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Young diagrams and tableaux

W %&2&

Young diagram Standard ) Young tableau

Young diagram: stack of boxes in the upper quarter-plane (encodes an
integer partition).

Young tableau: filling of a Young diagram with integers from 1 to n,
increasing upwards (encodes a growing sequence of tableaux).
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Young diagrams and tableaux

W %&3&

Young diagram Sfd,lldd,rd ) Young tableau
Standard object in algebraic combinatorics (symmetric group

representation, symmetric functions, . ..)
— yields tractable models of random walks and random surfaces.
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Young diagrams and tableaux

ool
&S

Young diagram (Standard) Young tableau

Standard object in algebraic combinatorics (symmetric group
representation, symmetric functions, . ..)
— yields tractable models of random walks and random surfaces.

First part: survey some connections with random matrices/random walks
Second part: I'll focus on some recent work with Borga—Boutillier—Méliot
on random tableaux.
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A well-known connection with random matrices: edge

asymptotics

Plancherel measure on diagrams

For a partition A, we take

dim(A): number of tableaux of shape A.

V. Féray (CNRS, IECL)

Random tableaux

GUE model of random matrices

Hermitian matrix with independent
complex Gaussian entries above the
diagonal and real Gaussian entries on
the diagonal.
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A well-known connection with random matrices: edge

asymptotics

Plancherel measure on diagrams

For a partition A, we take

n!

dim(A): number of tableaux of shape A.

GUE model of random matrices

a1,1 41,2

ai,2
an,n

Hermitian matrix with independent
complex Gaussian entries above the
diagonal and real Gaussian entries on
the diagonal.

Theorem (Borodin—Okounkov—Olshanski, Okounkov, Johansson, ~'00)

Suitably renormalized, for all k, the first rows (A1,A2,...,Ak) of a random
Plancherel Young diagram have the same fluctuations as the largest
eigenvalues of a GUE matrix (they both converge to the "Airy ensemble”).
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Random tableaux
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Other analogies between random diagrams and random
matrices

o Fluctuation of linear statistics (X7, P(A;) for GUE, X ; P(A;—1i) for
diagrams, where P is a polynomial) are described by similar Gaussian
processes (Johansson '98, Kerov—Ivanov—Olshanski '03).
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Other analogies between random diagrams and random
matrices

o Fluctuation of linear statistics (X7, P(A;) for GUE, X ; P(A;—1i) for
diagrams, where P is a polynomial) are described by similar Gaussian
processes (Johansson '98, Kerov—Ivanov—Olshanski '03).

@ Bulk fluctuations are discribed by the sine (resp. discrete sine)
processes (Dyson '70, Borodin—Okounkov—Olshanski '00).
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Other analogies between random diagrams and random
matrices

o Fluctuation of linear statistics (X7, P(A;) for GUE, X ; P(A;—1i) for
diagrams, where P is a polynomial) are described by similar Gaussian
processes (Johansson '98, Kerov—Ivanov—Olshanski '03).

@ Bulk fluctuations are discribed by the sine (resp. discrete sine)
processes (Dyson '70, Borodin—Okounkov—Olshanski '00).

e "Fixed dimension version" (next slides).
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Fixed dimension

Fix an integer d =1 and consider a Plancherel random Young diagram
conditioned to have at most d rows.

Permutation interpretation: we look at the RS shape of a uniform random
permutation without decreasing subsequence of length d+1.
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Fixed dimension

Fix an integer d =1 and consider a Plancherel random Young diagram
conditioned to have at most d rows.

Permutation interpretation: we look at the RS shape of a uniform random
permutation without decreasing subsequence of length d+1.

Theorem (Sniady, '06)

Let Ap=(An1,...,And) be a Plancherel random Young diagram
conditioned to have at most d rows. Then

d n
\/; (An,i - 3)

1<i=d
converges in distribution to the eigenvalues of a traceless GUE d x d
random matrix.
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Introducing dynamics — the Plancherel growth process

Let A, .. A(M be a Markov chain of Young diagrams with |)L(k)| =k

and P /1(” =D = ) = nd(;f”nf@)
R, %0 & & &
S A
%%
//x s
R

BN Q/'
Lemma
For each n, A\ is Plancherel distributed. J

We call the sequence (A1), ...,A(") a Plancherel random tableau.
Random tableaux Poitiers, 2025—-11 6/33



Fixed dimension, dynamic version

Fix an integer d =1 and consider a Plancherel random tableau
(AM),...,A(M) conditioned to have at most d rows.

Permutation interpretation: we look at the RS P-tableau of a uniform
random permutation without decreasing subsequence of length d+1.
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Fixed dimension, dynamic version
Fix an integer d =1 and consider a Plancherel random tableau

(AM),...,A(M) conditioned to have at most d rows.

Permutation interpretation: we look at the RS P-tableau of a uniform
random permutation without decreasing subsequence of length d+1.

d . (tn) nt
\/; (/1[1,[ _7)

1<i<d,0<t<1
converges to a traceless d-dimensional Dyson Brownian motion.

Theorem (Rizzolo, '19)
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Fixed dimension, dynamic version

Fix an integer d =1 and consider a Plancherel random tableau
(AM),...,A(M) conditioned to have at most d rows.

Permutation interpretation: we look at the RS P-tableau of a uniform
random permutation without decreasing subsequence of length d+1.

Theorem (Rizzolo, '19)

d . (tn) nt
\/; (/1[1,[ - F)
1<i=<d,0<t<l

converges to a traceless d-dimensional Dyson Brownian motion.

Dyson Brownian motion
{eigenvalues of GUE dynamic matrices (entries are Brownian motions)

universal limit object for random walks in the cone {x; =--- = x4}
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p-deformation (matrix side)

The eigenvalues of GUE random matrices have the following density
w.r.t. Lebesgue measure on {x; =x, =--- = x4}:

d i<j
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p-deformation (matrix side)

The eigenvalues of GUE random matrices have the following density
w.r.t. Lebesgue measure on {x3 = xp = -+ = X4}:

S OEr oD (- x.

d i<j

We define GSE ensemble as having the following density w.r.t. Lebesgue
measure on {x3 = xp = -+ = X4}:

1 B 2 2
-5 (xg++x9) VAV
e 2V1 d Xji—X;)".
Ca(B) ,13'( 9)

B =1,4: these are eigenvalues of natural models of matrices with
real /quaternionic entries.

— huge literature on this model. ..
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p-deformation (partition side)

The usual Plancherel mesure is defined by

dim(1)2  n!
=T
A

where

V. Féray (CNRS, IECL) Random tableaux Poitiers, 2025-11 9/33



|
p-deformation (partition side)

The Jack-Plancherel mesure is defined by
n

a n:
PA) = @

A A
where
W= T (a(ti—j)+(A-1)+1)
(i)
W= T1 (a(di=j)+(1;~i)+a)
(i)
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|
p-deformation (partition side)

The Jack-Plancherel mesure is defined by

an!

where
W= T1 (a(ti—j)+(A-1)+1)
()€
W= T1 (a(di-j)+(X;~i)+a)
(i)en

Note: P(A) = [Jia)]pf, where J/ga) is the (integral) Jack symmetric
function indexed by A. This allows in particular to define a Jack-Plancherel
growth process.
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Analogies random matrices - random partitions (general f)

e Edge asymptotics of GBE and Jack-Plancherel diagrams are both
described by the S-Tracy-Widom distributions (Valké—Virag, '09,
Guionnet-Huang '19).

@ Fluctuations of linear statistics are non-centered Gaussian processes
(Dimitriu — Edelman, '06, F. — Dotega, '16).

e Fixed dimension analogies (next slides).
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A B version of Sniady's result

Theorem (Matsumoto, '08)

Let Ag,a) = (/151 1), A(a)) be a Jack-Plancherel random Young diagram
conditioned to have at most d rows. Then

ad () N
( 7(%"‘3))
1l<i=<d

converges to a d-dimensional traceless GBE ensemble, where f=2/a.
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A S8 version of Sniady's result

Theorem (Matsumoto, '08)

Let /12“) = (/1( @) )L(a)) be a Jack-Plancherel random Young diagram

nl’*
conditioned to have at most d rows. Then

ad () N
( 7(%"‘3))
1l<i=<d

converges to a d-dimensional traceless GBE ensemble, where f=2/a.

Permutation interpertation: for a =2, )L(a) has the same distribution as the
LIS of a uniform random fixed-point free |nvo|ut|on conditionned to have
no decreasing subsequence of length > 2d.
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A dynamic B version?

Conjecture

Let /15,“)’(1),...,/12“)’(") be a Jack—Plancherel random Young tableau
conditioned to have at most d rows. Then

ad @) _ %n)

n n,i
1<i<d,0<t<l

converges to a to a d-dimensional traceless $-Dyson Brownian motion.

Take away message: algebra provides explicit models with interesting
asymptotic behaviour!
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Interlude
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Second part: random tableau of fixed shape

Our model: fix a (large) Young diagram A (on the left), and take a uniform
random Young tableau T of shape A (on the right).

Also studied by Biane, Pittel, Romik, Angel, Holroyd, Virag, Gorin,
Rahman, Linusson, Potka, Sulzgruber, Sun, Banderier, Marchal, Wallner,
Sniady, Matsumoto, Maslanka, Gordenko, Xu, Prause, Raposo, ...
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Motivations

@ Bijection with other models: constrained random permutations (RSK
bijection), random sorting networks (Edelman—Greene bijection).

@ Asymptotic representation theory: random tableaux encode some
asymptotic information on restrictions of representations of large

symmetric groups.

o Link with the well-studied lozenge tiling models (Young tableaux are in
some sense a limit case of lozenge tilings);

@ Tractable model of random linear extensions of 2-dimensional posets.
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Simulation (first example)

We consider the n-th dilatation n-A°
of the following diagram

i.e. we replace each box by a nxn
square of boxes.
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Simulation (first example)

We consider the n-th dilatation n-A° | A uniform tableau Ty of shape n-A°;
of the following diagram

i.e. we replace each box by a nxn
square of boxes.

Here, n=100 so the tableau Tp has NV =130000 boxes. There seems to be
a smooth limit surface.
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Simulation (second example)

This time, take A° to be A uniform tableau Ty of shape n-A°:

Ws
thickness: 3 boxes -
103 boxes

length:107 boxes
Here, n=6 so the diagram/tableau has N = 356400 boxes.

Poitiers, 2025-11 17 /33
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Simulation (second example, with a zoom)

There still seems to be a limiting surface, but this time it is discontinuous!
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Results (informally)

@ Previous contributions (Biane '03, Sun '18): convergence to a limiting
surface with some implicit description (via Markov—Krein
correspondence and free compression or via a variational principle).

@ Our results: a more explicit description of the limit surface in the
multirectangular case (dilatation of a fixed diagram 1°) +
characterization of the diagrams A° leading to discontinuous limit
surfaces.
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Height function

Notation: if T is a tableau of size N, we let

@ T(x,y): content of the box with coordinates (x,y) in T;

Box coordinates

V. Féray (CNRS, IECL)

33
30 32
27 29 23

11 10

T(2,3)="7

Random tableaux

Tableau function
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Height function

Notation: if T is a tableau of size N, we let

@ T(x,y): content of the box with coordinates (x,y) in T;

o Hr(x,t)=#{y: T(x,y) < Nt}: number of entries on the vertical line
x smaller than Nt.

Box coordinates Tableau and height functions

(y— T(x,y) and t — Hy(x,t) are roughly inverses of each other.)
Random tableaux Poitiers, 2025-11 20/33
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Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let A0 be a fixed Young diagram. For n=1, we let Ty be a uniform
random Young tableau of shape Ay :=n-A°. Then there exists a
deterministic function H* such that

%HTN([X\/NJ,I')

in probability, uniformly on (x,t).

H>(x, t),

N—+o0

V. Féray (CNRS, IECL) Random tableaux
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Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let A0 be a fixed Young diagram. For n=1, we let Ty be a uniform
random Young tableau of shape Ay :=n-A°. Then there exists a
deterministic function H* such that

%HTN([X\/NJ,I')

in probability, uniformly on (x,t).

H>(x, t),

N—+o0

Question: How to compute H*®?
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The critical equation

We encode A° by its interlacing coor-
dinates ag < by < a1 <---<bm<am:

| |
d(] Bl dl bz
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The critical equation

We encode A° by its interlacing coor- | Definition: the critical equation
dinates ag < by <aj <---<bm<am: | For parameters (x,t), we consider
the polynomial equation

m

% : UTT(x-nbi+U)
N i=1

=(1-1) lrj)(x—na,-+ U),

where n = /|A0].

ol o _____0
5
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V. Féray (CNRS, IECL)

The critical equation

We encode A° by its interlacing coor-
dinates ag < by < a1 <---<bm<am:

Definition: the critical equation
For parameters (x,t), we consider
the polynomial equation

m

) H(X—T)b,'+U)

=1

=(1-1) lrj)(x—na,-+ U),

where n = /|A0].

Lemma
The critical equation has at least m—1 real roots. J

We denote Uc(x,t) its complex root with positive imaginary part, if it
exists (in this case, we say that (x,t) is in the “liquid region”).

Random tableaux

Poitiers, 2025-11 22/33
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Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, '23)

]
Hm(X,t)=%f %(SX’S)CIS
0 —

Convention: Im Uc(x,s) =0 if the critical equation has only real root
("frozen region").

V. Féray (CNRS, IECL) Random tableaux
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Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, '23)

]
Hm(X,t)=%f %(SX’S)CIS
0 —

Convention: Im Uc(x,s) =0 if the critical equation has only real root
("frozen region").

Example: square shape tableaux (Romik—Pittel, '07), ap=-1,b1 =0,a; =1
The critical equation U(x+ U)=(1-t)(x+1+ U)(x—1+U) is a second
degree polynomial equation, and we get

1 ft Vis—4s2 - x?
0

HOO ,t = — )
o (01) 25 —2s2 s

n
with the convention that \/y =0 if y <0.

v
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The heart example

existence of nonreal roots

130 IO 5 [ 5 0 T30
xr

the Young diagram A° boundary of the liquid region

a realization of Ty its height function Hr,
Random tableaux Poitiers, 2025-11 24 /33



The pipe example

(

thickness: 3 boxes
length:107 boxes

93 boxes

103 boxes

the Young diagram A°

a realization of Ty
V. Féray (CNRS, IECL)

Random tableaux

08

0.6|

existence of nonreal roots

20 15 0 05 00 05 0
xT

boundary of the liquid region

its height function Hr,

Poitiers, 2025-11
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Why is there a discontinuity in the pipe example?

liquid phases:
o= >0

frozen phases:

Zoom on the boundary of the liquid
region (blue line x = xg = —0.9)

V. Féray (CNRS, IECL) Random tableaux

Poitiers, 2025-11
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Why is there a discontinuity in the pipe example?

liquid phases:
o= 5 0

frozen phases:

Zoom on the boundary of the liquid
region (blue line x = xg = —0.9)

V. Féray (CNRS, IECL)

Random tableaux

H>(z0,t)

liquid phases—¢

]

frozen phases

\/ L
Schematic representation of
the function t — H*®(xo, t)
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Why is there a discontinuity in the pipe example?

liquid phases:
o= 5 0

frozen phases:

Zoom on the boundary of the liquid
region (blue line x = xg = —0.9)

V. Féray (CNRS, IECL)

Random tableaux

H>(z0,t)

liquid phases—¢ /

frozen phases

\/ L
Schematic representation of

the function t — H*®(xo, t)
A

—
frozen pha?

liquid phases

L >
Schematic representation of
the function y — T%(xo,y)
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When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x> = y3).

1
‘
K 08

0.4

0.2

00l 0.0
13 0 5 [ 5 0 T30 20 15 10 05 00 05 0

(In general, there are m—1 cusps, where m is the number of distinct parts
in /10.)
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When is there a discontinuity?
There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x> = y3).

With some computation, we get

Theorem (Borga, Boutillier, F., Méliot, '23)

The limiting surface T is continuous if and only if the interlacing
coordinates ag < by < a1 < -+ < by, < amm of AV satisfy

m 1 m 1

Yy =) , forall ip=1,...,m—1.
=0 dic—ai  [mdi,—bi

i#io

In particular, for m> 1, the limit surfaces are generically discontinuous!
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Proof strategy 1 — determinantal point processes

Notation:

E: locally compact Polish space
u: reference measure on E

K: measurable function E? — C.
X: simple point process on E

Definition (determinantal point process)
X is a determinantal point process on E with kernel K if it has a joint
intensity with respect to u given by

Pn(x1,...,Xp) = det[K(x;, X;)

]1si,jsn’

for every n=1 and distinct xi,...,x, € E.

y

Used a lot in integrable probability theory/statistical physics since 90's, but
also in random matrix theory, statistics, ...
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Proof strategy 2 — tableaux and bead configurations
Definition (Poissonized tableaux)

A Poissonized tableau of shape A is an upward increasing filling of A with
real numbers in [0, 1].
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Proof strategy 2 — tableaux and bead configurations

Definition (Poissonized tableaux)

A Poissonized tableau of shape A is an upward increasing filling of A with
real numbers in [0, 1].

With a Poissonized tableau T, we associate a bead configuration

MT;={(X, T(x,y)),(x,y)ea} c zx[0,1].

t=1 ‘ ®
®
P O O T O
®
[ ]
D e S L e T T T T A

Note: Hr(x,t) is the number of beads in {x} x [0, t].
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Proof strategy 3 — Gorin—Rahman theorem
Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of fixed shape A. Then its

associated bead process Mt is a determinantal point process on Z x [0,1]
with correlation kernel

o
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Proof strategy 3 — Gorin—Rahman theorem
Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of fixed shape A. Then its

associated bead process Mt is a determinantal point process on Z x [0,1]
with correlation kernel
1
K ) t y y t: =7 5
A((x1, 11), (2, 12)) i)
7{ f Fa(z) T(w—x1+1) (1-t)* 2 (1— )" w+a-?
v, Fa(w) T(z—x2+1) z—w
where Fj(u) =T(u+1)TI, u_“;i’;r,. and the double contour integral runs
over counterclockwise paths y,, and y, such that

dwdz,

@ vy, is inside (resp. outside) y, if t1 =ty (resp. t1 < tp);

® yy and y, contain all the integers in [-€(A),x1 —1] and in [x2, 11 — 1]
respectively;

@ the ratio ﬁ remains uniformly bounded.

v
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Proof strategy 4 — Rewriting the kernel

Consequence of Gorin—Rahman's formula:

6l r (1)) = [ K(00), (x5
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Proof strategy 4 — Rewriting the kernel

Consequence of Gorin—Rahman's formula:
t
E[HT (x,t)] :f K((x,s),(x,s))ds
0
To compute IimN_.+oo\%N Hr, ([X\/Nj,t), we look for a limit of

\/—]-NK((I_X\/NJ,S),(LX\/NJ,S)).
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Proof strategy 4 — Rewriting the kernel
Consequence of Gorin—Rahman's formula:
6l r (1)) = [ K(00), (x5
To compute IimN_.+OO\%N Hr, ([X\/Nj,t), we look for a limit of

\/—]-NK((I_X\/NJ,S),(LX\/NJ,S)).

Via Stirling approximation and standard calculus, we get

1 1
K (VN 5), (VN 9) =~

f VN(S(W)-5(2)) M dwdz,
YzJYw W=z

where
5(U)=g(U)-Ulog(1-t0) - X 8(x0—naj+U)+ L g(xo—nbj+U)
with g(U) = Ulog(U) and some function h.
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Proof strategy 5 — Steepest descent analysis

Reminder: we are interested in

?g YN(s(W)-s(2)) MW, Z) oo

y2Jyw W-z
Idea: deform yz and yu such that Re(S(W)) <Re(S(Z)) on the new
contours.

Schematic representation of the integration contours before and after
transformation: in the white (resp. yellow) regions, we have
Re(5(Z)) > Re(S(Uc)) (resp. Re(5(Z)) <Re(S(U.))).
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Proof strategy 5 — Steepest descent analysis

Reminder: we are interested in

?g YN(s(W)-s(2)) MW, Z) oo

y2Jyw W-z
Idea: deform yz and yu such that Re(S(W)) <Re(S(Z)) on the new
contours.

The point U on the above picture should satisfy S’(U.) =0, which is
exactly the critical equation! (So the above picture is valid in the liquid
region only.)

Random tableaux
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Proof strategy 5 — Steepest descent analysis

Reminder: we are interested in

y§ YN(s(W)-s(2)) KW, Z) oo

[ wW-z
Idea: deform yz and yu such that Re(S(W)) <Re(S(Z)) on the new
contours.

After change of contour, the integral tends to 0. The dominant term
asymptotically is the residue term for the pole W —Z, which is an integral
from U, to U..
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Thanks for listening!

Commercials:
1. LOUCCOUM Research School (Large Objects Under Combinatorial
Constraints and Outside Uniform Model) at CIRM, June 8-12, 2026.

Mini-courses:

e Jean-Francois Marckert (Bordeaux): Stochastic geometry with
combinatorial glasses;

@ Sumit Mukherjee (Columbia): Permutons in Statistics;
e Fiona Skerman (Upsalla): Learning on random graphs,

and long talks by Eva-Maria Heinzl and Lucas Teyssier.
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