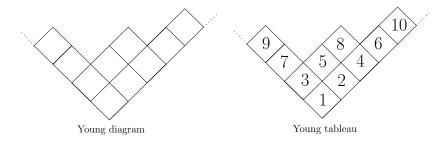
Formes limites de tableaux de Young aléatoires et discontinuités

Valentin Féray joint work with J. Borga, C. Boutillier, P.-L. Méliot

CNRS, Institut Élie Cartan de Lorraine (IECL)

Colloquinte de l'équipe PS Nancy, 20 juin 2024

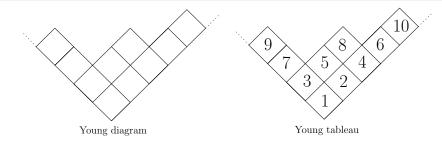
Young diagrams and tableaux



Young diagram: stack of boxes in the upper quarter-plane.

Young tableau: filling of a Young diagram with integers from 1 to n, increasing upwards.

Young diagrams and tableaux



Young diagram: stack of boxes in the upper quarter-plane.

Young tableau: filling of a Young diagram with integers from 1 to n, increasing upwards.

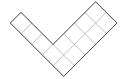
Our model: fix a Young diagram λ , and take a uniform random Young tableau T of shape λ (Biane, Pittel, Romik, Angel, Holroyd, Virag, Gorin, Rahman, Linusson, Potka, Sulzgruber, Sun, Banderier, Marchal, Wallner, Śniady, Matsumoto, Maślanka, Gordenko, Xu, Prause, ...).

Motivations

- Bijection with other models: constrained random permutations (RSK bijection), random sorting networks (Edelman–Greene bijection).
- Asymptotic representation theory: random tableaux encode some asymptotic information on inductions of representations of large symmetric groups.
- Link with the well-studied lozenge tiling models (Young tableaux are in some sense a limit case of lozenge tilings);
- Tractable model of random linear extensions of 2-dimensional posets.

Simulation (first example)

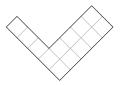
We consider the *n*-th dilatation $n \cdot \lambda^0$ of the following diagram



i.e. we replace each box by a $n \times n$ square of boxes.

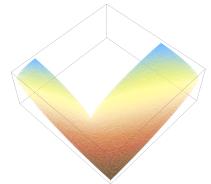
Simulation (first example)

We consider the *n*-th dilatation $n \cdot \lambda^0$ of the following diagram



i.e. we replace each box by a $n \times n$ square of boxes.

A uniform tableau T_N of shape $n \cdot \lambda^0$:



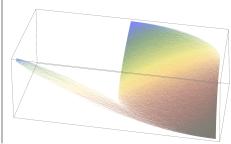
Here, n = 100 so the tableau T_N has N = 130000 boxes. There seems to be a smooth limit surface.

Simulation (second example)

This time, take λ^0 to be

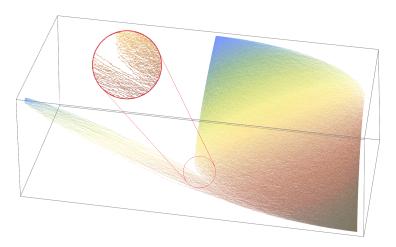


A uniform tableau T_N of shape $n \cdot \lambda^0$:



Here, n = 6 so the diagram/tableau has N = 356400 boxes.

Simulation (second example, with a zoom)



There still seems to be a limiting surface, but this time it is discontinuous!

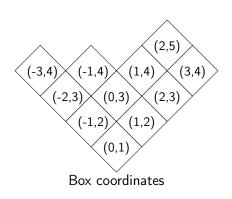
Results (informally)

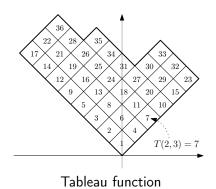
- Previous contributions (Biane '03, Sun '18): convergence to a limiting surface with some implicit description (via Markov–Krein correspondence and free compression or via a variational principle).
- Our results: a more explicit description of the limit surface in the multirectangular case (dilatation of a fixed diagram λ^0) + characterization of the diagrams λ^0 leading to discontinuous limit surfaces.

Height function

Notation: if T is a tableau of size N, we let

• T(x,y): content of the box with coordinates (x,y) in T;

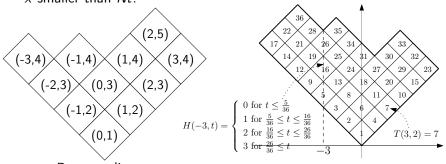




Height function

Notation: if T is a tableau of size N, we let

- T(x,y): content of the box with coordinates (x,y) in T;
- $H_T(x,t) = \#\{y : T(x,y) \le Nt\}$: number of entries on the vertical line x smaller than Nt.



Box coordinates

Tableau and height functions

 $(y \mapsto T(x,y))$ and $t \mapsto H_T(x,t)$ are roughly inverses of each other.)

Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let λ^0 be a fixed Young diagram. For $n \ge 1$, we let T_N be a uniform random Young tableau of shape $\lambda_N := n \cdot \lambda^0$. Then there exists a deterministic function H^{∞} such that

$$\frac{1}{\sqrt{N}}H_{T_N}\Big(\lfloor x\sqrt{N}\rfloor,t\Big)\xrightarrow[N\to+\infty]{}H^\infty(x,t),$$

in probability, uniformly on (x,t).

Existence of the limiting height function

Theorem (Biane '03, Sun '18)

Let λ^0 be a fixed Young diagram. For $n \ge 1$, we let T_N be a uniform random Young tableau of shape $\lambda_N := n \cdot \lambda^0$. Then there exists a deterministic function H^{∞} such that

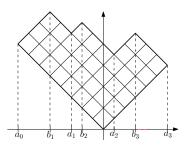
$$\frac{1}{\sqrt{N}}H_{T_N}\Big(\lfloor x\sqrt{N}\rfloor,t\Big)\xrightarrow[N\to+\infty]{}H^\infty(x,t),$$

in probability, uniformly on (x,t).

Question: How to compute H^{∞} ?

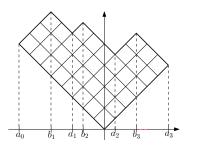
The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \dots < b_m < a_m$:



The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \cdots < b_m < a_m$:



Definition: the critical equation

For parameters (x,t), we consider the polynomial equation

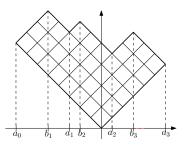
$$U \prod_{i=1}^{m} (x - \eta b_i + U)$$

= $(1 - t) \prod_{i=0}^{m} (x - \eta a_i + U),$

where $\eta = \sqrt{|\lambda^0|}$.

The critical equation

We encode λ^0 by its interlacing coordinates $a_0 < b_1 < a_1 < \cdots < b_m < a_m$:



Definition: the critical equation

For parameters (x,t), we consider the polynomial equation

$$U \prod_{i=1}^{m} (x - \eta b_i + U)$$

= $(1 - t) \prod_{i=0}^{m} (x - \eta a_i + U),$

where $\eta = \sqrt{|\lambda^0|}$.

Lemma

The critical equation has at least m-1 real roots.

We denote $U_c(x,t)$ its complex root with positive imaginary part, if it exists (we say that (x,t) is in the "liquid region").

Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, '23)

$$H^{\infty}(x,t) = \frac{1}{\pi} \int_0^t \frac{\operatorname{Im} U_c(x,s)}{1-s} \, \mathrm{d}s.$$

Convention: Im $U_c(x,s) = 0$ if the critical equation has only real root ("frozen region").

Formula for the limiting height function

Theorem (Borga, Boutillier, F., Méliot, '23)

$$H^{\infty}(x,t) = \frac{1}{\pi} \int_0^t \frac{\operatorname{Im} U_c(x,s)}{1-s} \, \mathrm{d}s.$$

Convention: Im $U_c(x,s) = 0$ if the critical equation has only real root ("frozen region").

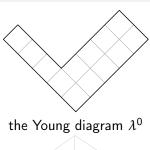
Example: square shape tableaux (Romik–Pittel, '07), $a_0 = -1$, $b_1 = 0$, $a_1 = 1$ The critical equation U(x + U) = (1 - t)(x + 1 + U)(x - 1 + U) is a second

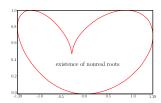
degree polynomial equation, and we get

$$H_{\diamondsuit}^{\infty}(x,t) = \frac{1}{\pi} \int_{0}^{t} \frac{\sqrt{4s - 4s^2 - x^2}}{2s - 2s^2} ds,$$

with the convention that $\sqrt{y} = 0$ if $y \le 0$.

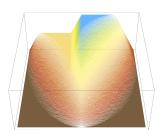
The heart example





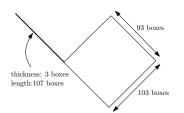
boundary of the liquid region

a realization of T_N

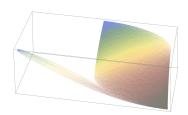


its height function H_{T_N}

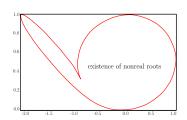
The pipe example



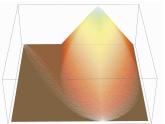
the Young diagram λ^0



a realization of T_N

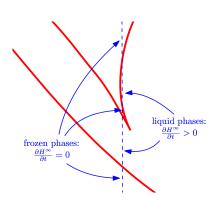


boundary of the liquid region



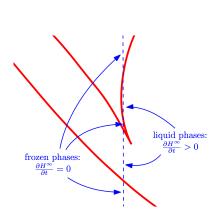
its height function H_{T_N}

Why is there a discontinuity in the pipe example?

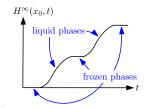


Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)

Why is there a discontinuity in the pipe example?

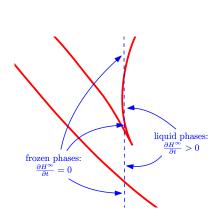


Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)

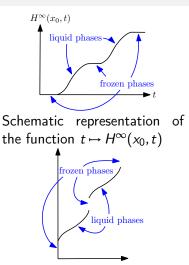


Schematic representation of the function $t \mapsto H^{\infty}(x_0, t)$

Why is there a discontinuity in the pipe example?



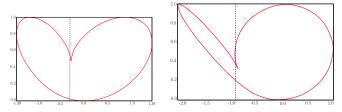
Zoom on the boundary of the liquid region (blue line $x = x_0 \approx -0.9$)



Schematic representation of the function $y \mapsto T^{\infty}(x_0, y)$

When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical (both curves leaving a cusp have the same tangent; think at $x^2 = y^3$).



(In general, there are m-1 cusps, where m is the number of distinct parts in λ_0 .)

When is there a discontinuity?

There is a discontinuity as soon as the tangent at one of cusp is not vertical (both curves leaving a cusp have the same tangent; think at $x^2 = y^3$).

With some computation, we get

Theorem (Borga, Boutillier, F., Méliot, '23)

The limiting surface $T_{\lambda_0}^{\infty}$ is continuous if and only if its interlacing coordinates $a_0 < b_1 < a_1 < \cdots < b_m < a_m$ satisfy

$$\sum_{\substack{i=0\\i\neq i_0}}^m \frac{1}{a_{i_0} - a_i} = \sum_{i=1}^m \frac{1}{a_{i_0} - b_i}, \quad \text{for all } i_0 = 1, \dots, m-1.$$

In particular, for m > 1, the limit surfaces are generically discontinuous!

Proof strategy 1 – determinantal point processes

Notation:

E: locally compact Polish space

 μ : reference measure on E

K: measurable function $E^2 \to \mathbb{C}$.

X: simple point process on E

Definition (determinantal point process)

X is a determinantal point process on E with kernel K if it has a joint intensity with respect to μ given by

$$\rho_n(x_1,\ldots,x_n) = \det[K(x_i,x_j)]_{1 \le i,j \le n},$$

for every $n \ge 1$ and distinct $x_1, ..., x_n \in E$.

Used a lot in integrable probability theory/statistical physics since 90's, but also in random matrix theory, statistics, . . .

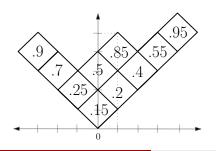
Proof strategy 2 – tableaux and bead configurations

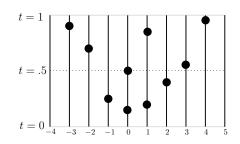
Definition (Poissonized tableaux)

A Poissonized tableau of shape λ is an upward increasing filling of λ with real numbers in [0,1].

With a Poissonized tableau T, we associate a bead configuration

$$M_T := \left\{ (x, T(x, y)), (x, y) \in \lambda \right\} \subseteq \mathbb{Z} \times [0, 1].$$





Proof strategy 3 - Gorin-Rahman theorem

Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of shape λ . Then its associated bead process M_T is a determinantal point process on $\mathbb{Z} \times [0,1]$ with correlation kernel

Proof strategy 3 - Gorin-Rahman theorem

Theorem (Gorin, Rahman, '19)

Let T be a uniform random Poissonized tableau of shape λ . Then its associated bead process M_T is a determinantal point process on $\mathbb{Z} \times [0,1]$ with correlation kernel

$$K_{\lambda}((x_{1},t_{1}),(x_{2},t_{2})) = -\frac{1}{(2i\pi)^{2}}.$$

$$\oint_{\gamma_{z}} \oint_{\gamma_{w}} \frac{F_{\lambda}(z)}{F_{\lambda}(w)} \frac{\Gamma(w-x_{1}+1)}{\Gamma(z-x_{2}+1)} \frac{(1-t_{2})^{z-x_{2}}(1-t_{1})^{-w+x_{1}-1}}{z-w} dw dz,$$

where $F_{\lambda}(u) = \Gamma(u+1) \prod_{i=1}^{\infty} \frac{u+i}{u-\lambda_i+i}$ and the double contour integral runs over counterclockwise paths γ_w and γ_z such that

- γ_w is inside (resp. outside) γ_z if $t_1 \ge t_2$ (resp. $t_1 < t_2$);
- γ_w and γ_z contain all the integers in $[-\ell(\lambda), x_1 1]$ and in $[x_2, \lambda_1 1]$ respectively;
- the ratio $\frac{1}{z-w}$ remains uniformly bounded.

Proof strategy 4 – Rewriting the kernel

Consequence of Gorin-Rahman's formula:

$$\mathbb{E}[H_T(\lfloor x \rfloor, t)] = \int_0^t K((x, s), (x, s)) ds$$

Proof strategy 4 - Rewriting the kernel

Consequence of Gorin-Rahman's formula:

$$\mathbb{E}[H_T(\lfloor x \rfloor, t)] = \int_0^t K((x, s), (x, s)) ds$$

To compute $\lim_{N\to+\infty}\frac{1}{\sqrt{N}}H_{T_N}\Big(\lfloor x\sqrt{N}\rfloor,t\Big)$, we look for a limit of

$$\frac{1}{\sqrt{N}}K((\lfloor x\sqrt{N}\rfloor,s),(\lfloor x\sqrt{N}\rfloor,s)).$$

Proof strategy 4 - Rewriting the kernel

Consequence of Gorin-Rahman's formula:

$$\mathbb{E}[H_T(\lfloor x \rfloor, t)] = \int_0^t K((x, s), (x, s)) ds$$

To compute $\lim_{N\to+\infty}\frac{1}{\sqrt{N}}H_{T_N}(\lfloor x\sqrt{N}\rfloor,t)$, we look for a limit of

$$\frac{1}{\sqrt{N}}K\big(\big(\lfloor x\sqrt{N}\rfloor,s\big),\big(\lfloor x\sqrt{N}\rfloor,s\big)\big).$$

Via Stirling approximation and standard calculus, we get

$$\frac{1}{\sqrt{N}}K((\lfloor x\sqrt{N}\rfloor,s),(\lfloor x\sqrt{N}\rfloor,s)) \approx -\frac{1}{(2\mathrm{i}\pi)^2}.$$

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W,Z)}{W-Z} dW dZ,$$

where

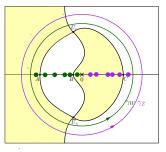
$$S(U) = g(U) - U \log(1 - t_0) - \sum_{i=0}^{m} g(x_0 - \eta a_i + U) + \sum_{i=1}^{m} g(x_0 - \eta b_i + U)$$
 with $g(U) = U \log(U)$ and some function h .

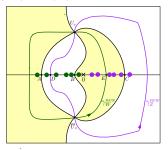
Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W,Z)}{W-Z} dW dZ.$$

Idea: deform γ_Z and γ_W such that S(W) < S(Z) on the new contours.





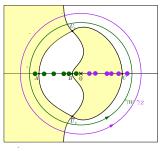
Schematic representation of the integration contours before and after transformation: in the white (resp. yellow) regions, we have S(Z) > S(W) (resp. S(Z) < S(W)).

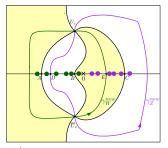
Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W,Z)}{W-Z} dW dZ.$$

Idea: deform γ_Z and γ_W such that S(W) < S(Z) on the new contours.





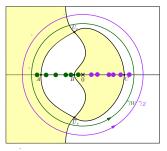
The point U_c on the above picture should satisfy $S'(U_c) = 0$, which is exactly the critical equation! (So the above picture is valid in the liquid region only.)

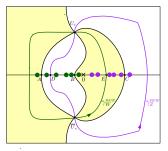
Proof strategy 5 – Steepest descent analysis

Reminder: we are interested in

$$\oint_{\gamma_Z} \oint_{\gamma_W} e^{\sqrt{N}(S(W)-S(Z))} \frac{h(W,Z)}{W-Z} dW dZ.$$

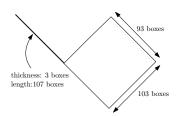
Idea: deform γ_Z and γ_W such that S(W) < S(Z) on the new contours.



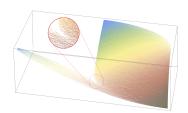


After change of contour, the integral tends to 0. The dominant term asymptotically is the residue term for the pole W-Z, which is an integral from $\overline{U_C}$ to U_C .

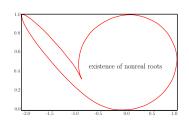
Merci pour votre attention!



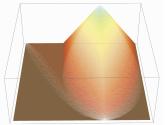
the Young diagram λ^0



a realization of T_N



boundary of the liquid region



its height function H_{T_N}