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Introduction

Main topic: random permutations

Classical questions: look at some statistics, like the number of cycles
(of given length), pattern occurrences, longest increasing
subsequences, . . .
(usually for uniform, Ewens or Mallows distributions)

a more recent approach: look for a limit for the rescaled permutation
matrix; such limits are called permutons.
(interesting for non-uniform models or constrained permutations)

This talk: presentation of the notion of permutons and of some
convergence results for them.
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A few random permutations

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c©AHRV ’07)

Uniform random pattern-avoiding permutations
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First part

The theory of permutons
(starting from Hoppen, Kohayakawa, Moreira, Rath, Sampaio, ’13)
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a compact Polish space.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Note: the projection on µπ on each axis is the Lebesgue measure on [0, 1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on [0, 1]2 with uniform marginals.

Remark: permutons had been considered before by staticians under the
name copula.

Next few slides: connection with permutation patterns.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation
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Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

In other terms: take k elements uniformly at random in σ, the probability
to find a pattern τ is õcc(τ, σ).

This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

where U(1), · · · ,U(k) are i.i.d. points in [0, 1]2 with
distribution µ.

a “231 pattern”
in a permuton
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Pattern density convergence and permuton convergence

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, ’13)

For each n ≥ 1, let σn be a permutation of size n. TFAE
(a) µσn converges to some permuton µ.
(b) For every pattern π, the proportion õcc(π, σn) tends to some δπ

Theorem (Bassino-Bouvel-F.-Gerin-Maazoun-Pierrot, ’17)

For each n ≥ 1, let σn be a random permutation of size n. TFAE
(a) µσn converges in distribution to some random permuton µ

(b) For every pattern π, there is a ∆π ≥ 0 such that

E[õcc(π,σn)]
n→∞−−−→ ∆π.
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Mallows permutations

Mallows model on Sn: P(σn) ∝ q
inv(σn)
n ,

where inv(σ) = #{(i , j) with i < j and σ(i) > σ(j)}.

Theorem (Starr, ’09)

Take qn = 1− β/n. Then µσ(n) converge to the deterministic permuton
with density

u(x , y) =
(β/2) sinh(β/2)(

eβ/4 cosh(β[x − y ]/2)− e−β/4 cosh(β[x + y − 1]/2)
)2 .

Simulation (n = 10000, β = 6) β = 6 β = 2
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Erdős-Szekeres extremal permutations

An Erdős-Szekeres extremal permutation is a permutation of size n2 that
has no monotone subsequence of size n + 1.

Theorem (Romik, ’06)

Let σn be a uniform random Erdős-Szekeres extremal permutation of size
n2. Then σn converges to a deterministic permuton supported by{

x , y ∈ [0, 1]2 : (x2 − y2)2 + 2(x2 + y2) ≤ 3
}

c© Romik
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Random sorting networks

A sorting network is a minimal path going from the identity permutation to
the reverse permutation, switching two adjacent entries at each step.

Random sorting network, c©Angel, Holroyd, Romik and Virag (’07)

A formula for the limiting process in the space of permutons was
conjectured by Angel, Holroyd, Romik and Virag (’07) and proved by
Dauvergne (’18).
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And more. . .

Random permutations in grid classes (Bevan ’15), Square
permutations (Borga–Slivken ’19), various exponentially biased models
(Mukherjee ’16, Bouvel–Nicaud–Pivoteau ’19), . . .

Large deviation principle for uniform random permutations in the
space of permutons (Trashorras, ’08, Kenyon–Král–Radin–Winkler,
’15, Borga–Das–Mukherjee–Winkler, ’22).

Asymptotics of the number of cycles of fixed length (Mukherjee, ’16),
of the length of the longest increasing subsequence (Mueller–Starr,
’13) and of the total displacement (Bevan–Winkler, ’19) in Mallows
permutations using the permuton limit.
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Second part

Limits of permutation classes
with a finite specification
(joint work with Bouvel, Bassino,

Gerin, Maazoun, Pierrot)
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Permutation classes

Definition
A set C of permutations (of all sizes) is a class if for all permutations π in
C, and all patterns τ of π, τ is also in C.

Equivalently, a class is the set of permutations avoiding given patterns.

Traditionally analyzed from an enumerative point of view: how many
permutations of size n are there in a given class?

More recently from a probabilistic point of view: what does a uniform
random permutation in a given class look like?
(Atapour, Bevan, Borga, Dokos, Hoffman, Janson, Liu, Madras,
Mansour, Miner, Pak, Pehlivan, Pinsky, Rizzolo, Slivken, Stufler,
Yıldırım, . . . )
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Substitution in permutations

Definition of substitution

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] =
12

= = 24387156
132

21

1

Definition
A permutation is called simple if it cannot be obtained as a nontrivial
substitution.

Examples: 12, 21, 3142, 2413, 25314, . . .
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Classes with finitely many simple permutations

Theorem (Albert, Atkinson, ’05)

Every class C containing only finitely many simple permutations has a finite
basis and an algebraic generating function.

Problem
Let C be a class with finitely many simple permutations. Describe the
permuton limits of a uniform random permutation in C.
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Encoding permutations as trees

Proposition (Albert, Atkinson, ’05)

Every permutation σ of size n ≥ 2 can be uniquely decomposed as either:
α[π(1), . . . , π(d)], where α is simple of size d ≥ 4,
12[π(1), π(2)], where π(1) is 12-indecomposable,
21[π(1), π(2)], where π(1) is 21-indecomposable.

Iterating this with π(1), . . . , π(d), we can write any permutation as
imbricated substitutions of simple permutations, which we represent as a
tree (called substitution decomposition tree):

= 24387156

2413

12 21 12

21
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Classes with finitely many simple permutations (2/2)

Theorem (Bassino-Bouvel-Pierrot-Pivoteau-Rossin ’17; stated informally)

Fix a permutation class C with finitely many simple permutations. Then
the set of trees corresponding to permutations in C can be defined via a
finite system of equations.

Example: the system of equations defining C = Av(132)

C = {•}
⊎
⊕[Cnot⊕, C〈21〉]

⊎
	[Cnot	, C]

Cnot⊕ = {•}
⊎
	[Cnot	, C]

Cnot	 = {•}
⊎
⊕[Cnot⊕, C〈21〉]

C〈21〉 = {•}
⊎
⊕[Cnot⊕

〈21〉 , C〈21〉]

Cnot⊕
〈21〉 = {•}.

C

Cnot⊕

critical series

Cnot	

C〈21〉

Cnot⊕
〈21〉

⊕ = 12; 	 = 21; not ⊕ means 12 indecomposable
〈21〉 means “avoiding 21”.

V. Féray (CNRS, IECL) Random permutations Groningen, 2022–07 18 / 28



Classes with finitely many simple permutations (2/2)

Theorem (Bassino-Bouvel-Pierrot-Pivoteau-Rossin ’17; stated informally)

Fix a permutation class C with finitely many simple permutations. Then
the set of trees corresponding to permutations in C can be defined via a
finite system of equations.

Example: the system of equations defining C = Av(132)

C = {•}
⊎
⊕[Cnot⊕, C〈21〉]

⊎
	[Cnot	, C]

Cnot⊕ = {•}
⊎
	[Cnot	, C]

Cnot	 = {•}
⊎
⊕[Cnot⊕, C〈21〉]

C〈21〉 = {•}
⊎
⊕[Cnot⊕

〈21〉 , C〈21〉]

Cnot⊕
〈21〉 = {•}.

C

Cnot⊕

critical series

Cnot	

C〈21〉

Cnot⊕
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On the right: the dependency graph of the system with the classes of
maximal growth rate in gray (called critical classes).
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Main theorem

Theorem (BBFGMP, ’19)

Let C be a family of permutations with a finite analytic specification (e.g. a
permutation class with finitely many simple permutations). Assume that
the dependency graph restricted to critical families is strongly connected
(plus some weak aperiodicity assumption).

essentially linear case If the specification contains no products of critical
families, then a uniform random permutation in the class
converges to an X -permuton with computable parameters.

essentially branching case If the specification contains a product of critical
families, then a uniform random permutation in the class
converges to a Brownian separable permuton with
computable parameters.

Description of the limit permutons and examples in the next few slides. . .
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The X -permuton

Parameter: a quadruple of sum 1

(pleft
+ , pright

+ , pleft
− , pright

− ).

We set a = pleft
+ + pleft

−
and b = pleft

+ + pright
−

(to ensure the uniform marginal condition).

(a, b)mass pleft−

mass pleft+

mass pright−

mass pright+

Note: this is a deterministic permuton.
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The essentially linear case: examples

Av(2413, 3142,
2143, 34512)

Av(231, 21543)
Av(2413, 1243,

2341, 41352, 531642)

Note: in the second (resp. third) case, one (resp. two consecutive)
parameters are 0. Diagonals are also degenerate X -permutons (with 2
opposite or 3 parameters equal to 0).
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The Brownian separable permuton (construction by
Maazoun ’20)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

e is a Brownian excursion and S : LocalMin(e)→ {⊕,	} is a
independent assignment of signs to local minima of e (the probability
to get a ⊕ is p).

V. Féray (CNRS, IECL) Random permutations Groningen, 2022–07 22 / 28



The Brownian separable permuton (construction by
Maazoun ’20)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

σ : [0, 1]→ [0, 1] is the unique Lebesgue preserving function s.t. (x , y)
is an inversion if and only if the sign of min[x ,y ] e is 	.
The Brownian separable permuton is the “graph of the function σ”.
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The Brownian separable permuton (construction by
Maazoun ’20)

Parameter: p ∈ [0, 1]

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

Note: this a random permuton. No concentration phenomenon here.
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The essentially branching case: examples

Av(2413, 3142)
separable permutations

Av(2413, 31452,
41253, 41352, 531246)

Av(231)

The limit in the last case is a degenerate Brownian permuton with p = 1,
that is the diagonal of the square. This convergence to the diagonal (and
much more precise results) was already known.
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A word on the proofs

1 Reminder: enough to prove that, for any τ ,

E
[

õcc(τ,σn)
]
→ E

[
õcc(τ,ν)

]
,

where ν is the targeted limit random permuton.

2 The RHS can be evaluated easily (elementary for X -permuton, using
some results on Brownian excursion for the Brownian one).

3 The LHS can be computed combinatorially:

E[õcc(τ,σn)] =
#{σ ∈ Cn, I ⊂ [n] : patI (σ) = τ}(n

k

)
|Cn|

.

We will estimate that through analytic combinatorics.
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Analytic combinatorics

The strongly connectedness hypothesis ensures that
in the essentially linear case,

C (z) ∼ a
1

1− z
ρ

, implying |Cn| ∼ aρ−n.

in the branching case,

C (z) ∼ a− b
√

1− z
ρ , implying |Cn| ∼

b

2
√
π
n−3/2ρ−n

The difficulty is to estimate

{#{σ ∈ Cn, I ⊂ [n] : patI (σ) = π}}.
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From permutations to trees

Patterns in permutations correspond to “induced subtrees” in their
decomposition tree :

= 24387156

2413

312
= 4123

12

21

21 12

12

Instead of counting permutations with an occurrence of a given pattern, we
count tree with marked leaves inducing a given (decorated) subtree.
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A picture of a combinatorial decomposition

B0:
counted by T

i(∅)
→i0

Bbottom
∅ :

”spine”

Bright
∅ :

ϕ(∅)

ϕ(2)

ψ′(∅)

Bleft
2 :

Bright
2 :

ψ′(1) Bbottom
2 :

Bbottom
1 :

Bleft
1 :

Bright
1 :

Bleft
∅ : T

i(1)
→j(∅)

ψ(2)
ψ′(2)

ϕ(1)

ψ(∅)

ψ(1)

E−i(1)j(1)j′(1)

T ′→j(1)

T ′→j′(1)

∅

1 2

T
i(2)
→j′(∅)

counted by E+
i(∅)j(∅)j′(∅)

T ′→j(2)

T ′→j′(2)

E−i(2)j(2)j′(2)

∅ .
This translate into a formula for the series of a tree with marked leaves
inducing a given subtree and we can study its behaviour at the
singularity. . .
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Thank you for your attention

Uniform Mallows (P(σ) ∝ qinv(σ)) Sorting network,
half way ( c©AHRV ’07)

Uniform random pattern-avoiding permutations
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Extra slide 1: is the strong connectivity condition necessary?

Yes!
Here is a class with no simple permutations and a “double X” limit:

Av(2413, 3142, 3412, 214365, 52143, 32541)

We can treat such examples on a case-by-case basis from their finite
specification, but we have no general theorem!
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Extra slide 2: the intensity of the Brownian permuton

Since the Brownian permuton µp is a random measure, we can consider its
intensity measure Eµp, defined by

(Eµp)(R) = E(µ(R)), for any rectangle R ⊆ [0, 1]2.

Theorem (Maazoun ’20)

The intensity measure Eµp has density w.r.t to Lebesgue measure
fp(x , y) =

∫ min(x ,y)

max(0,x+y−1)

3p2(1− p)2da

2π(a(x − a)(1− x − y + a)(y − a))3/2
(
p2

a + (1−p)2
(x−a) + p2

(1−x−y+a) + (1−p)2
(y−a)

)5/2 .

Concretely, if σn tends to µp, then, for any rectangle R ⊆ [0, 1]2

E
[
#{(i , j) ∈ nR : σ(i) = j}

]
∼ n

∫
(x ,y)∈R

fp(x , y)dxdy .
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Extra slide 2bis: picture of Eµp

density of Eµ.4 density of Eµ.5
For p = .5, this function was found (under a different form) by Pak and
Dokos, in the context of doubly alternating Baxter permutations.
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Extra slide 3: underlying random trees

essentially linear case essential branching case
Av(2413, 1243, 2341, 41352, 531642) Av(2413, 31452, 41253, 41352, 531246)
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