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Young diagrams and tableaux

1
2

4
6
10

8
5

3
7

9

Young diagram (Standard) Young tableau

Young diagram: stack of boxes in the upper quarter-plane (encodes an
integer partition).

Young tableau: filling of a Young diagram with integers from 1 to n,
increasing upwards (encodes a growing sequence of tableaux).

First part: survey some connections with random matrices/random walks
Second part: I’ll focus on some recent work with Borga–Boutillier–Méliot
on random tableaux.
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Standard object in algebraic combinatorics (symmetric group
representation, symmetric functions, . . . )
→ yields tractable models of random walks and random surfaces.
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A well-known connection with random matrices: edge
asymptotics

Plancherel measure on diagrams

For a partition λ, we take

P(λ)= dim(λ)2

n!

dim(λ): number of tableaux of shape λ.

GUE model of random matrices
a1,1 a1,2 · · ·
a1,2

. . .
...

... · · · an,n


Hermitian matrix with independent
complex Gaussian entries above the
diagonal and real Gaussian entries on
the diagonal.

Theorem (Borodin–Okounkov–Olshanski, Okounkov, Johansson, ∼’00)
Suitably renormalized, for all k , the first rows (λ1,λ2, . . . ,λk) of a random
Plancherel Young diagram have the same fluctuations as the largest
eigenvalues of a GUE matrix (they both converge to the “Airy ensemble”).
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Other analogies between random diagrams and random
matrices

Fluctuation of linear statistics (
∑n

i=1P(λi ) for GUE,
∑n

i=1P(λi − i) for
diagrams, where P is a polynomial) are described by similar Gaussian
processes (Johansson ’98, Kerov–Ivanov–Olshanski ’03).

Bulk fluctuations are discribed by the sine (resp. discrete sine)
processes (Dyson ’70, Borodin–Okounkov–Olshanski ’00).

"Fixed dimension version" (next slides).
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Fixed dimension

Fix an integer d ≥ 1 and consider a Plancherel random Young diagram
conditioned to have at most d rows.

Permutation interpretation: we look at the RS shape of a uniform random
permutation without decreasing subsequence of length d+1.

Theorem (Śniady, ’06)

Let λn = (λn,1, . . . ,λn,d ) be a Plancherel random Young diagram
conditioned to have at most d rows. Then√

d

n
(λn,i −

n

d
)


1≤i≤d

converges in distribution to the eigenvalues of a traceless GUE d ×d
random matrix.
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Introducing dynamics – the Plancherel growth process

Let λ(1), . . . , λ(n) be a Markov chain of Young diagrams with
∣∣λ(k)∣∣= k

and P
(
λ(n) =λ∣∣λ(n−1) =µ)= dim(λ)

n dim(µ) .

1/2

1/3

1/4 3/4
3/8

2/3

1/4

1/2

1/3

1/43/4
3/8

2/3

Lemma

For each n, λ(n) is Plancherel distributed.

We call the sequence (λ(1), . . . ,λ(n)) a Plancherel random tableau.
V. Féray (CNRS, IECL) Random tableaux Poitiers, 2025–11 6 / 33



Fixed dimension, dynamic version

Fix an integer d ≥ 1 and consider a Plancherel random tableau
(λ(1), . . . ,λ(n)) conditioned to have at most d rows.

Permutation interpretation: we look at the RS P-tableau of a uniform
random permutation without decreasing subsequence of length d+1.

Theorem (Rizzolo, ’19)√
d

n

(
λ
(tn)
n,i − nt

d

)
1≤i≤d ,0≤t≤1

converges to a traceless d-dimensional Dyson Brownian motion.

Dyson Brownian motion{
eigenvalues of GUE dynamic matrices (entries are Brownian motions)
universal limit object for random walks in the cone {x1 ≥ ·· · ≥ xd }
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β-deformation (matrix side)

The eigenvalues of GUE random matrices have the following density
w.r.t. Lebesgue measure on {x1 ≥ x2 ≥ ·· · ≥ xd }:

1
Cd

e−(x
2
1+···+x2d )

∏
i<j

(xi −xj)
2.

We define GβE ensemble as having the following density w.r.t. Lebesgue
measure on {x1 ≥ x2 ≥ ·· · ≥ xd }:

1
Cd (β)

e−
β
2 (x21+···+x2d )

∏
i<j

(xi −xj)
β.

β= 1,4: these are eigenvalues of natural models of matrices with
real/quaternionic entries.

→ huge literature on this model. . .
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β-deformation (partition side)

The usual Plancherel mesure is defined by

P(λ)= dim(λ)2

n!
= n!

h2
λ

,

where
hλ =

∏
(i ,j)∈λ

(
(λi − j)+ (λ′

j − i)+1
)
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β-deformation (partition side)

The Jack-Plancherel mesure is defined by

P(λ)= αnn!

h
(α)
λ

h
′(α)
λ

,

where
h
(α)
λ

= ∏
(i ,j)∈λ

(
α(λi − j)+ (λ′

j − i)+1
)

h
′(α)
λ

= ∏
(i ,j)∈λ

(
α(λi − j)+ (λ′

j − i)+α)
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β-deformation (partition side)

The Jack-Plancherel mesure is defined by

P(λ)= αnn!

h
(α)
λ

h
′(α)
λ

,

where

h
(α)
λ

= ∏
(i ,j)∈λ

(
α(λi − j)+ (λ′

j − i)+1
)

h
′(α)
λ

= ∏
(i ,j)∈λ

(
α(λi − j)+ (λ′

j − i)+α)
Note: P(λ)= [J

(α)
λ

]pn1 , where J
(α)
λ

is the (integral) Jack symmetric
function indexed by λ. This allows in particular to define a Jack-Plancherel
growth process.
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Analogies random matrices - random partitions (general β)

Edge asymptotics of GβE and Jack-Plancherel diagrams are both
described by the β-Tracy–Widom distributions (Valkó–Virág, ’09,
Guionnet–Huang ’19).

Fluctuations of linear statistics are non-centered Gaussian processes
(Dimitriu – Edelman, ’06, F. – Dołęga, ’16).

Fixed dimension analogies (next slides).
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A β version of Śniady’s result

Theorem (Matsumoto, ’08)

Let λ(α)n = (λ
(α)
n,1 , . . . ,λ

(α)
n,d ) be a Jack-Plancherel random Young diagram

conditioned to have at most d rows. Then√
αd

n
(λ

(α)
n,i −

n

d
)


1≤i≤d

converges to a d-dimensional traceless GβE ensemble, where β= 2/α.

Permutation interpertation: for α= 2, λ(α)n,1 has the same distribution as the
LIS of a uniform random fixed-point free involution conditionned to have
no decreasing subsequence of length > 2d .
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A dynamic β version?

Conjecture

Let λ(α),(1)
n , . . . ,λ

(α),(n)
n be a Jack–Plancherel random Young tableau

conditioned to have at most d rows. Then√
αd

n
(λ

(α),(tn)
n,i − tn

d
)


1≤i≤d ,0≤t≤1

converges to a to a d-dimensional traceless β-Dyson Brownian motion.

Take away message: algebra provides explicit models with interesting
asymptotic behaviour!
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Interlude

V. Féray (CNRS, IECL) Random tableaux Poitiers, 2025–11 13 / 33



Second part: random tableau of fixed shape

Our model: fix a (large) Young diagram λ (on the left), and take a uniform
random Young tableau T of shape λ (on the right).

Also studied by Biane, Pittel, Romik, Angel, Holroyd, Virag, Gorin,
Rahman, Linusson, Potka, Sulzgruber, Sun, Banderier, Marchal, Wallner,
Śniady, Matsumoto, Maślanka, Gordenko, Xu, Prause, Raposo, . . .
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Motivations

Bijection with other models: constrained random permutations (RSK
bijection), random sorting networks (Edelman–Greene bijection).

Asymptotic representation theory: random tableaux encode some
asymptotic information on restrictions of representations of large
symmetric groups.

Link with the well-studied lozenge tiling models (Young tableaux are in
some sense a limit case of lozenge tilings);

Tractable model of random linear extensions of 2-dimensional posets.
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Simulation (first example)

We consider the n-th dilatation n ·λ0

of the following diagram

i.e. we replace each box by a n×n
square of boxes.

A uniform tableau TN of shape n·λ0:

Here, n= 100 so the tableau TN has N = 130000 boxes. There seems to be
a smooth limit surface.
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Simulation (second example)

This time, take λ0 to be

thickness: 3 boxes
length:107 boxes

93 boxes

103 boxes

A uniform tableau TN of shape n·λ0:

Here, n= 6 so the diagram/tableau has N = 356400 boxes.
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Simulation (second example, with a zoom)

There still seems to be a limiting surface, but this time it is discontinuous!
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Results (informally)

Previous contributions (Biane ’03, Sun ’18): convergence to a limiting
surface with some implicit description (via Markov–Krein
correspondence and free compression or via a variational principle).

Our results: a more explicit description of the limit surface in the
multirectangular case (dilatation of a fixed diagram λ0) +
characterization of the diagrams λ0 leading to discontinuous limit
surfaces.
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Height function

Notation: if T is a tableau of size N, we let
T (x ,y): content of the box with coordinates (x ,y) in T ;

HT (x ,t)=#
{
y :T (x ,y)≤Nt

}
: number of entries on the vertical line

x smaller than Nt.

(0,1)

(1,2)

(2,3)

(3,4)

(-1,2)

(0,3)

(1,4)

(2,5)

(-2,3)

(-1,4)(-3,4)

Box coordinates

1

2

3

4

5

6 7

8

9

1011

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

3031 32

3334

35

36

T (2, 3) = 7

Tableau function

(y 7→T (x ,y) and t 7→HT (x ,t) are roughly inverses of each other.)
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−3

HT (−3, t) =


0 for t ≤ 5

36

1 for 5
36

≤ t ≤ 16
36

2 for 16
36

≤ t ≤ 26
36

3 for 26
36

≤ t

T (2, 3) = 7

Tableau and height functions
(y 7→T (x ,y) and t 7→HT (x ,t) are roughly inverses of each other.)
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Existence of the limiting height function

Theorem (Biane ’03, Sun ’18)

Let λ0 be a fixed Young diagram. For n≥ 1, we let TN be a uniform
random Young tableau of shape λN := n ·λ0. Then there exists a
deterministic function H∞ such that

1p
N
HTN

(
bx

p
Nc,t

)
−−−−−→
N→+∞

H∞(x ,t),

in probability, uniformly on (x ,t).

Question: How to compute H∞?
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The critical equation

We encode λ0 by its interlacing coor-
dinates a0 < b1 < a1 < ·· · < bm < am:

a0 a1 a2 a3b1 b2 b3

Definition: the critical equation
For parameters (x ,t), we consider
the polynomial equation

U
m∏
i=1

(x −ηbi +U)

= (1− t)
m∏
i=0

(x −ηai +U),

where η=
√
|λ0|.

Lemma
The critical equation has at least m−1 real roots.

We denote Uc(x ,t) its complex root with positive imaginary part, if it
exists (in this case, we say that (x ,t) is in the “liquid region”).
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Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, ’23)

H∞(x ,t)= 1
π

∫ t

0

ImUc(x ,s)

1− s
ds .

Convention: ImUc(x ,s)= 0 if the critical equation has only real root
("frozen region").

Example: square shape tableaux (Romik–Pittel, ’07), a0 =−1,b1 = 0,a1 = 1

The critical equation U(x +U)= (1− t)(x +1+U)(x −1+U) is a second
degree polynomial equation, and we get

H∞¦ (x ,t)= 1
π

∫ t

0

p
4s −4s2−x2

2s −2s2 ds ,

with the convention that py = 0 if y ≤ 0.
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The heart example

-1.0 -0.5 0.0 0.5 1.0 1.39-1.39
0.0

0.2

0.4

0.6

0.8

1.0

existence of nonreal roots

x

t

the Young diagram λ0 boundary of the liquid region

a realization of TN its height function HTN
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The pipe example

thickness: 3 boxes
length:107 boxes

93 boxes
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Why is there a discontinuity in the pipe example?

Zoom on the boundary of the liquid
region (blue line x = x0 ≈−0.9)

t

H∞(x0, t)

liquid phases

frozen phases

Schematic representation of
the function t 7→H∞(x0,t)

liquid phases

frozen phases

Schematic representation of
the function y 7→T∞(x0,y)
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When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x2 = y3).

-1.0 -0.5 0.0 0.5 1.0 1.39-1.39
0.0

0.2

0.4
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1.0
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(In general, there are m−1 cusps, where m is the number of distinct parts
in λ0.)

V. Féray (CNRS, IECL) Random tableaux Poitiers, 2025–11 27 / 33



When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical
(both curves leaving a cusp have the same tangent; think at x2 = y3).

With some computation, we get

Theorem (Borga, Boutillier, F., Méliot, ’23)

The limiting surface T∞
λ0

is continuous if and only if the interlacing
coordinates a0 < b1 < a1 < ·· · < bm < am of λ0 satisfy

m∑
i=0
i 6=i0

1
ai0 −ai

=
m∑
i=1

1
ai0 −bi

, for all i0 = 1, . . . ,m−1.

In particular, for m> 1, the limit surfaces are generically discontinuous!
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Proof strategy 1 – determinantal point processes

Notation:
E : locally compact Polish space
µ: reference measure on E
K : measurable function E 2 →C.
X : simple point process on E

Definition (determinantal point process)

X is a determinantal point process on E with kernel K if it has a joint
intensity with respect to µ given by

ρn(x1, . . . ,xn)= det[K (xi ,xj)]1≤i ,j≤n,

for every n≥ 1 and distinct x1, . . . ,xn ∈E .

Used a lot in integrable probability theory/statistical physics since 90’s, but
also in random matrix theory, statistics, . . .
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Proof strategy 2 – tableaux and bead configurations

Definition (Poissonized tableaux)

A Poissonized tableau of shape λ is an upward increasing filling of λ with
real numbers in [0,1].

With a Poissonized tableau T , we associate a bead configuration

MT :=
{
(x ,T (x ,y)),(x ,y) ∈λ

}
⊆ Z× [0,1].

t = 0

t = 1

0 1 2 3 4 5−1−2−3−40

.15
.2

.4
.55

.95
.85

.5
.25

.7
.9

t = .5

Note: HT (x ,t) is the number of beads in {x}× [0,t].
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Proof strategy 3 – Gorin–Rahman theorem

Theorem (Gorin, Rahman, ’19)

Let T be a uniform random Poissonized tableau of fixed shape λ. Then its
associated bead process MT is a determinantal point process on Z× [0,1]
with correlation kernel

Kλ((x1,t1),(x2,t2))=− 1
(2iπ)2

·∮
γz

∮
γw

Fλ(z)

Fλ(w)

Γ(w −x1+1)
Γ(z −x2+1)

(1− t2)
z−x2 (1− t1)

−w+x1−1

z −w
dw dz ,

where Fλ(u)= Γ(u+1)
∏∞

i=1
u+i

u−λi+i and the double contour integral runs
over counterclockwise paths γw and γz such that

γw is inside (resp. outside) γz if t1 ≥ t2 (resp. t1 < t2);
γw and γz contain all the integers in [−`(λ),x1−1] and in [x2,λ1−1]
respectively;
the ratio 1

z−w remains uniformly bounded.
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Proof strategy 4 – Rewriting the kernel

Consequence of Gorin–Rahman’s formula:

E
[
HT (x ,t)

]= ∫ t

0
K ((x ,s),(x ,s))ds

To compute limN→+∞ 1p
N
HTN

(
bxpNc,t

)
, we look for a limit of

1p
N
K ((bx

p
Nc,s),(bx

p
Nc,s)).

Via Stirling approximation and standard calculus, we get
1p
N
K

(
(bx

p
Nc,s),(bx

p
Nc,s)

)≈− 1
(2iπ)2

·∮
γZ

∮
γW

e
p
N(S(W )−S(Z)) h(W ,Z )

W −Z
dW dZ ,

where
S(U)= g(U)−U log(1− t0)−∑m

i=0g(x0−ηai +U)+∑m
i=1g(x0−ηbi +U)

with g(U)=U log(U) and some function h.
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Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in∮
γZ

∮
γW

e
p
N(S(W )−S(Z)) h(W ,Z )

W −Z
dW dZ .

Idea: deform γZ and γW such that Re(S(W ))<Re(S(Z )) on the new
contours.

0

Uc

U c

γW γZ

A B C 0

Uc

U c

γnew
W γnew

Z

CBA D E

Schematic representation of the integration contours before and after
transformation: in the white (resp. yellow) regions, we have
Re(S(Z ))>Re(S(Uc)) (resp. Re(S(Z ))<Re(S(Uc))).
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The point Uc on the above picture should satisfy S ′(Uc)= 0, which is
exactly the critical equation! (So the above picture is valid in the liquid
region only.)
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After change of contour, the integral tends to 0. The dominant term
asymptotically is the residue term for the pole W −Z , which is an integral
from Uc to Uc .
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Thanks for listening!

Commercials:
1. LOUCCOUM Research School (Large Objects Under Combinatorial
Constraints and Outside Uniform Model) at CIRM, June 8-12, 2026.

Mini-courses:
Jean-François Marckert (Bordeaux): Stochastic geometry with
combinatorial glasses;
Sumit Mukherjee (Columbia): Permutons in Statistics;
Fiona Skerman (Upsalla): Learning on random graphs,

and long talks by Eva-Maria Heinzl and Lucas Teyssier.
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