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Introduction

Overall goal:

We want to find a closed form of f (n) for given f (n) =
∑∞

k=0 F (n, k).

Exact form of the recurrence formula:∑J
j=0 aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)
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First part of the algorithm:

reshaping and rearranging terms



1: reshaping and rearranging terms

Assume order of recurrence J and fix it.

Recurrence formula:
∑J

j=0 aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)

tk :=
∑J

j=0 aj (n)F (n + j , k)

tk+1

tk
=
∑J

j=0 aj (n)F (n+j,k+1)/F (n,k+1)∑J
j=0 aj (n)F (n+j,k)/F (n,k)

· F (n,k+1)
F (n,k)

We define r1(n,k)
r2(n,k)

:= F (n,k+1)
F (n,k) and s1(n,k)

s2(n,k)
:= F (n,k)

F (n−1,k) .

F (n+j,k)
F (n,k) =

∏j−1
i=0

F (n+j−i,k)
F (n+j−i−1,k) =

∏j−1
i=0

s1(n+j−i,k)
s2(n+j−i,k)
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1: reshaping and rearranging terms

Substituting r1(n,k)
r2(n,k)

:= F (n,k+1)
F (n,k) and

F (n+j,k)
F (n,k) =

∏j−1
i=0

F (n+j−i,k)
F (n+j−i−1,k) =

∏j−1
i=0

s1(n+j−i,k)
s2(n+j−i,k)

into tk+1

tk
=
∑J

j=0 aj (n)F (n+j,k+1)/F (n,k+1)∑J
j=0 aj (n)F (n+j,k)/F (n,k)

· F (n,k+1)
F (n,k) :

We get tk+1

tk
=

∑J
j=0 aj

(∏j−1
i=0

s1(n+j−i,k+1)

s2(n+j−i,k+1)

)
·r1(n,k)∑J

j=0 aj
(∏j−1

i=0
s1(n+j−i,k)

s2(n+j−i,k)

)
·r2(n,k)

.
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1: reshaping and rearranging terms

goal: expression of the form tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k)

tk+1

tk
=

∑J
j=0 aj

(∏j−1
i=0

s1(n+j−i,k+1)

s2(n+j−i,k+1)

)
·r1(n,k)∑J

j=0 aj
(∏j−1

i=0
s1(n+j−i,k)

s2(n+j−i,k)

)
·r2(n,k)

is equal to

∑J
j=0 aj(

∏j−1
i=0 s1(n+j−i,k+1)

∏J
r=j+1 s2(n+r ,k+1))∑J

j=0 aj(
∏j−1

i=0 s1(n+j−i,k)
∏J

r=j+1 s2(n+r ,k))
· r1(n,k)

∏J
r=1 s2(n+r ,k)

r2(n,k)
∏J

r=1 s2(n+r ,k+1)
.
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1: reshaping and rearranging terms

tk+1

tk
=
∑J

j=0 aj(
∏j−1

i=0 s1(n+j−i,k+1)
∏J

r=j+1 s2(n+r ,k+1))∑J
j=0 aj(

∏j−1
i=0 s1(n+j−i,k)

∏J
r=j+1 s2(n+r ,k))

· r1(n,k)
∏J

r=1 s2(n+r ,k)

r2(n,k)
∏J

r=1 s2(n+r ,k+1)

is now an expression of the form tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k) .

Where: p0 (k) =
∑J

j=0 aj
(∏j−1

i=0 s1 (n + j − i , k)
∏J

r=j+1 s2 (n + r , k)
)

,

r (k) = r1 (n, k)
∏J

r=1 s2 (n + r , k),

s (k) = r2 (n, k)
∏J

r=1 s2 (n + r , k + 1).

Remark: {aj}Jj=0 just appear in p0 (k).
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Example



1: example

f (n) =
∑∞

k=0 F (n, k) with F (n, k) =
(
2n
2k

)
∑J

j=0 aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)

Assume J=1.
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1: example

tk :=
∑J

j=0 aj (n)F (n + j , k) and F (n, k) =
(
2n
2k

)
tk+1

tk
=

a0( 2n
2k+2)+a1(2n+2

2k+2)
a0(2n

2k)+a1(2n+2
2k )

Goal: bring this in the form tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k)

tk+1

tk
=

a0
(

2n
2k+2

)
+ a1

(
2n+2
2k+2

)
a0
(
2n
2k

)
+ a1

(
2n+2
2k

) =
a0

2n!
(2k+2)!(2n−2k−2)! + a1

(2n+2)!
(2k+2)!(2n−2k)!

a0
2n!

(2k)!(2n−2k)! + a1
(2n+2)!

2k!(2n−2k+2)!

=
a0

1
(2k+1)(2k+2) + a1

(2n+1)(2n+2)
(2k+1)(2k+2)(2n−2k−1)(2n−2k)

a0
1

(2n−2k−1)(2n−2k) + a1
(2n+1)(2n+2)

(2n−2k−1)(2n−2k)(2n−2k+1)(2n−2k+2)
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1: example

a0
1

(2k+1)(2k+2) + a1
(2n+1)(2n+2)

(2k+1)(2k+2)(2n−2k−1)(2n−2k)

a0
1

(2n−2k−1)(2n−2k) + a1
(2n+1)(2n+2)

(2n−2k−1)(2n−2k)(2n−2k+1)(2n−2k+2)

Expand with (2n − 2k − 1) (2n − 2k):

=
a0

(2n−2k−1)(2n−2k)
(2k+1)(2k+2) + a1

(2n+1)(2n+2)
(2k+1)(2k+2)

a0 + a1
(2n+1)(2n+2)

(2n−2k+1)(2n−2k+2)

= a0(2n−2k−1)(2n−2k)+a1(2n+1)(2n+2)
a0(2n−2k+1)(2n−2k+2)+a1(2n+1)(2n+2) ·

(2n−2k+1)(2n−2k+2)
(2k+1)(2k+2)
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1: example

tk+1

tk
= a0(2n−2k−1)(2n−2k)+a1(2n+1)(2n+2)

a0(2n−2k+1)(2n−2k+2)+a1(2n+1)(2n+2) ·
(2n−2k+1)(2n−2k+2)

(2k+1)(2k+2)

tk+1

tk
=

p0 (k + 1)

p0 (k)

r (k)

s (k)

So it holds

p0 (k) = a0 (2n − 2k + 1) (2n − 2k + 2) + a1 (2n + 1) (2n + 2) ,

r (k) = (2n − 2k + 1) (2n − 2k + 2) ,

s (k) = (2k + 1) (2k + 2) .
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Second part of the algorithm:

use of the previous chapter

about Gosper’s algorithm



2: use of the previous chapter about Gosper’s algorithm

Theorem 5.3.1

Let K be a field of characteristic zero and r ∈ K [n] a nonzero rational

function. Then there exist polynomials a, b, c ∈ K [n] such that b, c are

monic and r (n) = a(n)
b(n)

c(n+1)
c(n) , where

1. gcd (a (n) , b (n + k)) = 1 for every nonnegative integer k,

2. gcd (a (n) , c (n)) = 1,

3. gcd (b (n) , c (n + 1)) = 1.

So we write r(k)
s(k) as r(k)

s(k) = p1(k+1)
p1(k)

· p2(k)p3(k)
.

tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k)
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2: use of the previous chapter about Gosper’s algorithm

Now we define p (k): p(k) = p0 (k) p1 (k)

p0 was defined earlier as follows:

tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k) with

p0 (k) =
∑J

j=0 aj
(∏j−1

i=0 s1 (n + j − i , k)
∏J

r=j+1 s2 (n + r , k)
)

By the definition of p(k), tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k) and r(k)

s(k) = p1(k+1)
p1(k)

· p2(k)p3(k)
we

get tk+1

tk
= p(k+1)

p(k) ·
p2(k)
p3(k)

.

Remark: Coefficients of p2 (k) and p3 (k) are independent of {aj}Jj=0 and

p (k) depends on {aj}Jj=0 only linearly.
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2: use of the previous chapter about Gosper’s algorithm

tk+1

tk
= p(k+1)

p(k) ·
p2(k)
p3(k)

setup for Gosper’s algorithm

tk is an indefinitely summable hypergeometric term if and only if the

recurrence formula p2 (k) b (k + 1)− p3 (k − 1) b (k) = p (k) has a

polynomial solution b (k).

Remark: A hypergeometric term tk is indefinitely summable if
∑a

k=0 tk
has a closed form, where a is an arbitrary upper bound.

Find an upper bound on the degree of the polynomial b(k) (page 85,

chapter 5).
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2: use of the previous chapter about Gosper’s algorithm

zn =
∑n−1

k=0 ek , r(k) = ek+1

ek

goal: zn such that zn+1 − zn = en (1)

z(n) := y(n)en, y(n) unknown rational function

substituting y(n)en for zn in (1), we get: r(n)y(n + 1)− y(n) = 1 (2)

r(n) = a(n)
b(n)

c(n+1)
c(n) (3)

we look for y(n) in the form y(n) = b(n−1)x(n)
c(n) , x(n) (4) rational function

of n

substituting (3) and (4) into (2) leads to

a(n)x(n + 1)− b(n − 1)x(n) = c(n) (5), theorem 5.2.1: x(n) is a

polynomial

finding hypergeometric solutions of zn+1 − zn = tn equivalent to finding

polynomial solution of (5), if x(n) is a nonzero polynomial solution of

(5), then zn = b(n−1)x(n)
c(n) en
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2: example

part 1: tk+1

tk
= p0(k+1)

p0(k)
r(k)
s(k)

part 2: find the canonical form r(k)
s(k) = p1(k+1)

p1(k)
· p2(k)p3(k)

r (k) = (2n − 2k + 1) (2n − 2k + 2) = 4n2 + 4k2 + 2− 8kn + 6n − 6k

s (k) = (2k + 1) (2k + 2) = 4k2 + 6k + 2

r (k)

s (k)
=

1

1
· 2n2 + 2k2 + 1− 4kn + 3n − 3k

2k2 + 3k + 1

So we have p1 (k) = 1, p1 (k + 1) = 1,

p2 (k) = 2n2 + 2k2 + 1− 4kn + 3n − 3k ,

p3 (k) = 2k2 + 3k + 1.
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2: example

We write tk+1

tk
as

tk+1

tk
=

p (k + 1)

p (k)
· p2 (k)

p3 (k)

(p (k) = p0 (k) p1 (k) = a0 (2n − 2k + 1) (2n − 2k + 2)+a1 (2n + 1) (2n + 2))

tk+1

tk
= a0(2n−2k−1)(2n−2k)+a1(2n+1)(2n+2)

a0(2n−2k+1)(2n−2k+2)+a1(2n+1)(2n+2) ·
2n2+2k2+1−4kn+3n−3k

2k2+3k+1
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2: example

tk+1

tk
= p(k+1)

p(k) ·
p2(k)
p3(k)

tk+1

tk
= a0(2n−2k−1)(2n−2k)+a1(2n+1)(2n+2)

a0(2n−2k+1)(2n−2k+2)+a1(2n+1)(2n+2) ·
2n2+2k2+1−4kn+3n−3k

2k2+3k+1

p2 (k) b (k + 1)− p3 (k − 1) b (k) = p (k)

(
2n2 + 2k2 + 1− 4kn + 3n − 3k

)
b (k + 1)−

(
2k2 − k

)
b (k) =

a0 (2n − 2k + 1) (2n − 2k + 2) + a1 (2n + 1) (2n + 2)

By page 85 in chapter 5 of the book we find out that b (k) has degree 1,

we write b (k) as b (k) = c + dk .
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Third part of the algorithm:

solve system of linear equations



3: solve system of linear equations

A: upper bound for b(k), b(k) =
∑A

l=0 clk
l .

Substitute this into p2 (k) b (k + 1)− p3 (k − 1) b (k) = p (k) .

We get a system of linear equations (by doing coefficient comparison)

with the unknown coefficients {aj}Jj=0 and {cl}Al=0.

Solve the system, we get the coefficients {aj}Jj=0 of the recurrence

formula
∑J

j=0 aj (n)F (n + j , k) = G (n, k + 1)− G (n, k).

17



3: solve system of linear equations

Additionally, by equation (5.2.5) in chapter 5.2 we get G(n,k):

Equation 5.2.5: y (n) = b(n−1)x(n)
c(n) .

Therefore we can conclude G (n, k) = p3(k−1)
p(k) b (k) tk .

Remark: The system of linear equations has usually not a unique solution

but the solution is determined up to a constant.

∑J
j=0 aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)
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2: use of the previous chapter about Gosper’s algorithm

zn =
∑n−1

k=0 ek , r(k) = ek+1

ek

goal: zn such that zn+1 − zn = en (1)

z(n) := y(n)en, y(n) unknown rational function

substituting y(n)en for zn in (1), we get: r(n)y(n + 1)− y(n) = 1 (2)

r(n) = a(n)
b(n)

c(n+1)
c(n) (3)

we look for y(n) in the form y(n) = b(n−1)x(n)
c(n) , x(n) (4) rational function

of n

substituting (3) and (4) into (2) leads to

a(n)x(n + 1)− b(n − 1)x(n) = c(n) (5), theorem 5.2.1: x(n) is a

polynomial

finding hypergeometric solutions of zn+1 − zn = tn equivalent to finding

polynomial solution of (5), if x(n) is a nonzero polynomial solution of

(5), then zn = b(n−1)x(n)
c(n) en
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3: example

(
2n2 + 2k2 + 1− 4kn + 3n − 3k

)
b (k + 1)−(

2k2 − k
)
b (k) =a0 (2n − 2k + 1) (2n − 2k + 2) + a1 (2n + 1) (2n + 2)

b (k) = c + dk

By doing coefficient comparison, we can create a system of linear

equations:

1. 2n2c + c + 3nc + 2n2d + d + 3nd =

4a0n
2 + 2a0 + 6a0n + 4a1n

2 + 6a1n + 2a1

2. −4nkc−3kc+2n2dk+dk+3ndk−4ndk−3kd+kc = −8a0kn−6a0k

3. 2k2c − 4nk2d − 3k2d + 2k2d − 2k2c + dk2 = 4a0k
2

When we solve this with maple, we get:

c = −3/2nd − d , a0 = −nd , a1 = nd/4, d = d
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3: example

The solution is only determined up to constants. If we choose d=4, we

get a0 = −4n and a1 = n. This leads to the recurrence

nF (n + 1, k)− 4nF (n, k) = G (n, k + 1)− G (n, k) .

J∑
j=0

aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)

Scenario A (as J=1):

f (n) = f (1)
∏n−1

j=1 −
a0
a1

= 2
∏n−1

j=1 −
−4n
n = 2 · 4n−1 = 2 · 22n−2 = 22n−1

for n ≥ 1.

f (n) =
∑∞

k=0

(
2n
2k

)
= 22n−1
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