

Random Young diagrams and tableaux

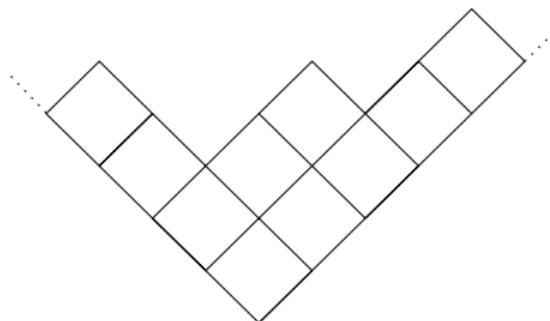
Valentin Féray

(based on joint work with J. Borga, C. Boutillier and P.-L. Méliot)

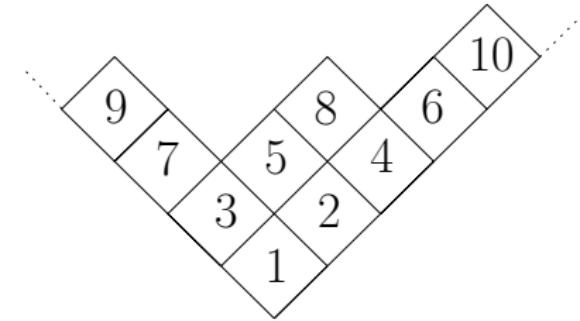
CNRS, Institut Élie Cartan de Lorraine (IECL)

Deuxièmes rencontres LOUCCOUUM
Poitiers, novembre 2025

Young diagrams and tableaux



Young diagram

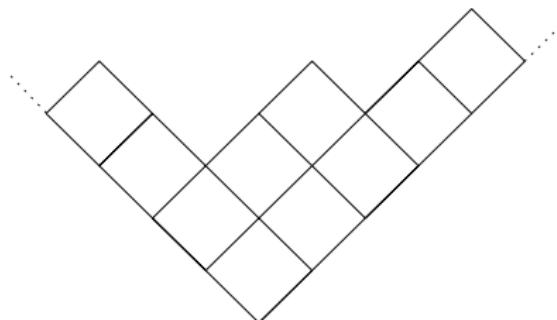


(Standard) Young tableau

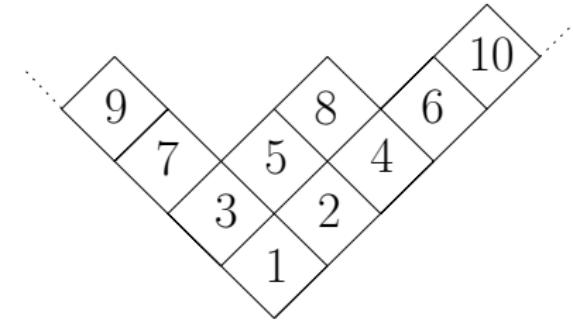
Young diagram: stack of boxes in the upper quarter-plane (encodes an integer partition).

Young tableau: filling of a Young diagram with integers from 1 to n , increasing upwards (encodes a growing sequence of tableaux).

Young diagrams and tableaux



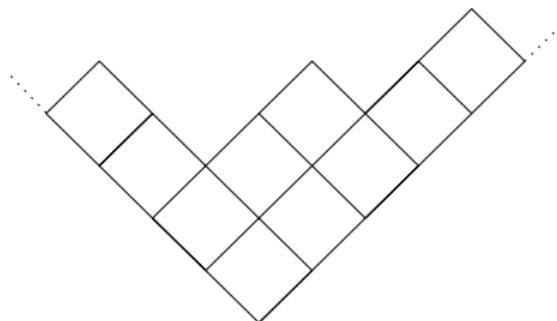
Young diagram



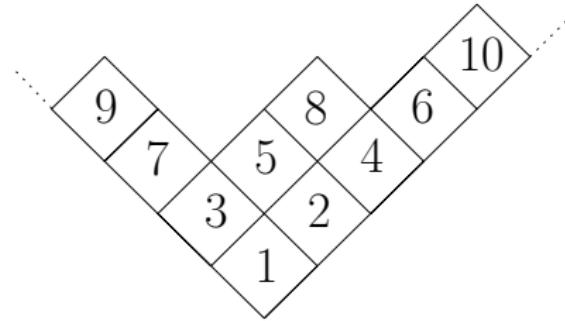
(Standard) Young tableau

Standard object in algebraic combinatorics (symmetric group representation, symmetric functions, . . .)
→ yields tractable models of random walks and random surfaces.

Young diagrams and tableaux



Young diagram



(Standard) Young tableau

Standard object in algebraic combinatorics (symmetric group representation, symmetric functions, . . .)

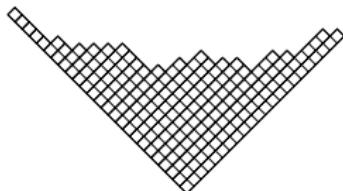
→ yields tractable models of **random walks and random surfaces**.

First part: survey some connections with random matrices/random walks

Second part: I'll focus on some recent work with Borga–Boutillier–Méliot on random tableaux.

A well-known connection with random matrices: edge asymptotics

Plancherel measure on diagrams



For a partition λ , we take

$$\mathbb{P}(\lambda) = \frac{\dim(\lambda)^2}{n!}$$

$\dim(\lambda)$: number of tableaux of shape λ .

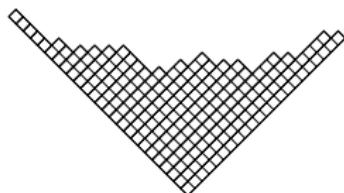
GUE model of random matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots \\ \overline{a_{1,2}} & \ddots & \vdots \\ \vdots & \cdots & a_{n,n} \end{pmatrix}$$

Hermitian matrix with independent complex Gaussian entries above the diagonal and real Gaussian entries on the diagonal.

A well-known connection with random matrices: edge asymptotics

Plancherel measure on diagrams



For a partition λ , we take

$$\mathbb{P}(\lambda) = \frac{\dim(\lambda)^2}{n!}$$

$\dim(\lambda)$: number of tableaux of shape λ .

GUE model of random matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots \\ \overline{a_{1,2}} & \ddots & \vdots \\ \vdots & \cdots & a_{n,n} \end{pmatrix}$$

Hermitian matrix with independent complex Gaussian entries above the diagonal and real Gaussian entries on the diagonal.

Theorem (Borodin–Okounkov–Olshanski, Okounkov, Johansson, ~'00)

Suitably renormalized, for all k , the first rows $(\lambda_1, \lambda_2, \dots, \lambda_k)$ of a random Plancherel Young diagram have the same fluctuations as the largest eigenvalues of a GUE matrix (they both converge to the “Airy ensemble”).

Other analogies between random diagrams and random matrices

- Fluctuation of **linear statistics** ($\sum_{i=1}^n P(\lambda_i)$ for GUE, $\sum_{i=1}^n P(\lambda_i - i)$ for diagrams, where P is a polynomial) are described by similar Gaussian processes (Johansson '98, Kerov–Ivanov–Olshanski '03).

Other analogies between random diagrams and random matrices

- Fluctuation of **linear statistics** ($\sum_{i=1}^n P(\lambda_i)$ for GUE, $\sum_{i=1}^n P(\lambda_i - i)$ for diagrams, where P is a polynomial) are described by similar Gaussian processes (Johansson '98, Kerov–Ivanov–Olshanski '03).
- **Bulk fluctuations** are described by the sine (resp. discrete sine) processes (Dyson '70, Borodin–Okounkov–Olshanski '00).

Other analogies between random diagrams and random matrices

- Fluctuation of **linear statistics** ($\sum_{i=1}^n P(\lambda_i)$ for GUE, $\sum_{i=1}^n P(\lambda_i - i)$ for diagrams, where P is a polynomial) are described by similar Gaussian processes (Johansson '98, Kerov–Ivanov–Olshanski '03).
- **Bulk fluctuations** are described by the sine (resp. discrete sine) processes (Dyson '70, Borodin–Okounkov–Olshanski '00).
- "Fixed dimension version" (next slides).

Fixed dimension

Fix an integer $d \geq 1$ and consider a Plancherel random Young diagram **conditioned to have at most d rows**.

Permutation interpretation: we look at the RS shape of a uniform random permutation without decreasing subsequence of length $d+1$.

Fixed dimension

Fix an integer $d \geq 1$ and consider a Plancherel random Young diagram **conditioned to have at most d rows**.

Permutation interpretation: we look at the RS shape of a uniform random permutation without decreasing subsequence of length $d+1$.

Theorem (Śniady, '06)

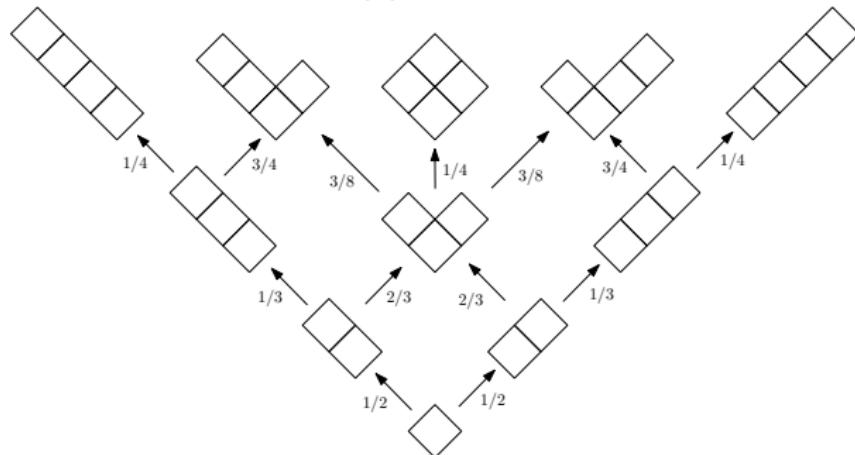
Let $\lambda_n = (\lambda_{n,1}, \dots, \lambda_{n,d})$ be a Plancherel random Young diagram **conditioned to have at most d rows**. Then

$$\left(\sqrt{\frac{d}{n}} \left(\lambda_{n,i} - \frac{n}{d} \right) \right)_{1 \leq i \leq d}$$

converges in distribution to the eigenvalues of a **traceless GUE** $d \times d$ random matrix.

Introducing dynamics – the Plancherel growth process

Let $\lambda^{(1)}, \dots, \lambda^{(n)}$ be a Markov chain of Young diagrams with $|\lambda^{(k)}| = k$ and $\mathbb{P}(\lambda^{(n)} = \lambda | \lambda^{(n-1)} = \mu) = \frac{\dim(\lambda)}{n \dim(\mu)}$.



Lemma

For each n , $\lambda^{(n)}$ is Plancherel distributed.

We call the sequence $(\lambda^{(1)}, \dots, \lambda^{(n)})$ a **Plancherel random tableau**.

Fixed dimension, dynamic version

Fix an integer $d \geq 1$ and consider a Plancherel random tableau $(\lambda^{(1)}, \dots, \lambda^{(n)})$ **conditioned to have at most d rows**.

Permutation interpretation: we look at the RS P -tableau of a uniform random permutation without decreasing subsequence of length $d+1$.

Fixed dimension, dynamic version

Fix an integer $d \geq 1$ and consider a Plancherel random tableau $(\lambda^{(1)}, \dots, \lambda^{(n)})$ **conditioned to have at most d rows**.

Permutation interpretation: we look at the RS P -tableau of a uniform random permutation without decreasing subsequence of length $d+1$.

Theorem (Rizzolo, '19)

$$\left(\sqrt{\frac{d}{n}} \left(\lambda_{n,i}^{(tn)} - \frac{nt}{d} \right) \right)_{1 \leq i \leq d, 0 \leq t \leq 1}$$

converges to a traceless d -dimensional **Dyson Brownian motion**.

Fixed dimension, dynamic version

Fix an integer $d \geq 1$ and consider a Plancherel random tableau $(\lambda^{(1)}, \dots, \lambda^{(n)})$ **conditioned to have at most d rows**.

Permutation interpretation: we look at the RS P -tableau of a uniform random permutation without decreasing subsequence of length $d+1$.

Theorem (Rizzolo, '19)

$$\left(\sqrt{\frac{d}{n}} \left(\lambda_{n,i}^{(tn)} - \frac{nt}{d} \right) \right)_{1 \leq i \leq d, 0 \leq t \leq 1}$$

converges to a traceless d -dimensional **Dyson Brownian motion**.

Dyson Brownian motion

$\begin{cases} \text{eigenvalues of GUE dynamic matrices (entries are Brownian motions)} \\ \text{universal limit object for random walks in the cone } \{x_1 \geq \dots \geq x_d\} \end{cases}$

β -deformation (matrix side)

The eigenvalues of GUE random matrices have the following **density** w.r.t. **Lebesgue measure** on $\{x_1 \geq x_2 \geq \dots \geq x_d\}$:

$$\frac{1}{C_d} e^{-(x_1^2 + \dots + x_d^2)} \prod_{i < j} (x_i - x_j)^2.$$

β -deformation (matrix side)

The eigenvalues of GUE random matrices have the following **density** w.r.t. **Lebesgue measure** on $\{x_1 \geq x_2 \geq \dots \geq x_d\}$:

$$\frac{1}{C_d} e^{-(x_1^2 + \dots + x_d^2)} \prod_{i < j} (x_i - x_j)^2.$$

We **define $G\beta E$ ensemble** as having the following density w.r.t. Lebesgue measure on $\{x_1 \geq x_2 \geq \dots \geq x_d\}$:

$$\frac{1}{C_d(\beta)} e^{-\frac{\beta}{2}(x_1^2 + \dots + x_d^2)} \prod_{i < j} (x_i - x_j)^\beta.$$

$\beta = 1, 4$: these are eigenvalues of natural models of matrices with real/quaternionic entries.

→ huge literature on this model...

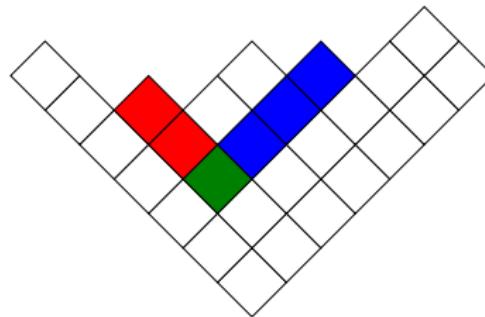
β -deformation (partition side)

The usual Plancherel measure is defined by

$$\mathbb{P}(\lambda) = \frac{\dim(\lambda)^2}{n!} = \frac{n!}{h_\lambda^2},$$

where

$$h_\lambda = \prod_{(i,j) \in \lambda} ((\lambda_i - j) + (\lambda'_j - i) + 1)$$



β -deformation (partition side)

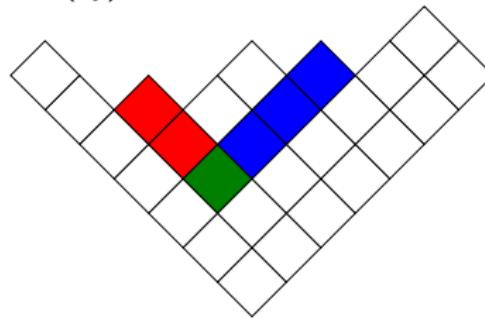
The Jack-Plancherel measure is defined by

$$\mathbb{P}(\lambda) = \frac{\alpha^n n!}{h_\lambda^{(\alpha)} h_\lambda'^{(\alpha)}},$$

where

$$h_\lambda^{(\alpha)} = \prod_{(i,j) \in \lambda} (\alpha(\lambda_i - j) + (\lambda'_j - i) + 1)$$

$$h_\lambda'^{(\alpha)} = \prod_{(i,j) \in \lambda} (\alpha(\lambda_i - j) + (\lambda'_j - i) + \alpha)$$



β -deformation (partition side)

The **Jack**-Plancherel measure is defined by

$$\mathbb{P}(\lambda) = \frac{\alpha^n n!}{h_\lambda^{(\alpha)} h_\lambda'^{(\alpha)}},$$

where

$$h_\lambda^{(\alpha)} = \prod_{(i,j) \in \lambda} (\alpha(\lambda_i - j) + (\lambda'_j - i) + 1)$$

$$h_\lambda'^{(\alpha)} = \prod_{(i,j) \in \lambda} (\alpha(\lambda_i - j) + (\lambda'_j - i) + \alpha)$$

Note: $\mathbb{P}(\lambda) = [J_\lambda^{(\alpha)}] p_1^n$, where $J_\lambda^{(\alpha)}$ is the (integral) Jack symmetric function indexed by λ . This allows in particular to define a **Jack-Plancherel growth process**.

Analges random matrices - random partitions (general β)

- Edge asymptotics of $G\beta E$ and Jack-Plancherel diagrams are both described by the β -Tracy–Widom distributions (Valkó–Virág, '09, Guionnet–Huang '19).
- Fluctuations of linear statistics are non-centered Gaussian processes (Dimitriu – Edelman, '06, F. – Dołęga, '16).
- Fixed dimension analogies (next slides).

A β version of Śniady's result

Theorem (Matsumoto, '08)

Let $\lambda_n^{(\alpha)} = (\lambda_{n,1}^{(\alpha)}, \dots, \lambda_{n,d}^{(\alpha)})$ be a *Jack-Plancherel random Young diagram* conditioned to have at most d rows. Then

$$\left(\sqrt{\frac{\alpha d}{n}} \left(\lambda_{n,i}^{(\alpha)} - \frac{n}{d} \right) \right)_{1 \leq i \leq d}$$

converges to a d -dimensional traceless *G β E ensemble*, where $\beta = 2/\alpha$.

A β version of Śniady's result

Theorem (Matsumoto, '08)

Let $\lambda_n^{(\alpha)} = (\lambda_{n,1}^{(\alpha)}, \dots, \lambda_{n,d}^{(\alpha)})$ be a Jack-Plancherel random Young diagram conditioned to have at most d rows. Then

$$\left(\sqrt{\frac{\alpha d}{n}} \left(\lambda_{n,i}^{(\alpha)} - \frac{n}{d} \right) \right)_{1 \leq i \leq d}$$

converges to a d -dimensional traceless $G\beta E$ ensemble, where $\beta = 2/\alpha$.

Permutation interpretation: for $\alpha = 2$, $\lambda_{n,1}^{(\alpha)}$ has the same distribution as the LIS of a uniform random fixed-point free involution conditionned to have no decreasing subsequence of length $> 2d$.

A dynamic β version?

Conjecture

Let $\lambda_n^{(\alpha),(1)}, \dots, \lambda_n^{(\alpha),(n)}$ be a Jack–Plancherel random Young tableau conditioned to have at most d rows. Then

$$\left(\sqrt{\frac{\alpha d}{n}} \left(\lambda_{n,i}^{(\alpha),(tn)} - \frac{tn}{d} \right) \right)_{1 \leq i \leq d, 0 \leq t \leq 1}$$

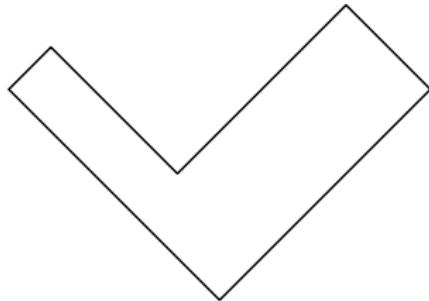
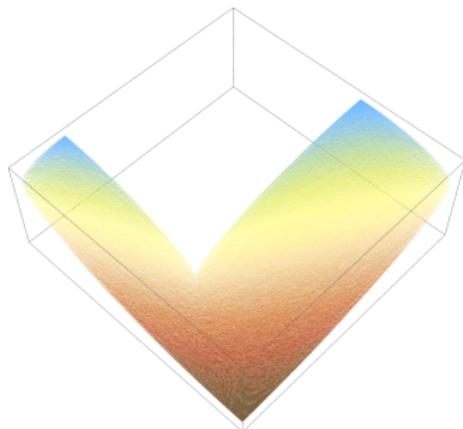
converges to a to a d -dimensional traceless β -Dyson Brownian motion.

Take away message: algebra provides explicit models with interesting asymptotic behaviour!

Interlude

Second part: random tableau of fixed shape

Our model: fix a (large) Young diagram λ (on the left), and take a uniform random Young tableau T of shape λ (on the right).



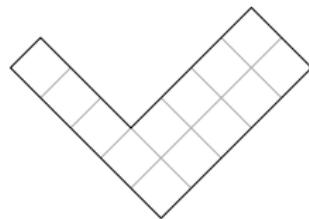
Also studied by Biane, Pittel, Romik, Angel, Holroyd, Virág, Gorin, Rahman, Linusson, Potka, Sulzgruber, Sun, Banderier, Marchal, Wallner, Śniady, Matsumoto, Maślanka, Gordenko, Xu, Prause, Raposo, ...

Motivations

- **Bijection with other models:** constrained random permutations (RSK bijection), random sorting networks (Edelman–Greene bijection).
- **Asymptotic representation theory:** random tableaux encode some asymptotic information on restrictions of representations of large symmetric groups.
- Link with the well-studied **lozenge tiling models** (Young tableaux are in some sense a limit case of lozenge tilings);
- Tractable model of **random linear extensions** of 2-dimensional posets.

Simulation (first example)

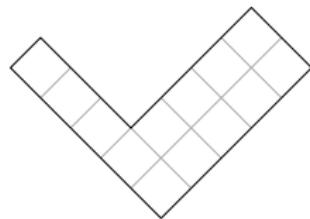
We consider the n -th dilatation $n \cdot \lambda^0$ of the following diagram



i.e. we replace each box by a $n \times n$ square of boxes.

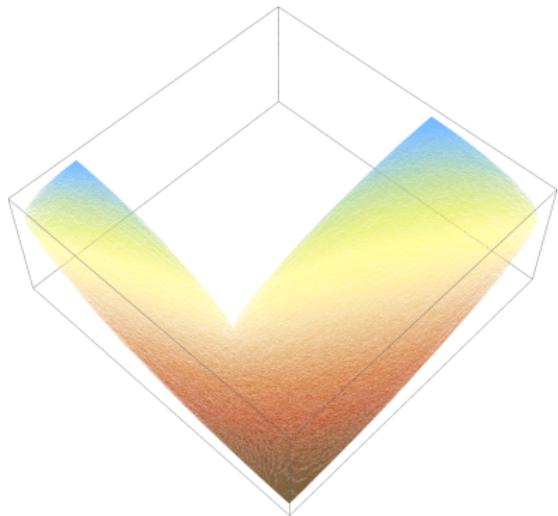
Simulation (first example)

We consider the n -th dilatation $n \cdot \lambda^0$ of the following diagram



i.e. we replace each box by a $n \times n$ square of boxes.

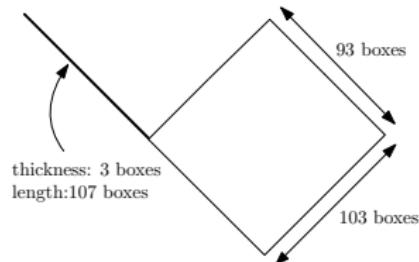
A uniform tableau T_N of shape $n \cdot \lambda^0$:



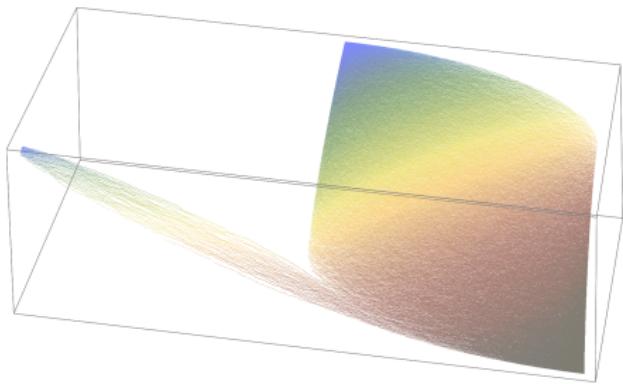
Here, $n = 100$ so the tableau T_N has $N = 130000$ boxes. There seems to be a smooth limit surface.

Simulation (second example)

This time, take λ^0 to be

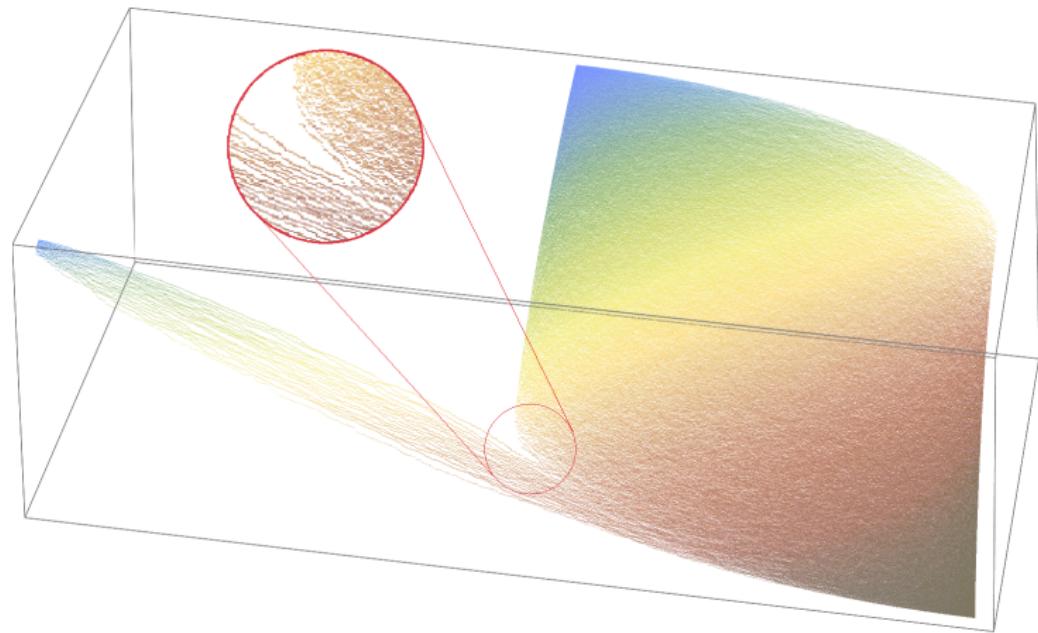


A uniform tableau T_N of shape $n \cdot \lambda^0$:



Here, $n = 6$ so the diagram/tableau has $N = 356400$ boxes.

Simulation (second example, with a zoom)



There still seems to be a limiting surface, but this time it is discontinuous!

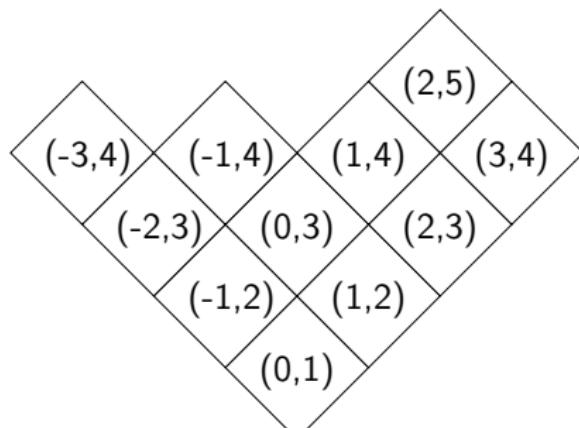
Results (informally)

- Previous contributions (Biane '03, Sun '18): convergence to a limiting surface with some implicit description (via Markov–Krein correspondence and free compression or via a variational principle).
- Our results: a more explicit description of the limit surface in the multirectangular case (dilatation of a fixed diagram λ^0) + characterization of the diagrams λ^0 leading to discontinuous limit surfaces.

Height function

Notation: if T is a tableau of size N , we let

- $T(x, y)$: content of the box with coordinates (x, y) in T ;



Box coordinates

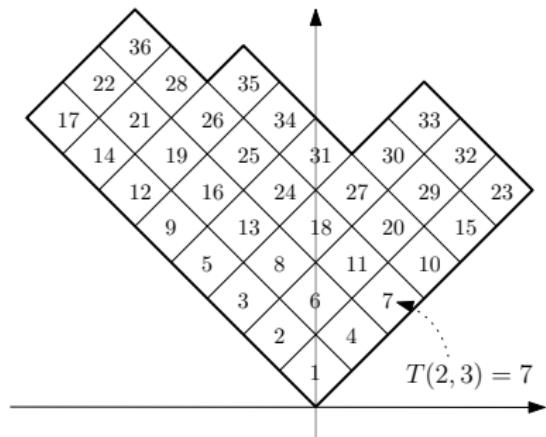
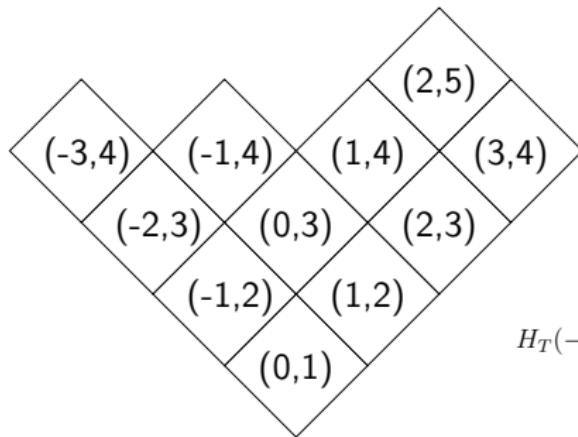


Tableau function

Height function

Notation: if T is a tableau of size N , we let

- $T(x, y)$: content of the box with coordinates (x, y) in T ;
- $H_T(x, t) = \#\{y : T(x, y) \leq Nt\}$: number of entries on the vertical line x smaller than Nt .



Box coordinates

$$H_T(-3, t) = \begin{cases} 0 & \text{for } t \leq \frac{5}{36} \\ 1 & \text{for } \frac{5}{36} \leq t \leq \frac{16}{36} \\ 2 & \text{for } \frac{16}{36} \leq t \leq \frac{26}{36} \\ 3 & \text{for } \frac{26}{36} \leq t \end{cases}$$

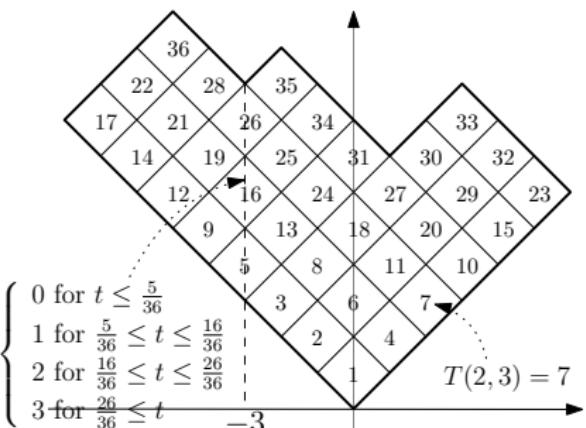


Tableau and height functions

$(y \mapsto T(x, y)$ and $t \mapsto H_T(x, t)$ are roughly **inverses** of each other.)

Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let λ^0 be a fixed Young diagram. For $n \geq 1$, we let T_N be a uniform random Young tableau of shape $\lambda_N := n \cdot \lambda^0$. Then there exists a deterministic function H^∞ such that

$$\frac{1}{\sqrt{N}} H_{T_N} \left(\lfloor x\sqrt{N} \rfloor, t \right) \xrightarrow[N \rightarrow +\infty]{} H^\infty(x, t),$$

in probability, uniformly on (x, t) .

Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let λ^0 be a fixed Young diagram. For $n \geq 1$, we let T_N be a uniform random Young tableau of shape $\lambda_N := n \cdot \lambda^0$. Then there exists a deterministic function H^∞ such that

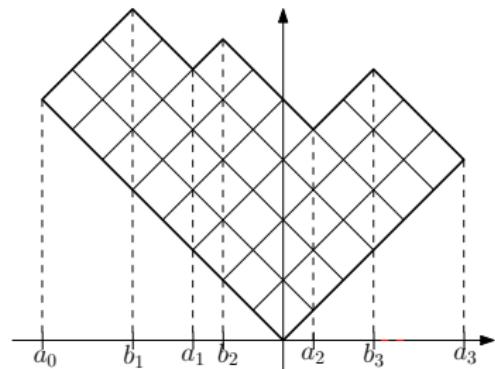
$$\frac{1}{\sqrt{N}} H_{T_N} \left(\lfloor x\sqrt{N} \rfloor, t \right) \xrightarrow{N \rightarrow +\infty} H^\infty(x, t),$$

in probability, uniformly on (x, t) .

Question: How to compute H^∞ ?

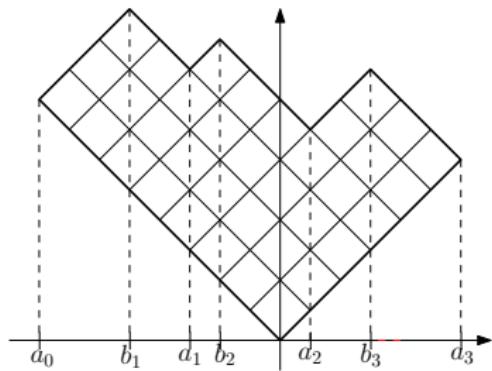
The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \dots < b_m < a_m$:



The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \dots < b_m < a_m$:



Definition: the critical equation

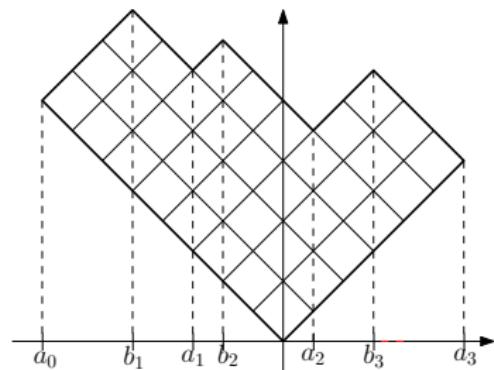
For parameters (x, t) , we consider the polynomial equation

$$\begin{aligned} U \prod_{i=1}^m (x - \eta b_i + U) \\ = (1-t) \prod_{i=0}^m (x - \eta a_i + U), \end{aligned}$$

where $\eta = \sqrt{|\lambda^0|}$.

The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \dots < b_m < a_m$:



Definition: the critical equation

For parameters (x, t) , we consider the polynomial equation

$$U \prod_{i=1}^m (x - \eta b_i + U) \\ = (1-t) \prod_{i=0}^m (x - \eta a_i + U),$$

where $\eta = \sqrt{|\lambda^0|}$.

Lemma

The critical equation has at least $m-1$ real roots.

We denote $U_c(x, t)$ its **complex root with positive imaginary part**, if it exists (in this case, we say that (x, t) is in the “liquid region”).

Formula for the limiting height function

Theorem (Borga, Boutillier, Féray, Méliot, '23)

$$H^\infty(x, t) = \frac{1}{\pi} \int_0^t \frac{\operatorname{Im} U_c(x, s)}{1-s} ds.$$

Convention: $\operatorname{Im} U_c(x, s) = 0$ if the critical equation has only real root ("frozen region").

Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, '23)

$$H^\infty(x, t) = \frac{1}{\pi} \int_0^t \frac{\operatorname{Im} U_c(x, s)}{1-s} ds.$$

Convention: $\operatorname{Im} U_c(x, s) = 0$ if the critical equation has only real root ("frozen region").

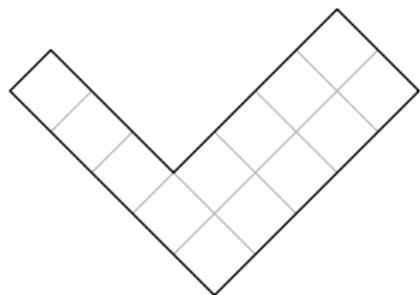
Example: square shape tableaux (Romik–Pittel, '07), $a_0 = -1, b_1 = 0, a_1 = 1$

The critical equation $U(x+U) = (1-t)(x+1+U)(x-1+U)$ is a second degree polynomial equation, and we get

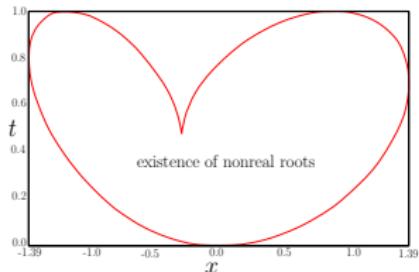
$$H_\diamond^\infty(x, t) = \frac{1}{\pi} \int_0^t \frac{\sqrt{4s - 4s^2 - x^2}}{2s - 2s^2} ds,$$

with the convention that $\sqrt{y} = 0$ if $y \leq 0$.

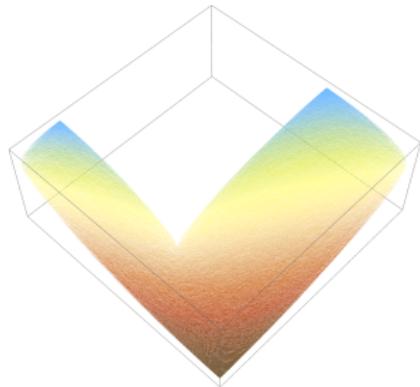
The heart example



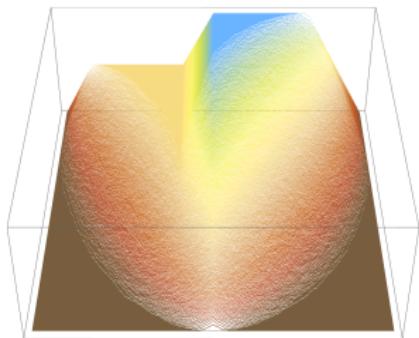
the Young diagram λ^0



boundary of the liquid region

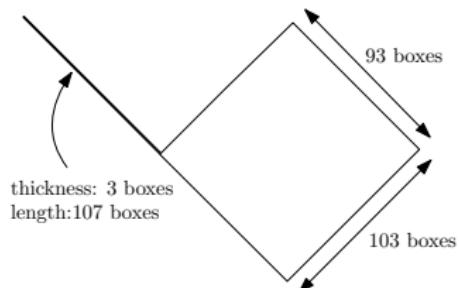


a realization of T_N

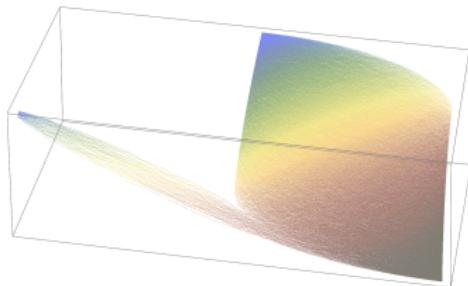


its height function H_{T_N}

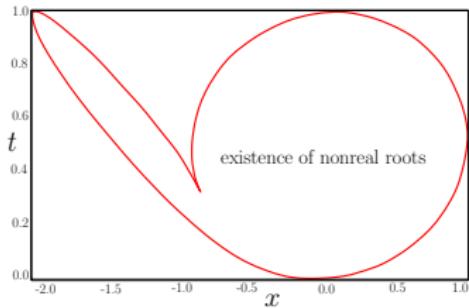
The pipe example



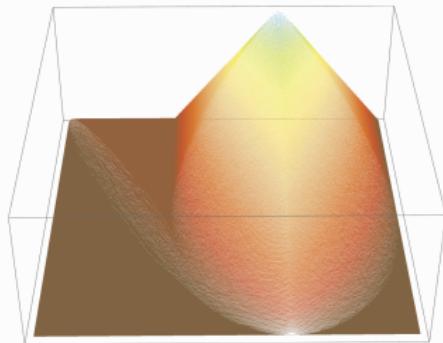
the Young diagram λ^0



a realization of T_N

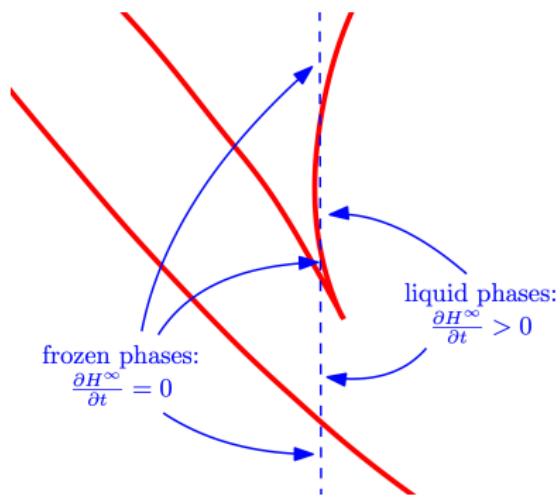


boundary of the liquid region



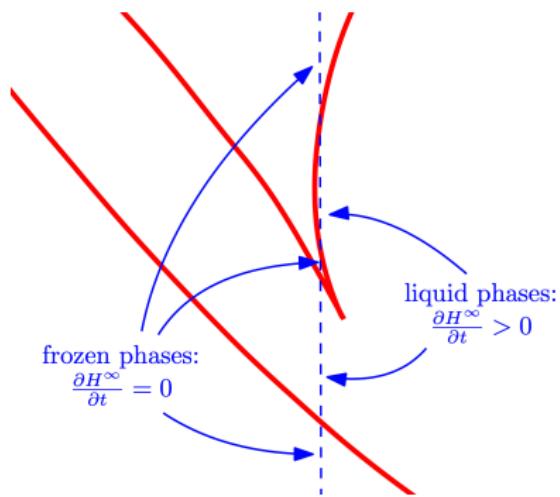
its height function H_{T_N}

Why is there a discontinuity in the pipe example?

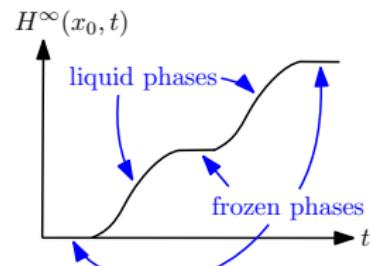


Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)

Why is there a discontinuity in the pipe example?

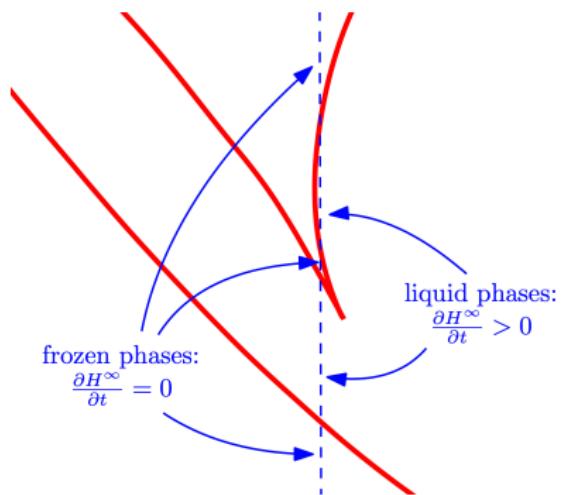


Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)

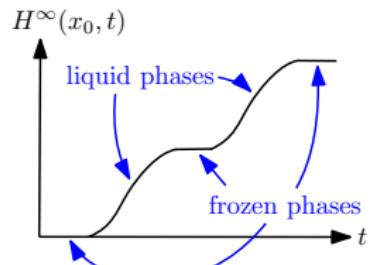


Schematic representation of the function $t \mapsto H^\infty(x_0, t)$

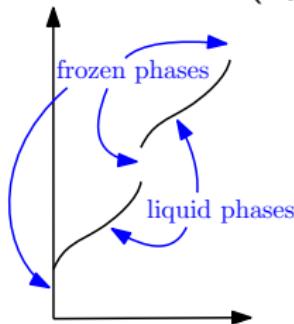
Why is there a discontinuity in the pipe example?



Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)



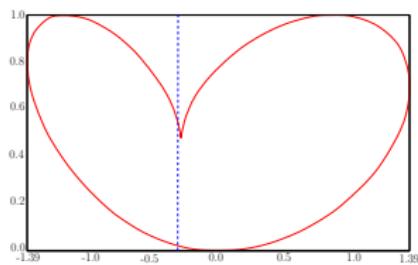
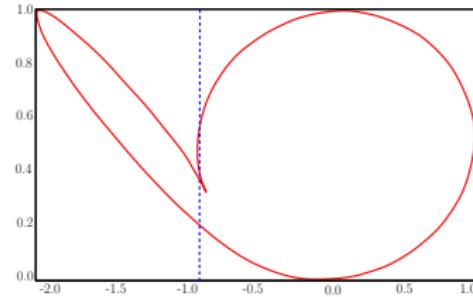
Schematic representation of the function $t \mapsto H^\infty(x_0, t)$



Schematic representation of the function $y \mapsto T^\infty(x_0, y)$

When is there a discontinuity?

There is a discontinuity as soon as **the tangent at one of cusp is not vertical** (both curves leaving a cusp have the same tangent; think at $x^2 = y^3$).



(In general, there are $m-1$ cusps, where m is the number of distinct parts in λ_0 .)

When is there a discontinuity?

There is a discontinuity as soon as **the tangent at one of cusp is not vertical** (both curves leaving a cusp have the same tangent; think at $x^2 = y^3$).

With some computation, we get

Theorem (Borga, Boutillier, F., Méliot, '23)

The limiting surface $T_{\lambda^0}^\infty$ is continuous if and only if the interlacing coordinates $a_0 < b_1 < a_1 < \dots < b_m < a_m$ of λ^0 satisfy

$$\sum_{\substack{i=0 \\ i \neq i_0}}^m \frac{1}{a_{i_0} - a_i} = \sum_{i=1}^m \frac{1}{a_{i_0} - b_i}, \quad \text{for all } i_0 = 1, \dots, m-1.$$

In particular, for $m > 1$, the limit surfaces are generically discontinuous!

Proof strategy 1 – determinantal point processes

Notation:

E : locally compact Polish space

μ : reference measure on E

K : measurable function $E^2 \rightarrow \mathbb{C}$.

X : simple point process on E

Definition (determinantal point process)

X is a determinantal point process on E with kernel K if it has a joint intensity with respect to μ given by

$$\rho_n(x_1, \dots, x_n) = \det[K(x_i, x_j)]_{1 \leq i, j \leq n},$$

for every $n \geq 1$ and distinct $x_1, \dots, x_n \in E$.

Used a lot in integrable probability theory/statistical physics since 90's, but also in random matrix theory, statistics, ...

Proof strategy 2 – tableaux and bead configurations

Definition (Poissonized tableaux)

A Poissonized tableau of shape λ is an upward increasing filling of λ with real numbers in $[0,1]$.

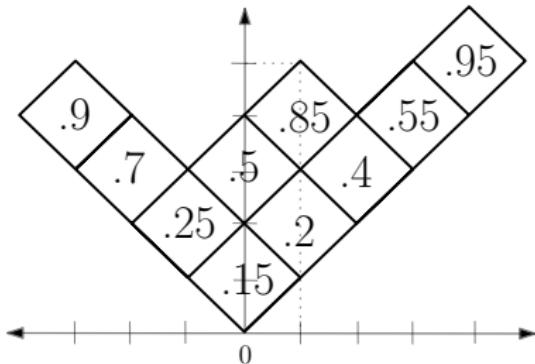
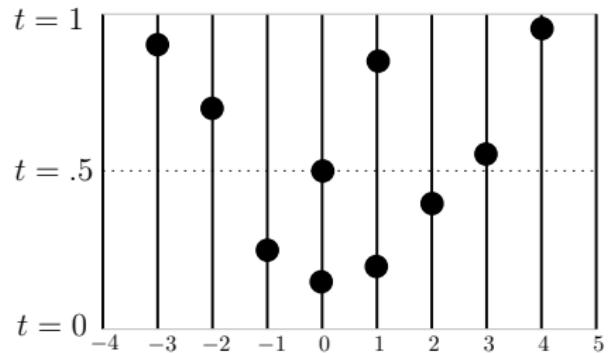
Proof strategy 2 – tableaux and bead configurations

Definition (Poissonized tableaux)

A Poissonized tableau of shape λ is an upward increasing filling of λ with real numbers in $[0, 1]$.

With a Poissonized tableau T , we associate a bead configuration

$$M_T := \{(x, T(x, y)), (x, y) \in \lambda\} \subseteq \mathbb{Z} \times [0, 1].$$



Note: $H_T(x, t)$ is the number of beads in $\{x\} \times [0, t]$.

Proof strategy 3 – Gorin–Rahman theorem

Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of fixed shape λ . Then its associated bead process M_T is a determinantal point process on $\mathbb{Z} \times [0,1]$ with correlation kernel

Proof strategy 3 – Gorin–Rahman theorem

Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of fixed shape λ . Then its associated bead process M_T is a determinantal point process on $\mathbb{Z} \times [0, 1]$ with correlation kernel

$$K_\lambda((x_1, t_1), (x_2, t_2)) = -\frac{1}{(2i\pi)^2} \cdot \oint_{\gamma_z} \oint_{\gamma_w} \frac{F_\lambda(z)}{F_\lambda(w)} \frac{\Gamma(w - x_1 + 1)}{\Gamma(z - x_2 + 1)} \frac{(1 - t_2)^{z - x_2} (1 - t_1)^{-w + x_1 - 1}}{z - w} dw dz,$$

where $F_\lambda(u) = \Gamma(u + 1) \prod_{i=1}^{\infty} \frac{u+i}{u-\lambda_i+i}$ and the double contour integral runs over counterclockwise paths γ_w and γ_z such that

- γ_w is inside (resp. outside) γ_z if $t_1 \geq t_2$ (resp. $t_1 < t_2$);
- γ_w and γ_z contain all the integers in $[-\ell(\lambda), x_1 - 1]$ and in $[x_2, \lambda_1 - 1]$ respectively;
- the ratio $\frac{1}{z-w}$ remains uniformly bounded.

Proof strategy 4 – Rewriting the kernel

Consequence of Gorin–Rahman’s formula:

$$\mathbb{E}[H_T(x, t)] = \int_0^t K((x, s), (x, s)) ds$$

Proof strategy 4 – Rewriting the kernel

Consequence of Gorin–Rahman’s formula:

$$\mathbb{E}[H_T(x, t)] = \int_0^t K((x, s), (x, s)) ds$$

To compute $\lim_{N \rightarrow +\infty} \frac{1}{\sqrt{N}} H_{T_N}(\lfloor x\sqrt{N} \rfloor, t)$, we look for a limit of

$$\frac{1}{\sqrt{N}} K((\lfloor x\sqrt{N} \rfloor, s), (\lfloor x\sqrt{N} \rfloor, s)).$$

Proof strategy 4 – Rewriting the kernel

Consequence of Gorin–Rahman’s formula:

$$\mathbb{E}[H_T(x, t)] = \int_0^t K((x, s), (x, s)) ds$$

To compute $\lim_{N \rightarrow +\infty} \frac{1}{\sqrt{N}} H_{T_N}(\lfloor x\sqrt{N} \rfloor, t)$, we look for a limit of

$$\frac{1}{\sqrt{N}} K((\lfloor x\sqrt{N} \rfloor, s), (\lfloor x\sqrt{N} \rfloor, s)).$$

Via Stirling approximation and standard calculus, we get

$$\frac{1}{\sqrt{N}} K((\lfloor x\sqrt{N} \rfloor, s), (\lfloor x\sqrt{N} \rfloor, s)) \approx -\frac{1}{(2i\pi)^2}.$$

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W) - S(Z))} \frac{h(W, Z)}{W - Z} dW dZ,$$

where

$$S(U) = g(U) - U \log(1 - t_0) - \sum_{i=0}^m g(x_0 - \eta a_i + U) + \sum_{i=1}^m g(x_0 - \eta b_i + U)$$

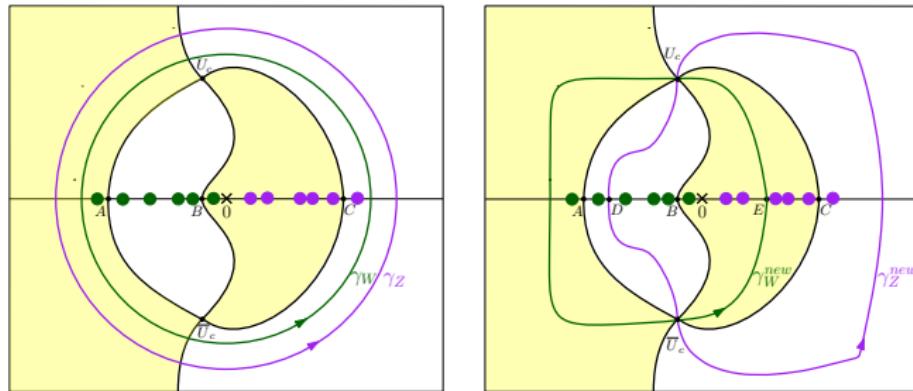
with $g(U) = U \log(U)$ and some function h .

Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W, Z)}{W - Z} dW dZ.$$

Idea: deform γ_Z and γ_W such that $\operatorname{Re}(S(W)) < \operatorname{Re}(S(Z))$ on the new contours.



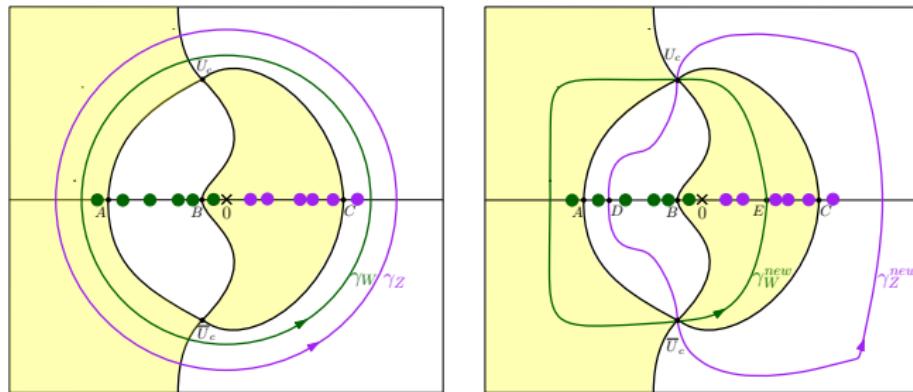
Schematic representation of the integration contours before and after transformation: in the white (resp. yellow) regions, we have $\operatorname{Re}(S(Z)) > \operatorname{Re}(S(U_c))$ (resp. $\operatorname{Re}(S(Z)) < \operatorname{Re}(S(U_c))$).

Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W, Z)}{W - Z} dW dZ.$$

Idea: deform γ_Z and γ_W such that $\operatorname{Re}(S(W)) < \operatorname{Re}(S(Z))$ on the new contours.



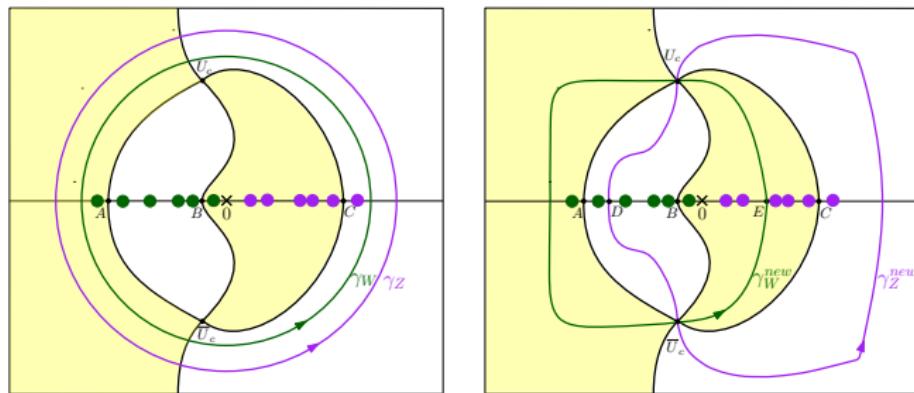
The point U_c on the above picture should satisfy $S'(U_c) = 0$, which is exactly the critical equation! (So the above picture is valid in the liquid region only.)

Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W, Z)}{W - Z} dW dZ.$$

Idea: deform γ_Z and γ_W such that $\operatorname{Re}(S(W)) < \operatorname{Re}(S(Z))$ on the new contours.



After change of contour, the integral tends to 0. The dominant term asymptotically is the residue term for the pole $W - Z$, which is an integral from $\overline{U_c}$ to U_c .

Thanks for listening!

Commercials:

1. LOUCCOUUM Research School (Large Objects Under Combinatorial Constraints and Outside Uniform Model) at CIRM, June 8-12, 2026.

Mini-courses:

- [Jean-François Marckert](#) (Bordeaux): Stochastic geometry with combinatorial glasses;
- [Sumit Mukherjee](#) (Columbia): Permutons in Statistics;
- [Fiona Skerman](#) (Upsalla): Learning on random graphs,

and long talks by [Eva-Maria Heinzl](#) and [Lucas Teyssier](#).