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Introduction

Overall goal:

We want to find a closed form of f(n) for given f(n) = >_,;%, F (n, k).

Exact form of the recurrence formula:
Y03 (n) F(n+j,k)=G(n k+1)= G (n k)



First part of the algorithm:
reshaping and rearranging terms



1: reshaping and rearranging terms

Assume order of recurrence J and fix it.
Recurrence formula: Zf:o aj(n)F(n+j,k)=G(n k+1)— G (n k)
te =72 (n) F (n+j, k)

ten _ jeo @()F(n+j,k+1)/F(nk+1)  F(nk+1)

t Sl ai(mF(ntik)/F(nk)  F(nk)
k) . F(nk+1 k) . F(nk
We define TEZ kg = /(fn(n.,k)) and ZEZ kg = F(n(zl,)k)'
n+ k n+j—ik 1 n+j—ik
J ) HI OFn+JJl l)k 1_IJI 02 n+j Ik;



1: reshaping and rearranging terms

rn(n,k) ._ F(nk+1)

Substituting HGE and

I1+_j k F(n+j—i,k) j—1 si(n+j—i,k)
Hl 0 F(n+j—i—1,k) HI 0 s(n+j—i,k)

- tHl _ >7 o aj(n)F(n+j,k+1)/F(n,k+1)  F(nk+1) .
/-0 3i(n)F(n+j,k)/F(n,k) A

1 sp(ntj—i,k+1)
Sioa (HJ, 0 s;(nJrj rk+1)) -n(n,k)
T s (ntj—1.K) :
Z, 09 (Hi 0 s; n+j /k)) r2(n,k)

b1
We get &



1: reshaping and rearranging terms

goal: expression of the form 2 — polkctl) r(k)

j—1 sy(n+j—i k+1)
teel Z} OQJ(H/ =0 Sy(ntj—7,k+1) -n(n.k)

is equal to
t 1 sy(n+j—i,k)
o (TES =S ) n(nk)

foa/(H,' z 51("+Jf' K1) [Ty s2(ntr,k+1))  r(n,k) [T, s2(ntr.k)

J —o aj(H, o s1(n+j—i,k) Hr:j+l 52(n+r,k)) ra(nk) [T, s2o(ntrk+1)"




1: reshaping and rearranging terms

byt _ ZJJ 0 J(Hj:O 51(”+J i,k+1) T} —j1 %2(n+r, k+1)) ~_n(n, K) [T, s2(n+r,k)

tk JJ Oaj( j 51(H+J ik)TT. _j1 92(ntr, k)) ra(n,k) H, 152(n+r k+1)

g ’ Ter1
is now an expression of the form - FGREOR

Where: po (k) :zjzoaj( esi(nj— i KT s (n+r, k)),
r(k) =n(n k)T s (n+r k),

s(k)=r(n, k)H, 1S2(n+r k+1).

Remark: {aj} o just appear in pg (k).



Example



f(n)= Zk “o F (n, k) with F (n, k) = (2k)
S22 (n)F(n+j k)= G(nk+1)—G(nk)

Assume J=1.



ti = Y2103 (n) F (n+j,k) and F (n,k) = (3})

bep1 30(2312)"'31(3:13)
b a()+a ()
Goal: bring this in the form tkt—:l = p(’p(ok(t)l) ;E’;g
n n 2n! (2n+2)!
ter1 ao(zf+2) + a1 (;k:[;) _ 90 (2K 12)1(2n—2k—2)! + a1 (2k+2)1(2n—2k)!
- 2n 2n+2 n! 2n+2)!
tk a0 (5) + a1 (*3) 4o (2k)!(22n72k)! +a 2k!((2nn—2k+2)!
1 (2n+1)(2n+2)
A0 ZETD k) 9 BT (k1 2)(2n—2k—1)(2n—2K)

(2n+1)(2n+2)
40 (2n72k71)(2n72k) + 31 GrEk— D) En—2K) (2n—2kF 1) (2n—2k12)




2n+1)(2n+2
0 (2k+1)1(2k+2) + a1 (2k+1)(2k(+2)(221(—2k—)1)(2n—2k)
1 (2n+1)(2n+2)

30 Zn—2k—1)(2n—2k) T 91 @n—2k—1)(2n—2k)(2n—2k+1)(2n—2k+2)

Expand with (2n — 2k — 1) (2n — 2k):

(2n—2k—1)(2n—2K) (2n4+1)(2n+2)
T ek T A (k) (2kt2)
- (2n+1)(2n+2)

a0 + A1 Zr_ 2kt 1) (2n—2k72)

_ _ao(2n—2k—1)(2n—2k)+a1(2n+1)(2n+2)  (2n—2k+1)(2n—2k+2)
= 20(2n—2k+1)(2n—2k+2) a1 (2n+1)(2n+2) (2k+1)(2k+2)




tir1 . ao(2n—2k—1)(2n—2k)+a1(2n+1)(2n+2) (2n—2k+1)(2n—2k+2)

te  a0(2n—2k+1)(2n—2k+2)+a1(2n+1)(2n+2) (2k+1)(2k+2)

tir1  po(k+1)r(k)

th po (k) s(k)
So it holds
po (k) =ap(2n —2k+1)(2n—2k+2)+a; (2n+1)(2n+2),
r(k)=(2n—-2k+1)(2n—2k +2),
s(k) =(2k+1)(2k+2).



Second part of the algorithm:
use of the previous chapter
about Gosper’s algorithm




2: use of the previous chapter about Gosper’s algorithm

Theorem 5.3.1

Let K be a field of characteristic zero and r € K[n] a nonzero rational

function. Then there exist polynomials a, b, c € K[n] such that b, c are

monic and r (n) = ZEZ; C(CT;)I), where

1. ged (a(n),b(n+ k)) =1 for every nonnegative integer k,
2. ged(a(n),c(n) =1,
3. ged (b(n),c(n+1)) =
k k k+1 k
So we write rékg as ;k; = plp(l(k)) . Zigk;'

tie1 o po(k+1) r(k)
t po(k) s(k)
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2: use of the previous chapter about Gosper’s algorithm

Now we define p (k): p(k) = po (k) p1 (k)

po was defined earlier as follows:

tee1 _ po(k+1) r(k)
ti - po(k) S(k)

po (k) = Zj:o aj (HJ,;(% si(n+j—i, k)Hi:ijl s2(n+r, k))

with

. k+1) r(k r(k k+1 K
By the definition of p(k), tkt—:l = pﬁo(k))sgk; and Sgkg = p1p(1(k)) : Zﬁ% we
tixr _ p(k+1)  pa(k)

8L S0 T ok m(k

U

Remark: Coefficients of p, (k) and ps (k) are independent of {aj})-l:() and
p (k) depends on {a;}/_, only linearly.
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2: use of the previous chapter about Gosper’s algorithm

t%l = % . ngg setup for Gosper's algorithm

o

ti is an indefinitely summable hypergeometric term if and only if the
recurrence formula py (k) b(k + 1) — ps (k —1) b(k) = p (k) has a
polynomial solution b (k).

Remark: A hypergeometric term t, is indefinitely summable if Y7 _, tx
has a closed form, where a is an arbitrary upper bound.

Find an upper bound on the degree of the polynomial b(k) (page 85,
chapter 5).
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: use of the previous chapter about Gosper’s algorithm

20 =Yg ek, r(k) = %

goal: z, such that z,.1 — z, = e, (1)

z(n) := y(n)e,, y(n) unknown rational function

substituting y(n)e, for z, in (1), we get: r(n)y(n+1)—y(n)=1(2)
r(n) = 53 <545 (3)

we look for y(n) in the form y(n) = W’ x(n) (4) rational function
of n

substituting (3) and (4) into (2) leads to
a(n)x(n+ 1) — b(n — 1)x(n) = c¢(n) (5), theorem 5.2.1: x(n) is a
polynomial

finding hypergeometric solutions of z,1 — z, = t, equivalent to finding
polynomial solution of (5), if x(n) is a nonzero polynomial solution of

(5), then z, = %en
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. B _ k+1) r(k
part 1: &2 = BG4S

r(k) = (2n — 2k +1)(2n — 2k + 2) = 4n? + 4k? + 2 — 8kn + 6n — 6k
s(k) = (2k +1) (2k +2) = 4k? + 6k + 2

2n%2 +2k? + 1 — 4kn+ 3n — 3k
2k2 + 3k +1

1
1

So we have py (k) =1, py (k+1) =1,
p2 (k) = 2n? + 2k® + 1 — 4kn + 3n — 3k,
ps (k) = 2k* + 3k + 1.
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We write tkt—:l as

(p(k) = po (k) p1 (k) = a0 (2n — 2k + 1) (2n — 2k + 2)+a1 (2n+ 1) (2n + 2))

ten o a0(2n—2k—1)(2n—2k)+a1(2n+1)(2n+2) 20’4 2k?+1—4kn+3n—3k
te  a0(2n—2k+1)(2n—2k+2)Ta1(2n+1)(2n+2) K24 3k+1
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tisr . p(k+1)  pa(k)

e — p(k) p3(k)
tern _ _a0(2n—2k—1)(2n—2k)+a1(2n+1)(2n+2)  2n*4+2k*4-1—4kn+3n—3k
tx — ao(2n—2k+1)(2n—2k+2)+a;(2n+1)(2n+2) 2k?+3k+1

p2 (k) b(k+1) = ps(k—1)b(k) = p(k)

(2n* +2k* + 1 — 4kn+3n — 3k) b(k + 1) — (2k*> — k) b(k) =

ao(2n—2k+1)(2n—2k+2)+ a1 (2n+1)(2n+2)

By page 85 in chapter 5 of the book we find out that b (k) has degree 1,
we write b (k) as b(k) = ¢ + dk.
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Third part of the algorithm:
solve system of linear equations




3: solve system of linear equations

A: upper bound for b(k), b(k) = Z/A:o ck!.

Substitute this into py (k) b(k +1) — p3(k — 1) b(k) = p (k).

We get a system of linear equations (by doing coefficient comparison)
with the unknown coefficients {a;}7_y and {c/}7L,.

Solve the system, we get the coefficients {aj}f:o of the recurrence

formula EJ.JZO aj(n)F(n+j,k)=G(n k+1)— G(n, k).
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3: solve system of linear equations

Additionally, by equation (5.2.5) in chapter 5.2 we get G(n,k):

Equation 5.2.5: y (n) = W'

Therefore we can conclude G (n, k) = %b(k) tk-

Remark: The system of linear equations has usually not a unique solution
but the solution is determined up to a constant.

S loai(n)F(n+j,k)=G(nk+1)—G(nk)

18



: use of the previous chapter about Gosper’s algorithm

20 =Yg ek, r(k) = %

goal: z, such that z,.1 — z, = e, (1)

z(n) := y(n)e,, y(n) unknown rational function

substituting y(n)e, for z, in (1), we get: r(n)y(n+1)—y(n)=1(2)
r(n) = 53 <545 (3)

we look for y(n) in the form y(n) = W’ x(n) (4) rational function
of n

substituting (3) and (4) into (2) leads to
a(n)x(n+ 1) — b(n — 1)x(n) = c¢(n) (5), theorem 5.2.1: x(n) is a
polynomial

finding hypergeometric solutions of z,1 — z, = t, equivalent to finding
polynomial solution of (5), if x(n) is a nonzero polynomial solution of

(5), then z, = %en
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(2n* +2k* +1—4kn+3n—3k) b(k+1) —
(2k? — k) b(k) =ao (2n — 2k + 1) (2n — 2k + 2) + a1 (2n + 1) (2n + 2)
b(k) = c+ dk

By doing coefficient comparison, we can create a system of linear

equations:

1. 2n’c +c+3nc+2n*d +d+3nd =
4agn® 4 2ag + 6agn + 4a1n® + 6a1n + 2a;

2. —4nkc—3kc+2n?dk+ dk+3ndk —4ndk —3kd + kc = —8agkn—6agk
3. 2k?c — 4nk®d — 3k?d + 2k*d — 2k?c + dk?® = 4agk?

When we solve this with maple, we get:

c=-3/2nd —d, a0 = —nd,a, = nd/4,d = d

20



The solution is only determined up to constants. If we choose d=4, we
get ag = —4n and a; = n. This leads to the recurrence

nF(n+1,k)—4nF (n, k) = G(n,k+1)— G(n, k).

Scenario A (as J=1):
F(n)=fI[L -2 =2[[5 —5r =24 =222 =2}
for n > 1.

f(n) =35 Gp) =221
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End
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