L1.
(i) If (Xi)i∈I is u.i., then supi∈I E

[
|Xi|

]
<∞;

(ii) If (Xn)n≥0 is a sequence of r.v. that converges in L1, then (Xn)n≥0 is u.i.
(iii) If (Xn)n≥0 is a sequence of r.v. that converges in probability to Z and if (Xn)n≥0 is u.i., then Xn

converges to Z in L1.

Proof. (i) Since (Xi)i∈I is u.i., there exists C > 0 such that

sup
i∈I

E
[
|Xi|1{|Xi| ≥ C}

]
≤ 1.

Then, for any i in I,

E
[
|Xi|

]
≤ E

[
|Xi|1{|Xi| ≥ C}

]
+ E

[
|Xi|1{|Xi| < C}

]
≤ 1 + C,

showing that (E[|Xi|])i∈I is bounded, as wanted.
(ii) Fix ε > 0. Call Z the limit of Xn in L1. There exists N > 0 s.t. n ≥ N ⇒ ∥Xn − Z∥1 ≤ ε

3 . For
n ≥ N and an arbitrary value A > 0, we write

E
[
|Xn|1{|Xn| ≥ C}

]
≤ E

[
|Xn − Z|1{|Xn| ≥ C}

]
+ E

[
|Z|1{|Xn| ≥ C}

]
≤ E

[
|Xn − Z|

]
+ E

[
|Z|1{|Xn| ≥ C}1{|Z| ≥ A}

]
+ E

[
|Z|1{|Xn| ≥ C}1{|Z| < A}

]
≤ ε

3 + η(A) +AP[|Xn| ≥ C],

where η(A) := E
[
|Z|1{|Z| ≥ A}

]
tends to 0 when A tends to infinity (indeed, the single r.v. family

(Z) is u.i.). We choose A0 such that η(A0) ≤ ε
3 and C1 such that P[|Xn| ≥ C1] ≤ ε

3A0
. Then for n ≥ N

and C ≥ C1, the above inequality specialized to A = A0 implies

E
[
|Xn|1{|Xn| ≥ C}

]
≤ ε.

Furthermore, since the finite family (Xn)n<N is u.i., there exists C2 s.t., for C ≥ C2 and n < N , we
have

E
[
|Xn|1{|Xn| ≥ C}

]
≤ ε.
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Summing up, for C ≥ C0 := max(C1, C2), we have
sup
n≥0

E
[
|Xn|1{|Xn| ≥ C}

]
≤ ε.

Since this holds for any ε > 0 (with a threshold value C0 depending on ε), we have

lim
C→∞

(
sup
n≥0

E
[
|Xn|1{|Xn| ≥ C}

])
= 0,

i.e. (Xn)n≥0 is u.i.
(iii) Fix ε > 0. We write, for an arbitrary A > 0,

(34) E
[
|Xn − Z|

]
≤ E

[
|Xn − Z|1{|Xn − Z| < ε

5}
]

+ E
[
|Xn|1{|Xn − Z| ≥ ε

5}1{|Xn| ≥ A}
]
+ E

[
|Xn|1{|Xn − Z| ≥ ε

5}1{|Xn| < A}
]

+ E
[
|Z|1{|Xn − Z| ≥ ε

5}1{|Z| ≥ A}
]
+ E

[
|Z|1{|Xn − Z| ≥ ε

5}1{|Z| < A}
]
.

The terms of the right-hand-side are bounded as follows. The first term is smaller than ε
5 . The second

and fourth terms are at most E
[
|Xn|1{|Xn| ≥ A}

]
and E

[
|Z|1{|Z| ≥ A}

]
, respectively. Since the

families (Xn)n≥0 and (Z) are u.i., we can choose A = A0 such that each of these terms is at most ε
5 .

When A = A0, the third and fifth terms are each smaller than A0 P
[
|Xn −Z| ≥ ε

5

]
. Since Xn tends in

probability to Z, one can choose N s.t. n ≥ N implies
P
[
|Xn − Z| ≥ ε

5

]
≤ ε

5A0
,

i.e. such that the third and fifth terms are ε
5 . Summing up, when n ≥ N and when A is specialized to

A0, each term on the right-hand side of (34) is at most ε
5 . We conclude that n ≥ N implies

E
[
|Xn − Z|

]
≤ ε.

Since this holds for any ε > 0 (with a threshold value N depending on ε), we have Xn
L1

−→ Z, as
wanted. □

Proposition A.3. A family (Xi)i∈I is u.i. if and only if there exists a function φ : R+ → R+, such that

lim
x→∞

φ(x)

x
= +∞ and sup

i∈I
E
[
φ(|Xi|)

]
< +∞.

Moreover, if such a function exists, it can be chosen convex and nondecreasing.

Proof. First assume the existence of φ as in the statement and write M = supi∈I E
[
φ(|Xi|)

]
. Fix ε > 0.

Since limx→∞
x

φ(x) = 0, there exists Cε s.t. x ≥ Cε implies x ≤ ε
Mφ(x). We have, for any i in I and C > Cε,

E
[
|Xi|1{|Xi| ≤ C}

]
≤ ε

M E
[
|φ(Xi)|1{|Xi| ≤ C}

]
≤ ε.

This upper bound is uniform in I. Since it holds for any ε > 0, this proves that (Xi)i∈I is u.i.
Conversely, we assume that (Xi)i∈I is u.i. For each m ≥ 0, we can find Cm such that

E
[
|Xi|1{|Xi| ≥ Cm}

]
≤ 2−m,

for all i ∈ I. Define now φ(x) =
∑

m≥0(x− Cm)+. It is clearly convex and nondecreasing.
On the one hand,

φ(x)
x =

∑
m≥0

(
1− Cm

x

)
+

tends by the monotone convergence theorem to
∑

m≥0 1 = +∞.
On the other hand, using again monotone convergence, for all i in I, we have

E
[
φ(|Xi|)

]
=
∑
m≥0

E
[
(|Xi| − Cm)+

]
≤
∑
m≥0

E
[
|Xi|1{|Xi| ≥ Cm}

]
≤
∑
m≥0

2−m = 2.

In particular, sup
i∈I

E
[
φ(|Xi|)

]
is finite as wanted. □
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Proposition A.3 is a convenient way to prove uniform integrability, you only have to exhibit such a func-
tion φ. In particular taking φ(x) = xp for p > 1, we have the following important criterion:

sup
i∈I
∥Xi∥p <∞ for some p > 1 =⇒ (Xi)i∈I is u.i.

Additionally, Proposition A.3 is useful for theoretical purposes, for example in the following corollary.

Corollary A.4. Let Y be a r.v. in L1. Then the family (E[Y |G]), where G runs over all σ-subalgebra G of
F , is u.i.

Proof. The single-r.v. family (Y ) is u.i., so that, by Proposition A.3, there exists a convex nondecreasing
function φ : R+ → R+ such that

lim
x→∞

φ(x)

x
= +∞ and E

[
φ(|Y |)

]
< +∞.

For any σ-subalgebra G of F , we write YG = E[Y |G]. Using Jensen’s inequality for the convex function
x 7→ φ(|x|), we have

φ
(
|YG |

)
≤ E

[
φ(|Y |)|G

]
a.s.

Taking expectation we have

E
[
φ
(
|YG |

)]
≤ E

[
E
[
φ(|Y |)|G

]]
= E

[
φ(|Y |)

]
,

where we use the standard rule for the expectation of the conditional expectation. The right-hand side is
finite by construction of φ, and the bound is uniform on all σ-subalgebra G of F . By Proposition A.3, this
implies that the family (YG)G⊆F is u.i., which is what we wanted to prove. □

Appendix B. Lp convergence of random variables

Question. A standard question arising often in probability theory is the following: we know that Xn → X
a.s. (or in probability), can we conclude that E[Xn] tends to E[X]? or more generally that E[f(Xn)] tends
to E[f(X)] for some function f?

Answer.
• Yes, if f is a bounded function (since convergence a.s./in probability implies convergence in distri-

bution).
• No, in general. A sufficient condition for limn→∞ E[Xn]→ E[X] is that Xn tends to X in L1 (indeed,
|E[Xn]−E[X]| ≤ E[|Xn−X|] = ∥Xn−X∥1). Since we assumed Xn to converges a.s./in probability,
this happens if and only if Xn is u.i.

• Take more generally f(x) = xp for p ≥ 1, i.e. we are asking whether E[Xp
n] tends to E[Xp] (assume

either p integer or Xn, X nonnegative to define the relevant quantities).
A sufficient condition is that Xn tends to X in Lp. Indeed, this implies ∥Xn∥p → ∥X∥p, and,

thus, taking the p-th power, E[Xp
n]→ E[Xp].

This raises the following problem: find conditions (necessary and/or sufficient) for Lp convergence?

Proposition B.1. Let (Xn)n≥0 be a sequence of r.v. and fix q > p ≥ 1.
(i) If Xn converges to X∞ in Lp, then supn≥0 ∥Xn∥p < +∞.

(ii) If supn≥0 ∥Xn∥q < +∞ and if Xn tends to some X∞ in probability, then Xn tends to X∞ in Lp.

In particular Lq convergence implies Lp convergence (this can also be proved directly with Hölder’s
inequality).

Proof. (i) We have ∥Xn∥p ≤ ∥Xn −X∞∥p + ∥X∞∥p. The first term tends to 0, while the second does not
depend on n. The sum is therefore bounded.

(ii) We want to prove that E[|Xn − X∞|p] tends to 0. Since |Xn − X∞|p tends to 0 in probability, it is
enough to prove that the sequence (|Xn−X∞|p)n≥0 is u.i. We consider the convex increasing function
φ(x) = xq/p, for x ≥ 0. We have limx→+∞

φ(x)
x = +∞. Moreover,

E
[
|φ(|Xn −X∞|p)

]
= E

[
|Xn −X∞|q

]
= ∥Xn −X∞∥ qq ≤ (∥Xn∥q + ∥X∞∥q)q.
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But ∥Xn∥q is assumed to be bounded. Using Fatou’s lemma on a subsequence Xnk
converging a.s. to

X∞, we have
∥X∞∥q ≤ lim inf

k→∞
∥Xnk

∥q ≤ sup
n≥0
∥Xn∥q < +∞.

We conclude that E
[
|φ(|Xn−X∞|p)

]
is bounded. From Proposition A.3, this proves that the sequence

(|Xn −X∞|p)n≥0 is u.i. □
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