Formes limites de permutations aléatoires

Valentin Féray

CNRS, Institut Élie Cartan de Lorraine (IECL)

Journée de rentrée de l’IECL
Abbaye des Prémontrées, 12 octobre 2020
Main topic: random permutations

- Classical questions: look at some statistics, like the number of cycles (of given length), longest increasing subsequences, ... (usually for uniform or Ewens distributions)

- a more recent approach: look for a limit theorem for the renormalized "permutation matrix" (interesting for non-uniform or constrained models).
Main topic: random permutations

- Classical questions: look at some statistics, like the number of cycles (of given length), longest increasing subsequences, ... (usually for uniform or Ewens distributions)

- a more recent approach: look for a limit theorem for the renormalized "permutation matrix" (interesting for non-uniform or constrained models).

Here: we consider some constraints, called pattern avoidance.
A permutation π can be represented by its diagram (\sim permutation matrix) and mapped to a probability measure μ_π on $[0,1]^2$, called\textit{ permuton}.

$$\pi = 52413 = \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & & \\
\end{array} \qquad \mapsto \qquad \mu_\pi = \begin{array}{ccc}
\begin{array}{c}
\text{gray squares}
\end{array}
\end{array}$$

In μ_π, each small square has weight $1/n$ (i.e. density n).

We have a natural notion of limit for such objects: the \textit{weak convergence} of measure.
Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence $\sigma_{i_1} \ldots \sigma_{i_k}$ that is order-isomorphic to τ, i.e. $\sigma_{i_s} < \sigma_{i_t} \iff \tau_s < \tau_t$.

Example (occurrences of 213)

245361
82346175

Pattern avoidance is a well-studied concept in enumerative combinatorics!
Uniform random permutations avoiding some patterns

no constraints

Av(231) (©MM)

Av(321) (©HRS)

Av(4231) (©NM)

Av(2413,3142) (©MM)

Av(…) (©MM)

Detour: an operad structure on permutations

Well-known: the set S_n of permutations of size n is a group for the composition operation.

Less known: the set $\bigcup_{n \geq 1} S_n$ of permutations of all sizes is an operad for the substitution operation.
Detour: an operad structure on permutations

Well-known: the set S_n of permutations of size n is a group for the composition operation.

Less known: the set $\bigcup_{n \geq 1} S_n$ of permutations of all sizes is an operad for the substitution operation.

Definition (substitution)

Let θ be a permutation of size d and $\pi^{(1)}, \ldots, \pi^{(d)}$ be permutations. The diagram of the permutation $\theta[\pi^{(1)}, \ldots, \pi^{(d)}]$ is obtained by replacing the i-th dot in the diagram of θ with the diagram of $\pi^{(i)}$ (for each i).

$$2413[132, 21, 1, 12] = 12 = 24387156$$
Simple permutations and substitution decomposition

Definition
A permutation is called *simple* if it cannot be obtained as a nontrivial substitution.

Examples: 12, 21, 3142, 2413, 25314, …
Definition

A permutation is called *simple* if it cannot be obtained as a nontrivial substitution.

Examples: 12, 21, 3142, 2413, 25314,

It’s an analogue notion to that of prime numbers.
Definition
A permutation is called \textit{simple} if it cannot be obtained as a nontrivial substitution.

Examples: 12, 21, 3142, 2413, 25314, ….

It’s an analogue notion to that of prime numbers. In both cases, there are "factorization theorems":

- an integer can be uniquely represented as a multiset of prime numbers;
- a permutation can be (almost) uniquely represented as a "tree of permutations" (we call this its substitution decomposition)

We get trees and not multisets since we have an operad structure, and not a commutative monoid (as for integers).
Substitution decomposition and separable permutations

Inner nodes of the decomposition tree are labelled with simple permutations.

Proposition $\mathcal{A}_v(2413, 3142)$ is the set of permutations whose decomposition trees contain only nodes labelled with 12 and 21. These are called separable permutations.
Inner nodes of the decomposition tree are labelled with simple permutations.

Proposition

\(\text{Av}(2413, 3142) \) is the set of permutations whose decomposition trees contain only nodes labelled with 12 and 21.

These are called **separable** permutations.
Problem

Given the tree T associated with a separable permutation σ and integers $i < j$, how to determine whether $\sigma(i) < \sigma(j)$?

Answer: look at the decoration of the first common ancestor between the i-th leaf and the j-th leaf. In the example, it is 21 so $\sigma(2) > \sigma(5)$.

Write $i < T j$ (resp. $i > T j$) when $i < j$ and their common ancestor is 12 (resp. 21). We can reconstruct σ from this order: $\sigma(i) = 1 + |\{j : j < T i\}|$.
Problem
Given the tree T associated with a separable permutation σ and integers $i < j$, how to determine whether $\sigma(i) < \sigma(j)$?

Answer: look at the decoration of the first common ancestor between the i-th leaf and the j-th leaf. In the example, it is 21 so $\sigma(2) > \sigma(5)$.
Problem

Given the tree T associated with a separable permutation σ and integers $i < j$, how to determine whether $\sigma(i) < \sigma(j)$?

Answer: look at the decoration of the first common ancestor between the i-th leaf and the j-th leaf.
In the example, it is 21 so $\sigma(2) > \sigma(5)$.

Write $i <_T j$ (resp. $i >_T j$) when $i < j$ and their common ancestor is 12 (resp. 21). We can reconstruct σ from this order:

$$\sigma(i) = 1 + \left| \{j : j <_T i \} \right|$$
The limiting object: the Brownian separable permuton

\[e \] is a Brownian excursion and \(S : \text{LocalMin}(e) \to \{\oplus, \ominus\} \) is an assignment of i.i.d. random signs to local minima of \(e \) (the probability to get \(\oplus \) is \(p \in (0,1) \)).

(the Brownian excursion encodes the limit of the trees, its local minima corresponding to branching points in the trees)
If \(x < y \) in \([0,1]\), we set \(x <_{(e,S)} y \) if \(S(\arg\min_{[x,y]} e) = \oplus \)
and \(y <_{(e,S)} x \) if \(S(\arg\min_{[x,y]} e) = \ominus \).

2. We define a function \(\tau : [0,1] \to [0,1] \) by \(\tau(x) = \text{Leb}(\{y : y <_{(e,S)} x\}) \).

3. The **Brownian separable permuton** \(\mu_p \) is the corresponding permuton.
Limits of separable permutations

Theorem (Bassino-Bouvel-F.-Gerin-Pierrot, 2018)

For each n, let σ_n be a uniform random separable permutation of size n. Then μ_{σ_n} converges in distribution to $\mu_{1/2}$.
Theorem (Bassino-Bouvel-F.-Gerin-Pierrot, 2018)

For each n, let σ_n be a uniform random separable permutation of size n. Then μ_{σ_n} converges in distribution to $\mu_{1/2}$.

Similar results for other classes $\text{Av}(B)$ (based on the algebraic properties of the class w.r.t. the operad structure):

- uniform random permutations σ_n in substitution-closed classes $\text{Av}(B)$ tend to μ_p (under some analytic conditions; p depends on the class).
- If $\text{Av}(B)$ is finitely generated (i.e. contains finitely many simple), there is a dichotomy (see next slide; again with some technical conditions).
Limits of separable permutations

Theorem (Bassino-Bouvel-F.-Gerin-Pierrot, 2018)

For each n, let σ_n be a uniform random separable permutation of size n. Then μ_{σ_n} converges in distribution to $\mu_{1/2}$.

Similar results for other classes $\text{Av}(B)$ (based on the algebraic properties of the class w.r.t. the operad structure):

- uniform random permutations σ_n in substitution-closed classes $\text{Av}(B)$ tend to μ_p (under some analytic conditions; p depends on the class).

- If $\text{Av}(B)$ is finitely generated (i.e. contains finitely many simple), there is a dichotomy (see next slide; again with some technical conditions).
The dichotomy for finitely generated classes

"Essentially branching case"

"Essentially linear case"
Any questions? I have one...

Let \(\sigma \) be a permutation of size \(n \). Do there exist polynomials \(P_1, P_2, \ldots, P_n \) such that

- \(P_1(0) = \cdots = P_n(0) = 0 \);
- for small \(x < 0 \), we have \(P_1(x) < P_2(x) < \cdots < P_n(x) \);
- for small \(x > 0 \), we have \(P_{\sigma(1)}(x) < P_{\sigma(2)}(x) < \cdots < P_{\sigma(n)}(x) \)?
Let σ be a permutation of size n. Do there exist polynomials P_1, P_2, \ldots, P_n such that

- $P_1(0) = \cdots = P_n(0) = 0$;
- for small $x < 0$, we have $P_1(x) < P_2(x) < \cdots < P_n(x)$;
- for small $x > 0$, we have $P_{\sigma(1)}(x) < P_{\sigma(2)}(x) < \cdots < P_{\sigma(n)}(x)$?

Answers in office 221 (Nancy). Thank you for your attention.