
Sommes de nombres de Catalan,
méandres et polynômes en 1/Pi

Valentin Féray
joint work with Paul Thévenin and Alin Bostan

CNRS, Institut Élie Cartan de Lorraine (IECL)

Les midis de la Combinatoire
Nancy, 26 novembre 2024

V. Féray (CNRS, IECL) Catalan summations Midi-Combi, 2024–11 1 / 19



Problem statement

For a tree T , we consider

S(T ) := ∑
(xe)∈ZE(T )

+

( ∏
v∈V (T )

CatXv
4−Xv

)
,

where Catk = 1
k+1

(2k
k

)
and Xv =∑

e∋v xe .

Example

Let T = x y z

t
, then

S(T )= ∑
x ,y ,z ,t≥0

Catx Catx+y Caty+z+t Catz Catt 16−x−y−z−t .

Our goal: compute these sums, and prove that they are in Q[ 1π ].
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Motivation: meandric systems (1/5)

Definition (The Uniform Infinite Meandric System, or Infinite Noodle)

Draw two bi-infinite sequences of i.i.d. left/right arrows and close them in
the unique non-crossing way.

0

Question
Is there an infinite connected component? What is the distribution of the
size of the component of 0? In other words, compute P(|C0| = k).
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Motivation: meandric system (2/5)

Conjectures
Almost surely, there is no infinite component
(Curien–Kozma–Sidoravicius–Tournier, ’19).

As k tends to +∞, we have P(|C0| ≥ k)∼ k−(2p2−1)/7+o(1).
(Borga–Gwynne–Park, ’23).

A related conjecture: define a me-
ander as a connected finite arc
configuration

0 1 2 3 4 5 6 7 8 9

Conjecture (Di Francesco–Golinelli–
Guitter, ’00):

#{meanders of size 2n} ∼C Ann−α,

with α= 29+p
145

12
.
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Motivation: meandric system (3/5)

A configuration with |C0| = 2 looks like

0 2k+1

any arc system
on 2k points

any arc system
on 2k points

.

Hence
P[|C0| = 2]= 2

∑
k≥1

Cat2k 2−4k−4 = 1
8 S

( )
.
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Motivation: meandric system (4/5)

A configuration with |C0| = 4 looks like

0

2x+1
Catx

2x+2y+2
2x+2y+2z+3

Catz

Catx+z

Caty .

Hence

P[|C0| = 4]= 4×2× ∑
x ,y ,z≥0

Catx Caty Catz Catx+z 2−4x−2y−4z−8

= 1
32 S

( )
S

( )
.
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Motivation: meandric system (5/5)

More generally, to compute P[|C0| = k],
we sum over all possible component “shapes”, i.e. over meanders of
size k ;
for a meander M,

P(S0 =M)= 2−4k+1k
d∏
i=1

S(Ti ),

where the Ti ’s are the “dual trees” of the meander.

0 1 2 3 4 5 6 7 8 9

M T1

T2
T3
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Quelques exemples en mathematica

Link to the notebook

Results (Pn, Ph
n Sn are respectively the path, the path with a half-edge and

the star with n vertices):

S(P2)= 16
π

−4;

S(Ph
2 )=

8
π
;

S(P3)= 8− 64
3π

;

S(S4)= 64
15π

;

S(P4)=−32+ 64
π

+ 128
π2 .
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S(P2) and hypergeometric functions

We want to compute S(P2)=∑
x∈Z+ ux , where ux = (Catx4−x)2.

Note: the quotient ux+1/ux is a rational function in x . Such sums are
called hypergeometric. Typical hypergeometric sums are

2F1(a,b;c ;z) := ∑
n≥0

a↑nb↑n

c↑n
zn

n!
,

where u↑n := u(u+1) · · ·(u+n−1).

In fact, we have
S(P2)= 4 · 2F1

(− 1
2 ,−1

2 ;1;1
)−4.

Lemma (Gauss identity)

If c −a−b > 0, we have

2F1(a,b;c ;1)= Γ(c)Γ(c −a−b)

Γ(c −a)Γ(c −b)
.

Thus 2F1
(− 1

2 ,−1
2 ;1;1

)= 4
π and S(P2)= 16

π −4.
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S(P3) and the quadratic Catalan recurrence

We want to compute S(P3)=∑
x ,y∈Z+ Catx Caty Catx+y 16−x−y .

Rewrite the sum using Z = x +y .

S(P3)=
∑
Z≥0

CatZ 16−Z

 ∑
x ,y≥0
x+y=Z

Catx Caty


= ∑

Z≥0
CatZ CatZ+116−Z .

Looks like S(P2) with a shift of indices.

Again, this can be related to hypergeometric functions, namely

S(P3)= 8−8 · 2F1
(− 1

2 , 1
2 ;2;1

)
and Gauss identity allows to compute

S(P3)= 8− 64
3π

.
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S(Ph
2 ) and manipulating inequalities

We want to compute S(Ph
2 )=

∑
x ,y∈Z+ Catx Catx+y 4−2x−y .

Set z = x +y .
S(Ph

2 )=
∑

z≥x≥0
Catx Catz 4−x−z .

By symmetry, we also have

S(Ph
2 )=

∑
x≥z≥0

Catx Catz 4−x−z .

and thus

2S(Ph
2 )=

∑
x ,z≥0

Catx Catz 4−x−z + ∑
x ,z≥0
x=z

Catx Catz 4−x−z

=
( ∑
x≥0

Catx 4−x
)2

+S(P2)= 4+
(
16
π

−4
)
= 16

π
.
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From edge-variables to vertex variables

We root T and write v ′ ≤T v if v ′ is a descendent of v . Color white
(resp. black) vertices at even (resp. odd) distance from the root.

Lemma
The map sending (xe)e∈E(T ) to (Xv )v∈V (T ) where Xv =∑

e∋v xe , is injective

(∗)


∑

w∈V◦(T )Xw =∑
b∈V•(T )Xb

for all v ∈V◦(T ),
∑

w∈V◦(T ),w≤T v Xw ≥∑
b∈V•(T ),b≤T v Xb

for all v ∈V•(T ),
∑

w∈V◦(T ),w≤T v Xw ≤∑
b∈V•(T ),b≤T v Xb.

Corollary

S(T )= ∑
(Xv )∈ZV (T )

+
(∗)

∏
v∈V

CatXV
4−V .
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Next example

A rooted version of P4 is

w1

w2

b1 b2 . We get

S(P4)=
∑

w1 ,w2 ,b1 ,b2≥0
w1+w2=b1+b2 , b2≥w2

Catw1 Catw2 Catb1 Catb2 4−w1−w2−b1−b2 .

Manipulating the inequalities,

2S(P4)=
∑

w1 ,w2 ,b1 ,b2≥0
w1+w2=b1+b2

Catw1 Catw2 Catb1 Catb2 4−w1−w2−b1−b2

+ ∑
w1 ,w2 ,b1 ,b2≥0

w1+w2=b1+b2 ,b2=w2

Catw1 Catw2 Catb1 Catb2 4−w1−w2−b1−b2 .

The first term can be computed using the quadratic recurrence, and the
second is S(P2)

2.
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The general framework

We consider rooted trees T̃ with black/white/gray* vertices and
vertex decorations in {=,≤,≥,∅}×Z.
To each vertex is associated a condition (Cv ) comparing the sums of
white variables and black variables below it.
We consider the sum

S(T̃ ) := ∑
(Xv )∈Z

V•/◦(T )

+

 ∏
v∈V•/◦(T )

CatXv
4−Xv

(∏
v

1[Cv ]

)
.

Example: A decorated version of P4

≤0 ∅0

∅0

=1w1

w2

b2
b1

no condition

cond. w1 + w2 = b1 + b2 + 1

cond. w2 ≤ b2.
.

* Gray vertices do not have associated variables but may impose conditions.
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Our main result (general version)

Theorem (Bostan, F., Thévenin, ’25)

For any colored decorated tree S(T̃ ), the sum S(T̃ ) belongs to Q[ 1π ].

And the proof is constructive!

Corollary

For any fixed k , P[|C0| = k] is in Q[ 1π ].

More generally, we can replace 4−Xv by tXv and we have

Theorem (Bostan, F., Thévenin, ’25)

The series S(T̃ )(t) belongs to the space

Q
[
t±1,

p
1−4t, 2F1

(− 1
2 ,−1

2 ;1;16t2
)

,2F1
(− 1

2 , 1
2 ;2;16t2

)]
.

Moreover, 2F1
(− 1

2 ,−1
2 ;1;16t2

)
and 2F1

(− 1
2 , 1

2 ;2;16t2
)

are algebraically
independent over Q

[
t±1,

p
1−4t

]
.
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Some words on the proof

We have some reduction rules, like

(≤,K) ≡ +(=,K) (∅,K)+(≥,K)

(manipulating inequalities)

,

or

∅0
U ≡

V

∆
U

V

∆+ 1

− U

V

∆+ 1
t−1 · t−1 ·

(using the quadratic recurrence)

.
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Reducing any tree with such rules?

Let T be a bicolored tree. We start from the leaves.

If there are two twin leaves of the same color or if one leaf has the
same color than its parents, we can apply the quadratic recurrence

The difficult case is that of long stars, e.g.

V ∆
i ,j ,k :=

∆

≥0 ∅0≤0

{ { {

i times j times k times

∅0

.

By reversing inequalities, we obtain relations between the V ∆
i ,j ,k for

various values of i , j and k .
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A linear system for long stars

Lemma
For any “rootstock” R , any decoration ∆ and any d ≥ 2, we have

2 1 0 . . . 0

1 2 1
. . .

...

0
. . . . . . . . . 0

...
. . . 1 2 1

0 . . . 0 1 2




S(R |V ∆

1,d−1,0)

...

S(R |V ∆
d−1,1,0)

 =


X1

...

Xd−1

−


S(R |V ∆

0,d ,0)

0
...
0

S(R |V ∆
d ,0,0)

 ,

where, for 1≤ i ≤ d −1,

Xi = S(R |V ∆
i−1,d−1−i ,2)+2S(R |V ∆

i−1,d−1−i ,1) ·S=,0+S(R |V ∆
i−1,d−1−i ,0) ·S2

=,0.

→ this lemma allows to express S(R |V ∆
i ,j ,0) in terms of smaller trees since

the matrix is invertible!
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Thanks for your attention!

0 1 2 3 4 5

∑
x ,y ,z

Catx Catx+y Caty+z Catz 16−x−y−z =−32+ 64
π

+ 128
π2 .
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