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Reminder

Definition (uniform control on cumulants)

A sequence (Sn) admits a uniform control on cumulants with DNA
(Dn,Nn,A) and limits σ2 and L if Dn = o(Nn), Nn → +∞ and

∀r ≥ 2, |κ(r)(Sn)| ≤ Nn (2Dn)r−1 r r−2 Ar ;

κ(2)(Sn)

Nn Dn
= (σn)2 →n→∞ σ2;

κ(3)(Sn)

Nn (Dn)2 = Ln →n→∞ L.

This yields mod-Gaussian convergence of a suited renormalization of Sn,
hence deviation probability estimate and a bound on the speed on
convergence in a CLT.
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Today’s talk

See a setting where the inequality above holds: dependency graphs and a
weighted variant.

Many applications: subgraph counts in random graphs, patterns in random
permutations, magnetization in Ising models, linear statistics of Markov
chains.

We will also discuss a weaker framework, which is useful to prove CLT, but
where we cannot prove mod-Gaussian convergence.
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Dependency graphs

Definition (Malyshev, ’80, Petrovskaya/Leontovich, ’82, Janson, ’88)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider G = G (n, p). Let A = {∆ ∈
([n]

3

)
} (set of potential triangles) and

{∆1, ∆2} ∈ EL iff ∆1 and ∆2 share an edge in G .

Then L is a dependency graph for the family {Y∆,∆ ∈
([n]

3

)
}.

�� ��Note: L has degree O(n)
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Janson’s normality criterion

Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables; |Yn,i | < A
a.s.
we have a dependency graph Ln with maximal degree Dn − 1.
we set Sn =

∑Nn
i=1 Yn,i and σ2

n = Var(Sn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s
Dn
σn
→ 0 for some integer s. Then Sn satisfies a CLT.

For triangles, Nn =
(n
3

)
, Dn = O(n), while σn � n2. (for fixed p)

Corollary

Fix p in (0, 1). Then Tn satisfies a CLT.

(also true for pn → 0 with npn →∞; originally proved by Rucinski, 1988).
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Applications of dependency graphs to CLT results

mathematical modelization of cell populations (Petrovskaya,
Leontovich, 82);

subgraph counts in random graphs (Janson, Baldi, Rinott, Penrose,
88, 89, 95, 03);

Geometric probability (Avram, Bertsimas, Penrose, Yukich, Bárány,
Vu, 93, 05 , 07);

pattern occurrences in random permutations (Bóna, Janson,
Hitchenko, Nakamura, Zeilberger, 07, 09, 14).

m-dependence (Hoeffding, Robbins, 53, . . . ; now widely used in
statistics) is a special case.

(Some of these applications use variants of Janson’s normality criterion,
which are more technical to state and omitted here. . . )

V. Féray (UZH) Mod-φ II: dependency graphs Osnabruck, 2016–12 6 / 22



A bound for cumulants

Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables; |Yn,i | < A
a.s.
we have a dependency graph Ln with maximal degree Dn − 1.
we set Sn =

∑Nn
i=1 Yn,i and σ2

n = Var(Sn).

Lemma (Janson, 1988)

κr (Sn) ≤ Cr Nn D
r−1
n Ar ,

for some universal constant Cr .

Döring and Eichelsbacher, 2012: one can take Cr = (2e)r (r !)3.

FMN, 2013-2017: one can take Cr = 2r−1r r−2,
i.e. we have the uniform bound on cumulants.
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A bound for mixed cumulants

How to bound κr (Xn)?

κr (Xn) =
∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Gn

1 2 3

4
5

6

κ(Yn,i1 , · · · ,Yn,ir ) is the mixed cumulants; multilinear version of cumulants.
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κr (Xn) =
∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Gn

1 2 3

4
5

6

Most terms are zero: κ(Yn,i1 , · · · ,Yn,ir ) = 0 unless the induced graph
Gn[{i1, . . . , ir}] is connected.

e.g. κ(Yn,1,Yn,3,Yn,4,Yn,5) = 0
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Gn

1 2 3

4
5

6

Most terms are zero: κ(Yn,i1 , · · · ,Yn,ir ) = 0 unless the induced graph
Gn[{i1, . . . , ir}] is connected.

Usual strategy: bound each term κ(Yn,i1 , · · · ,Yn,ir ) and the number of
non-zero terms.
We prove a bound depending on the induced graph Gn[{i1, . . . , ir}].
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A bound for mixed cumulants

How to bound κr (Xn)?

κr (Xn) =
∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Gn

1 2 3

4
5

6

Most terms are zero: κ(Yn,i1 , · · · ,Yn,ir ) = 0 unless the induced graph
Gn[{i1, . . . , ir}] is connected.

Proposition (FMN, 2013-2017)

|κ(Yn,i1 , · · · ,Yn,ir )| ≤ 2`−1 Ar ST
(
Gn[{i1, . . . , ir}]

)
,

where ST(G ) denotes the number of spanning tree of a graph G .

e.g. |κ(Yn,1,Yn,2,Yn,4,Yn,5)| ≤ 23 A4 8;
|κ(Yn,1,Yn,2,Yn,3,Yn,4)| ≤ 23 A4 1.
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From mixed cumulants to cumulants

Recall that κr (Sn) =
∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Thus
|κr (Sn)| ≤

∑
i1,...,ir

2r−1 Ar ST
(
Gn[{i1, . . . , ir}]

)
.

Fix a Cayley tree T . For how
many lists i1, . . . , ir is it contained
in Gn[{i1, . . . , ir}]?

NnD
r−1
n

T = 1

7

5

2
6

3

4

8

Choose any i1: Nn choices ;
i5 should be a neighbour of i1 in Gn (or i1 itself): Dn choices ;
i2 should be a neighbour of i5 in Gn (or i5 itself). Also Dn choices.
. . .

|κr (Tn)| ≤ 2r−1r r−2NnD
r−1
n Ar
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Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables; |Yn,i | < A
a.s.
we have a dependency graph Ln with maximal degree Dn − 1.
we set Sn =

∑Nn
i=1 Yn,i , σ2

n = Var(Sn) and L3
n = κ3(Sn).

Theorem (FMN, 2017)

Assume that σ2n
NnDn

→ σ2 > 0. Then the error term in the CLT for
1
σn

(Sn − E(Sn)) is O(
√
Dn/Nn).

If furthermore σ2n
NnDn

→ L3 6= 0, the normality zone is o
(
(Dn/Nn)1/6).

Proof: uniform bound of cumulants + general results from yesterday.

The speed of convergence was already known from Rinott (1994), through
Stein’s method.
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Application 1: subgraph counts

Copies of F in a random graph G

1

2 3

4

56

a

b

c

Proposition

The number of copies of a fixed F in G (n, p) (p fixed) admits a uniform
control on cumulants with DNA (n|VG |−2, n|VG |, 1) and σ2 > 0.

Proof: we have a dependency graph with Nn = n|VG | and Dn = n|VG |−2,
which gives us the bound for higher cumulants.
Estimates for second and third cumulants by computation.
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Application 1: subgraph counts

Copies of F in a random graph G

1

2 3

4

56

a

b

c

Proposition

The number of copies of a fixed F in G (n, p) (p fixed) admits a uniform
control on cumulants with DNA (n|VG |−2, n|VG |, 1) and σ2 > 0.

When p = pn → 0, we do not have a good uniform control on
cumulants.
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Application 2: patterns in permutation

If τ and π are permutations of size n
and k (k ≤ n), an occurrence of π
in τ is an embedding of the diagram
of π in the diagram of τ .
Ex: an occurrence of 213 in 245361.

1 2 3 4 5 6

1

2

3

4

5

6

Proposition
The number of occurrences of a fixed π in a uniform random permutation
τ of size n admits a uniform control on cumulants with DNA (nk−1, nk , 1)
and σ2 > 0.

Proof: again, dependency graph + careful estimate of second/third
cumulants.
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Transition

We will now discuss a weighted analogue of dependency graphs.

Goal: consider sum of pairwise dependent random variables, where the
dependencies are asymptotically small.
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Uniform weighted dependency graph

Let S =
∑N

i=1 Yi as above and let G be
an edge weighted graph with vertex set
[N] (weights are in [0, 1]).

G

1 2 3

4
5

6

ε2

ε3

1

ε ε

1

ε

Proposition

Assume that, for any i1, . . . , ir in [N], we have∣∣κ(Yi1 , . . . ,Yir )
∣∣ ≤ C r

∑
T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)

then
∣∣κr (S)

∣∣ ≤ C r N Dr−1, where D − 1 is the maximal weighted degree of
the graph.

e.g. κ(Yn,1,Yn,3,Yn,4,Yn,5) = 0;
|κ(Yn,1,Yn,2,Yn,3,Yn,4)| ≤ C 4 ε;
|κ(Yn,1,Yn,2,Yn,4,Yn,5)| ≤ C 4 (ε2 + ε3 + 3ε4 + ε5 + 2ε6);
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∑
T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)

then
∣∣κr (S)

∣∣ ≤ C r N Dr−1, where D − 1 is the maximal weighted degree of
the graph.

Proof: simple adaptation of the case of dependency graphs (which
corresponds to edges of G having weights 0 or 1).
When (UWDG) holds, we say that G is a C -uniform weighted dependency
graph for {Yi , 1 ≤ i ≤ N}.

V. Féray (UZH) Mod-φ II: dependency graphs Osnabruck, 2016–12 14 / 22



Linear statistics in Markov chains

Setting:
Let (Mi )i≥0 be an irreducible aperiodic Markov chain on a finite space
state S ;
Assume M0 is distributed with the stationary distribution π;
Set Yi = fi (Mi ) for some functions fi uniformly bounded by B .

Proposition (FMN, 2017, based on Saulis, Statelivičius, 1991)

There exists ε > 0 depending on the transition matrix such that the
complete graph on N≥0 with weights w({s, t}) = ε|s−t| is a 4B-uniform
weighted dependency graph for the Yi ’s.

The maximal weighted degree of the restriction to [n] is constant!

→ deviation and speed of convergence estimates for linear statistics of
Markov chains (for speed of convergence, see Bolthausen, 1980).
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Ising model

Statistical mechanics model to mod-
elize ferromagnetism.

P(ω) ∝ exp

β∑
i∼j

ωiωj + h
∑
i

ωi



Defined a priori for finite subsets Λ b Zd , but we can take the
“thermodynamic limit” Λ ↑ Zd (with + boundary conditions).

Proposition (Duneau, Iagolnitzer, Souillard, 1974)

In the termodynamic limit, for h 6= 0 or h = 0 and sufficiently small β,
there exists ε(d),C (d) > 0 such that the complete graph on N≥0 with
weights w({s, t}) = ε(d)‖s−t‖ is a C (d)-uniform weighted dependency
graph for the σi ’s.

The same cannot be true for large β (β > βc(d)).
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(Non-uniform) weighted dependency graphs

Definition (Reminder)

Let C be a positive constant.
We say that G is a C -uniform weighted dependency graph for
{Yi , 1 ≤ i ≤ N} if, for any i1, . . . , ir in [N], we have∣∣κ(Yi1 , . . . ,Yir )

∣∣ ≤ C r
∑

T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)
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(Non-uniform) weighted dependency graphs

Definition (F. 2016)

Let C = (Cr )r≥2 be a sequence of positive numbers.
We say that G is a C -weighted dependency graph for {Yi , 1 ≤ i ≤ N} if,
for any i1, . . . , ir in [N], we have∣∣κ(Yi1 , . . . ,Yir )

∣∣ ≤ Cr

∑
T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)

The bounds are now non-uniform in r .
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We say that G is a C -weighted dependency graph for {Yi , 1 ≤ i ≤ N} if,
for any i1, . . . , ir in [N], we have∣∣κ(Yi1 , . . . ,Yir )

∣∣ ≤ Cr max
T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)

We can replace the sum by a max. Spanning trees of maximal weight can
be found efficiently (e.g. Prim’s algorithm).
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Let C = (Cr )r≥2 be a sequence of positive numbers.
We say that G is a C -weighted dependency graph for {Yi , 1 ≤ i ≤ N} if,
for any i1, . . . , ir in [N], we have∣∣κ(Yi1 , . . . ,Yir )

∣∣ ≤ Cr max
T Cayley tree

∏
{j ,k}∈ET

w({ij , ik}), (UWDG)

Lemma ∣∣κr(∑Yi

)∣∣ ≤ Cr N Dr−1

Good to prove CLT, but not for mod-Gaussian convergence.
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Applications of non-uniform weighted dependency graphs

crossings in random pair-partitions;
subgraph counts in G (n,M);
random permutations;
particles in symmetric simple exclusion process;
linear functional of Markov chain;
spins in Ising model (with Jehanne Dousse);
(*) patterns in multiset permutations, in set-partitions (with Marko
Thiel);

*in progress. In blue: the ones which are also uniform WDG.

(Some of these applications use a variant of the above definition/lemma,
which is more technical to state. . . )
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Stability by powers of weighted dependency graphs

Setting:
Let {Yα, α ∈ A} be r.v. with weighted dependency graph L̃;
fix an integer m ≥ 2;
for a multiset B = {α1, · · · , αm} of elements of A, denote

YB := Yα1 · · · Yαm .

Proposition (F., 2016)

The set of r.v. {YB} has a weighted dependency graph L̃m, where

wt
L̃m

(YB ,YB′) = max
α∈B,α′∈B′

wt
L̃
(Yα,Yα′).

In short: if we have a dependency graph for some variables Yα, we have
also one for monomials in the Yα.

No analogue for uniform weighted dependency graphs.
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Multilinear statistics in Markov chains

Setting:
Let (Mi )i≥0 be an irreducible aperiodic Markov chain on a finite space
state S ;
Assume M0 is distributed with the stationary distribution π;
Set Yi ,s = 1Mi=s .

Proposition

We have a weighted dependency graph L̃ with wt
L̃

(
{Yi ,s ,Yj ,t}

)
= |ε|j−i .

We already know that: in fact this is a uniform weighted dependency
graph.
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Set Yi ,s = 1Mi=s .

Proposition

We have a weighted dependency graph L̃ with wt
L̃

(
{Yi ,s ,Yj ,t}

)
= |ε|j−i .

Corollary (using the stability by product)

We have a weighted dependency graph L̃m for monomials Yi1,s1 · · · Yim,sm .

→ gives a CLT for the number of copies of a given word in (Mi )0≤i≤N .
(Answers a question of Bourdon and Vallée.)

(But no uniform control on cumulants here )
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Remark on weighted dependency graphs for Ising models

(F., Dousse, 2016) Using the stability by products, we can have CLTs
for number of occurrences of a given spin pattern (like the number of
+’s that are surrounded by −’s); but no uniform control on cumulants.

For h = 0 and sufficiently large β, there is also a weighted dependency
graph for spins (Malyshev, Minlos, 1991, F., Dousse, 2016).
But, recall that in this case, we can prove that there is no uniform
control on cumulants and hence no uniform weighted dependency
graph.
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Conclusion

Dependency graphs provide uniform bounds on cumulants (lots of
examples, including subgraph counts in G (n, p) for fixed p, pattern
occurrences in random permutations);

There is a weighted variant which include linear statistics of Markov
chain, magnetization in Ising model (except at low temperature);

If you relax assumptions to only get a CLT and not a uniform control
on cumulants, the weighted version applies to even more examples;

We would really like to get uniform bounds on cumulants for these
extra examples. . .
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