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An updown Markov chain on permutations/graphs

Upstep : duplicate a uniform random element/vertex.

With probability p ∈ (0,1),{
the "twin" elements are in increasing order (permutation case);
the two "twin" vertices are connected with probability p (graph case).

.
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An updown Markov chain on permutations/graphs

one step of
the Markov chain

one step of
the Markov chain

Downstep: delete a uniform random element/vertex

In this talk: scaling limit (in the sense of permutons or graphons) and its
stationary distribution, mixing time (in terms of separation distance).
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Motivations

Inspired from updown chains on partitions, with scaling limit results by
Petrov 2009 and 2013, Borodin–Olshanski 2009, Olshanski 2010, . . . .

The duplication operation is standard in combinatorics literature.
Permutations/graphs obtained this way are known as separable
permutations/cographs.

Local edge replacement in graphs leads to a deterministic limiting
process in the space of graphons (see Garbe–Hladký–Šileikis–Skerman,
2022); here, we show that local vertex replacement leads to a random
diffusion on graphons at the limit.

Large literature on mixing time/separation distances of Markov chains
on combinatorial objects (related to cutoff). Here, we get exact and
asymptotic expressions for the separation distance.

V. Féray (CNRS, IECL) Up-down chains Tours, 2024–10 3 / 21



Motivations

Inspired from updown chains on partitions, with scaling limit results by
Petrov 2009 and 2013, Borodin–Olshanski 2009, Olshanski 2010, . . . .

The duplication operation is standard in combinatorics literature.
Permutations/graphs obtained this way are known as separable
permutations/cographs.

Local edge replacement in graphs leads to a deterministic limiting
process in the space of graphons (see Garbe–Hladký–Šileikis–Skerman,
2022); here, we show that local vertex replacement leads to a random
diffusion on graphons at the limit.

Large literature on mixing time/separation distances of Markov chains
on combinatorial objects (related to cutoff). Here, we get exact and
asymptotic expressions for the separation distance.

V. Féray (CNRS, IECL) Up-down chains Tours, 2024–10 3 / 21



Motivations

Inspired from updown chains on partitions, with scaling limit results by
Petrov 2009 and 2013, Borodin–Olshanski 2009, Olshanski 2010, . . . .

The duplication operation is standard in combinatorics literature.
Permutations/graphs obtained this way are known as separable
permutations/cographs.

Local edge replacement in graphs leads to a deterministic limiting
process in the space of graphons (see Garbe–Hladký–Šileikis–Skerman,
2022); here, we show that local vertex replacement leads to a random
diffusion on graphons at the limit.

Large literature on mixing time/separation distances of Markov chains
on combinatorial objects (related to cutoff). Here, we get exact and
asymptotic expressions for the separation distance.

V. Féray (CNRS, IECL) Up-down chains Tours, 2024–10 3 / 21



Motivations

Inspired from updown chains on partitions, with scaling limit results by
Petrov 2009 and 2013, Borodin–Olshanski 2009, Olshanski 2010, . . . .

The duplication operation is standard in combinatorics literature.
Permutations/graphs obtained this way are known as separable
permutations/cographs.

Local edge replacement in graphs leads to a deterministic limiting
process in the space of graphons (see Garbe–Hladký–Šileikis–Skerman,
2022); here, we show that local vertex replacement leads to a random
diffusion on graphons at the limit.

Large literature on mixing time/separation distances of Markov chains
on combinatorial objects (related to cutoff). Here, we get exact and
asymptotic expressions for the separation distance.

V. Féray (CNRS, IECL) Up-down chains Tours, 2024–10 3 / 21



Simulation (permutation case)

Simulation of the up-down chain on permutations. Here, we take p = 1/2,
n= 1000, and we plot the permutation after m steps, where
m ∈ {0,1,2,3,4,5} ·50000.
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Simulation (graph case)

Simulation of the up-down chain on graphs. Here, we take p = 1/2,
n= 1000, and we plot the adjacency matrix of the graph after m steps,
where m ∈ {0,1,2,3,4,5} ·50000.
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Permutons

A permutation π can be encoded as a probability measure µπ on [0,1]2.

π= 52413= 7→ µπ =

In µπ, each small square has area 1/n2 and weight 1/n.

We have a natural notion of limit for such objects: the weak convergence.
This defines a compact Polish space P .
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Permutons

A permutation π can be encoded as a probability measure µπ on [0,1]2.

π= 52413= 7→ µπ =

In µπ, each small square has area 1/n2 and weight 1/n.

Note: the projection on µπ on each axis is the Lebesgue measure on [0,1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.
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Permutons

A permutation π can be encoded as a probability measure µπ on [0,1]2.

π= 52413= 7→ µπ =

In µπ, each small square has area 1/n2 and weight 1/n.

Definition

A permuton is a probability measure on [0,1]2 with uniform marginals.

Nice feature: permuton convergence is equivalent to the convergence of
substructure densities (here pattern densities);
→ analogy with the well-developed graphon theory.
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Scaling limit (permutation case)

Theorem (F., Rivera-Lopez, ’24+)

Let Xn be the above defined Markov chains on permutations of size n,
starting at σn,0. Assume that σn,0 converges to some permuton µ.
Then there exists a continuous Feller diffusion F =Fµ in the space P of
permutons with initial distribution µ such that(

Xn(bn2tc))t≥0 =⇒
(
F (t)

)
t≥0,

in distribution in the Skorokhod space D([0,+∞),P ).

+ explicit description of the generator on pattern densities.
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Stationary distribution

Proposition (F., Rivera-Lopez, ’24+)

The limiting process F is ergodic and its stationary distribution is the
recursive separable permuton, i.e. the unique random permuton µp which
satisfies

µp
law=

{
(U ·µp)⊕ ((1−U) ·µ′

p) with probability p;
(U ·µp)ª ((1−U) ·µ′

p) with probability 1−p.
,

where µ′
p is an independent copy of µp

U · µp

⊕ - case

U · µp

(1− U) · µ′
p

(1− U) · µ′
p

	 - case
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Convergence to the stationary distribution - simulation

Left: Simulation of the stationary distribution (n= 1000), the colored
square emphasizes the recursive structure of the limit.
Right: Simulation of the up-down chain on permutations after 250000
steps (n= 1000, p = 1/2).
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Separation distance

Standard question for Markov chain: how quick does it converge to the
stationary distribution?

We use the separation distance (Aldous–Diaconis, ’87)

∆n(m)= max
x ,y∈Sn

Mn(y) 6=0

1− Px
(
Xn(m)= y

)
Mn(y)

,

= sup
x∈Sn,f ∈C(Sn,R∗+)

(
1− Ex(f (Xn(m)))∫

Sn
fdMn

)

where Mn is the stationary distribution of the chain on Sn.

Continuous analog:

∆F (t)= sup
µ∈P ,f ∈C(P ,R∗+)

1− Eµ(f (Fµ(t)))∫
Sn
f dµp

.
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Asymptotics of the separation distance

Theorem (F., Rivera-Lopez, ’24+)

Let ∆n(m) be the separation distance for the up-down Markov chain on
permutations of size n, and ∆F (t) be the one of the limiting process F .
We have, for any t > 0,

lim∆n(bn2tc)=∆F (t)=
+∞∑
j=1

(−1)j−1(2j +1)e−tj(j+1).

Asymptotics:
as t →+∞, ∆F (t)∼ 3e−2t ;
as t = 0, not so clear a priori. . .
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Jacobi identity and modular form

A miracle: using an identity of Jacobi

+∞∑
j=0

(−1)j(2j +1)q(
j+1
2 ) =

(+∞∏
i=1

(1−qi )

)3

,

we can rewrite ∆F (t) as

∆F (t)= 1−
∞∏
j=1

(1−e−2jt)3.

But, defining η(τ) := q1/24 ∏+∞
i=1(1−qi ) (with q = e2π iτ), the function η is a

modular form and satisfies η(−1/τ)=p−iτη(τ).

Hence
1−∆F (t)= exp

(
−π

2

4t
+ t

4

)(π
t

)3/2 (
1−∆F

(
π2

t

))
and for small t, we have ∆F (t)= 1−exp

(− π2

4t
)(

π
t

)3/2
(1+O(e−2π2/t)).
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Plot of the limiting separation distance

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Plot of the function ∆F (t). The Markov chain does not exhibit a
separation cutoff (which would correspond to ∆F (t)= 1[t ≤ t0]), but the
curve is very flat near t = 0 and t =+∞.
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Transition

Some proof elements
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Key identity: the commutation relation
Let p↑n ∈M (Sn×Sn+1) be the up transition matrix, i.e. p↑n(τ,σ) is the
probability to find σ when duplicating a uniform random point in τ.

Let p↓n+1 ∈M (Sn+1×Sn) be the down transition matrix, i.e. p↓n+1(σ,τ)
is the probability to find τ when deleting a uniform random point in σ.

Proposition
For any n≥ 2, we have

p↑np
↓
n+1 =

n−1
n+1

p↓np
↑
n−1+

2
n+1

IdSn
,

Our results (scaling limit and computation of the separation distance) hold
generally for up-down chains satisfying this kind of commutation relation.
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Key identity: the commutation relation
Let p↑n ∈M (Sn×Sn+1) be the up transition matrix, i.e. p↑n(τ,σ) is the
probability to find σ when duplicating a uniform random point in τ.

Let p↓n+1 ∈M (Sn+1×Sn) be the down transition matrix, i.e. p↓n+1(σ,τ)
is the probability to find τ when deleting a uniform random point in σ.

Proposition
For any n≥ 2, we have

p↑np
↓
n+1 =

n−1
n+1

p↓np
↑
n−1+

2
n+1

IdSn
,

Corollary (follows from Fulman, ’09)

The transition matrix pn = p↑np
↓
n+1 of the up-down chain has eigenvalue

1− i(i−1)
n(n+1) , with multiplicity |Si |− |Si−1|.

(for 1≤ i ≤ n, with the convention |S0| = 0.)
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Density functions and right eigenvectors of pn

For τ in Sk and σ in Sn, with k ≤ n

dτ(σ)= (p↓n . . .p↓
k+1)(σ,τ).

In words, dτ(σ) is the probability to obtain τ when deleting n−k uniform
random elements in σ, or the “proportion of τ” in σ.

→ dτ is a central functional in permuton theory; it can be extended to a
continuous function on P and Span(dτ) is dense subalgebra of C (P ).

Proposition (F., Rivera-Lopez, ’24+)
Define, for τ in Sk ,

hτ =
∑
j≤k

[(
k−1∏
i=j

(−1)j−i i(i +1)
k(k −1)− i(i −1)

) ∑
π∈Sj

(p↑j . . .p↑
k−1)(π,τ)dπ

]
.

Then, seeing hτ as a vector in CSn

pnhτ =
(
1− k(k −1)

n(n+1)

)
hτ.
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Scaling limit

Recall that pnhτ =
(
1− k(k−1)

n(n+1)

)
hτ, for τ ∈ Sk .

Hence pbtn
2c

n hτ = e−tk(k−1)(1+o(1))hτ.

Since Span(hτ)= Span(dτ) is dense in C (P ), this implies (see, e.g.,
Ethier–Kurtz ’05) that

Xn(btn2c)→ F (t),

where F (t) has a transition semi-group T (t) defined by

T (t)hτ := e−tk(k−1)hτ, for τ ∈ Sk .

Generator A with domain Span(dτ): for τ in Sk ,

Ahτ =−k(k −1)hτ;

Adτ =−k(k −1)
(
dτ−

∑
π∈Sk−1

dπp
↑
k−1(π,τ)

)
.
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And the separation distance? (inspired from Fulman ’07,’09)

We want to compute ∆n(m)=maxx ,y∈Sn
1− Px

(
Xn(m)=y

)
Mn(y)

.

Proposition

∆n(m)=
n−1∑
i=1

λmi

∏
j 6=i

1−λj

λi −λj
,

where λ1, . . . ,λn−1 are the non-trivial distinct eigenvalues of pn.

Key point: there are elements x0 = id and y0 = n(n−1) · · ·1, whose distance
in the chain is exactly the number of distinct eigenvalues of pn, minus one.

first step prove that the maximum is reached for x0 and y0 (use the
commutation relation).

second step Compute Px
(
Xn(m)= y

)= pmn (x0,y0) (next slide).
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And the separation distance? (inspired from Fulman ’07,’09)
Set λ0 = 1 (λ1, . . . ,λn−1 are the other eigenvalues of pn). The polynomials

Zm and
n−1∑
i=0

λmi

∏
j 6=i

Z −λj

λi −λj

coincide on {λ0, . . .λn−1}. Hence, since pn is diagonalizable,

pmn =
n−1∑
i=0

λmi

∏
j 6=i

pn−λj

λi −λj
.

But pkn (x0,y0)= 0 for k < n−1, thus

pmn (x0,y0)=
(
n−1∑
i=0

λmi

∏
j 6=i

1
λi −λj

)
pn−1
n (x0,y0).

Taking m to +∞ gives

Mn(y0)=
(∏
j 6=0

1
1−λj

)
pn−1
n (x0,y0).

Conclusion:
pmn (x0,y0)

Mn(y0)
= 1+

n−1∑
i=1

λmi

∏
j 6=i

1−λj

λi −λj
.
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)
pn−1
n (x0,y0).

Conclusion:
pmn (x0,y0)

Mn(y0)
= 1+

n−1∑
i=1

λmi

∏
j 6=i

1−λj

λi −λj
.
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And the separation distance? (inspired from Fulman ’07,’09)
Set λ0 = 1 (λ1, . . . ,λn−1 are the other eigenvalues of pn). The polynomials
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i=0

λmi

∏
j 6=i

Z −λj

λi −λj
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And the separation distance? (inspired from Fulman ’07,’09)

Since λi = 1− i(i+1)
n(n+1) is explicit, we obtain an explicit expression for ∆n(m):

∆n(m)=
n−1∑
j=1

(−1)j−1(2j +1)
(n−1)!n!

(n−1− j)!(n+ j)!

(
1− j(j +1)

n(n+1)

)m
.

Finding the asymptotics for large n and m= btn2c is straightforward:

lim
n→+∞ ∆n(btn2c)=

+∞∑
j=1

(−1)j−1(2j +1)etj(j+1).
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Thank you for your attention
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