Dual combinatorics of Jack polynomials

Valentin Féray
joint work with Maciej Dołęga (Paris 7)
and Piotr Śniady (TU Munich)

Institut für Mathematik, Universität Zürich

Workshop, Recent Trends in Algebraic and Geometric Combinatorics
Madrid, November 27th - 29th, 2013
What is this talk about?

- **Symmetric functions:**

\[x_1^3 + x_2^3 + x_3^3 + \ldots \]

\[\sum_{i < j} x_i x_j \]
What is this talk about?

- Symmetric functions.
- in particular Jack polynomials $J^{(\alpha)}_{\lambda}$.

\[
J^{(\alpha)}_{(2)} = (\alpha + 1) \cdot x_1^2 + 2 \cdot x_1 \cdot x_2 + (\alpha + 1) \cdot x_2^2 \\
+ 2 \cdot x_1 \cdot x_3 + 2 \cdot x_2 \cdot x_3 + (\alpha + 1) \cdot x_3^2 + \ldots
\]
What is this talk about?

- Symmetric functions.
- in particular **Jack polynomials** $J^{(\alpha)}_\lambda$.
- We present a new approach to the study of Jack polynomials (called **dual**), due to Michel Lassalle with a lot of open questions.
What is this talk about?

- Symmetric functions.
- in particular Jack polynomials $J^{(\alpha)}_{\lambda}$.
- We present a new approach to the study of Jack polynomials (called dual), due to Michel Lassalle with a lot of open questions.
- Partial answers (for $\alpha = 1, 2$) involve combinatorics and representation theory.
Outline of the talk

1. Definitions and notations
2. Dual approach and Lassalle’s conjectures
3. Solution to the $\alpha = 1$ case using Young symmetrizer
4. Overview of the $\alpha = 2$ case
5. Leads towards the general case
Partitions

Definition

A partition (of n) is a non-increasing list of integer (of sum n). If λ is a partition of n, we denote $\lambda \vdash n$.

Example: $(4, 3, 1) \vdash 8$.

Graphical representation as Young diagram:
Symmetric functions

Definition
A symmetric function is a symmetric polynomial in infinitely many variables x_1, x_2, \ldots.

\begin{itemize}
 \item bounded degree ;
 \item when we set $x_{n+1} = x_{n+2} = \cdots = 0$, we have a symmetric polynomial in x_1, \ldots, x_n.
\end{itemize}

Examples:

\begin{align*}
 p_3 &= x_1^3 + x_2^3 + x_3^3 + \ldots, \\
 e_2 &= \sum_{i<j} x_i x_j \\
\end{align*}

Swaping the indices of two variables does not change the polynomials.
Symmetric functions

Definition
A symmetric function is a symmetric polynomial in infinitely many variables x_1, x_2, \ldots.

Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be a partition. Set

$$m_\lambda(x_1, x_2, \ldots) = x_1^{\lambda_1} \ldots x_r^{\lambda_r} + \text{its images by swaping indices.}$$

Proposition
The family $(m_\lambda)_\lambda$ partition is a linear basis of the symmetric function ring.

called monomial basis.
Symmetric functions

Definition
A symmetric function is a symmetric polynomial in infinitely many variables x_1, x_2, \ldots.

Set $p_0 = 1$, $p_k = x_1^k + x_2^k + \ldots$. Power sums

Proposition
The family $(p_i)_{i \geq 1}$ is an algebraic basis of the symmetric function ring. In other words, any symmetric function writes uniquely as a linear function of

$$
\left(p_\lambda = \prod_{i} p_{\lambda_i} \right),
$$

where λ runs over partitions.
Definitions and notations

Schur functions

Definition (Jacobi, 1841)
Let λ be a partition. Define

$$s_\lambda(x_1, \ldots, x_n) = \frac{\det \left(x_i^{\lambda_j + n-j} \right)}{\det \left(x_i^{n-j} \right)}.$$

Then (s_λ) is a linear basis of symmetric function ring.

Example:

$$s_{(2,1)}(x_1, x_2, x_3) = x_1^2 \cdot x_2 + x_1 \cdot x_2^2 + x_1^2 \cdot x_3 + 2 \cdot x_1 \cdot x_2 \cdot x_3$$
$$+ x_2^2 \cdot x_3 + x_1 \cdot x_3^2 + x_2 \cdot x_3^2$$
Representation theory of symmetric group

- S_n: group of permutations of n.

- We are interested in its representation that is group morphisms $S_n \rightarrow \text{GL}(V)$, $V \in \mathbb{C}$-vector space of finite dimension.
Representation theory of symmetric group

- S_n: group of permutations of n.

- We are interested in its representation that is group morphisms $S_n \to \text{GL}(V)$, $V \mathbb{C}$-vector space of finite dimension.

- What the general theory says us:
 - it is enough to study the irreducible representations.
 - these irreducible representations ρ^λ are enumerated by the number of conjugacy classes in S_n, that is of partitions of n.
Representation theory of symmetric group

- S_n: group of permutations of n.

- We are interested in its representation that is group morphisms $S_n \rightarrow GL(V)$, $V \subseteq \mathbb{C}$-vector space of finite dimension.

- what the general theory says us:
 - it is enough to study the irreducible representations.
 - these irreducible representations ρ^λ are enumerated by the number of conjugacy classes in S_n, that is of partitions of n.
 - what is really important is to compute characters ($=\text{trace}$), that is a collections of numbers

\[\chi^\lambda_\mu := \text{tr}(\rho^\lambda(\pi)) \quad \text{(with π of cycle type μ)} \]

indexed by two partitions.
Frobenius formula

Theorem (Frobenius, 1900)

Let λ be a partition of n, then

$$s_\lambda = \sum_{\mu \vdash n} \chi_\mu^\lambda \frac{p_\mu}{z_\mu},$$

where $z_\mu = \prod_{i \geq 1} i^{m_i} m_i !$ if μ has m_1 parts equal to 1, . . .

This result makes a link between two different theories: symmetric functions and representation theory of the symmetric group.
Frobenius formula

Theorem (Frobenius, 1900)
Let λ be a partition of n, then

$$s_\lambda = \sum_{\mu \vdash n} \chi_\mu^\lambda \frac{p_\mu}{z_\mu},$$

where $z_\mu = \prod_{i \geq 1} i^{m_i} m_i!$ if μ has m_1 parts equal to 1,.

Hall scalar product is defined by $\langle p_\mu, p_\nu \rangle := z_\mu \delta_{\mu, \nu}.$
Frobenius formula

Theorem (Frobenius, 1900)
Let λ be a partition of n, then

$$s_\lambda = \sum_{\mu \vdash n} \chi_\mu^\lambda \frac{p_\mu}{z_\mu},$$

where $z_\mu = \prod_{i \geq 1} i^{m_i} m_i!$ if μ has m_1 parts equal to 1, ...

Hall scalar product is defined by $\langle p_\mu, p_\nu \rangle := z_\mu \delta_{\mu,\nu}$.

Orthonormality of irreducible characters $\Rightarrow \langle s_\lambda, s_\rho \rangle = \delta_{\lambda,\rho}$.
Frobenius formula

Theorem (Frobenius, 1900)
Let λ be a partition of n, then

$$s_\lambda = \sum_{\mu \vdash n} \chi_\mu^n \frac{p_\mu}{z_\mu},$$

where $z_\mu = \prod_{i \geq 1} i^{m_i} m_i!$ if μ has m_1 parts equal to 1,\ldots

Hall scalar product is defined by $\langle p_\mu, p_\nu \rangle := z_\mu \delta_{\mu, \nu}$.

Orthonormality of irreducible characters $\Rightarrow \langle s_\lambda, s_\rho \rangle = \delta_{\lambda, \rho}$

Proposition
The basis (s_λ) may be obtained from the monomial basis by Gram-Schmidt orthonormalization process. (use lexicographic order on partitions).
Consider the following deformation of Hall scalar product:

\[\langle p_{\mu}, p_{\nu} \rangle_{\alpha} = \alpha^{\ell(\mu)} z_{\mu} \delta_{\mu, \nu} \]

\(\ell(\mu)\): length (number of parts) of the partition \(\mu\).

Definition

Jack polynomials \(P_{\alpha}^{Q_{\lambda}}\) are obtained from the monomial basis by Gram-Schmidt orthonormalization process (with respect to the deformed scalar product).
Jack polynomials

Consider the following deformation of Hall scalar product:

\[\langle p_\mu, p_\nu \rangle_\alpha = \alpha^{\ell(\mu)} z_\mu \delta_{\mu,\nu} \]

\(\ell(\mu) \): length (number of parts) of the partition \(\mu \).

Definition

Jack polynomials \(P_{\lambda}^{(\alpha)} \) are obtained from the monomial basis by Gram-Schmidt orthonormalization process (with respect to the deformed scalar product).

Renormalization: \(J_{\lambda}^{(\alpha)} = c_{\lambda}^{(\alpha)} P_{\lambda}^{(\alpha)} \) with \(c_{\lambda}^{(\alpha)} \) explicit.
Consider the following deformation of Hall scalar product:

\[
\langle p_\mu, p_\nu \rangle_\alpha = \alpha^{\ell(\mu)} z_\mu \delta_{\mu,\nu}
\]

\(\ell(\mu)\): length (number of parts) of the partition \(\mu\).

Definition

Jack polynomials \(PQ^{(\alpha)}_\lambda\) are obtained from the monomial basis by Gram-Schmidt orthonormalization process (with respect to the deformed scalar product).

Renormalization: \(J^{(\alpha)}_\lambda = c^{(\alpha)}_\lambda PQ^{(\alpha)}_\lambda\) with \(c^{(\alpha)}_\lambda\) explicit.

Specialization: \(J^{(1)}_\lambda = c^{(1)}_\lambda s_\lambda = \frac{n!}{\dim(V_\lambda)} s_\lambda\).

\(V_\lambda\): irreducible representation of \(S_n\) associated to \(\lambda\).
Jack “characters”

Main object in the talk

Let \(\lambda \) and \(\mu \) be partitions of \(n \). Define \(\theta_{\mu}^{\lambda, (\alpha)} \) by

\[
j_{\lambda}^{(\alpha)} = \sum_{\mu \vdash n} \theta_{\mu}^{\lambda, (\alpha)} \cdot p_{\mu}.
\]
Jack “characters”

Main object in the talk

Let λ and μ be partitions of n. Define $\theta_\mu^{\lambda, (\alpha)}$ by

$$J^{(\alpha)}_{\lambda} = \sum_{\mu \vdash n} \theta_\mu^{\lambda, (\alpha)} \cdot p_\mu.$$

Unfortunately, $\theta_\mu^{\lambda, (\alpha)}$ has no (known) representation-theoretical interpretation for general α.

Jack “characters”

Main object in the talk

Let λ and μ be partitions of n. Define $\theta_{\mu}^{\lambda,(\alpha)}$ by

$$J_{\lambda}^{(\alpha)} = \sum_{\mu \vdash n} \theta_{\mu}^{\lambda,(\alpha)} \cdot p_{\mu}.$$

Unfortunately, $\theta_{\mu}^{\lambda,(\alpha)}$ has no (known) representation-theoretical interpretation for general α.

But, it shares (conjecturally) a lot of properties with

$$\theta_{\mu}^{\lambda,(1)} = z_{\mu} n! \frac{\chi_{\mu}^{\lambda}}{\dim(\lambda)},$$

whence the name **Jack characters**.
A function on the set of all Young diagrams

Definition
Let μ be a partition of k without part equal to 1. Define

$$
\text{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{cases}
 z_{\mu} \theta_{\mu \lambda, (\alpha)}^{1_{n-k}} & \text{if } n = |\lambda| \geq k; \\
 0 & \text{otherwise.}
\end{cases}
$$

$\text{Ch}_{\mu}^{(\alpha)}$ is a function of all Young diagrams.
A function on the set of all Young diagrams

Definition

Let \(\mu \) be a partition of \(k \) without part equal to 1. Define

\[
Ch_{\mu}^{(\alpha)}(\lambda) = \begin{cases}
 z_{\mu} \theta_{\mu 1}^{\lambda,(\alpha)} & \text{if } n = |\lambda| \geq k; \\
 0 & \text{otherwise.}
\end{cases}
\]

\(Ch_{\mu}^{(\alpha)} \) is a function of all Young diagrams.

Specialization: if \(|\mu| < |\lambda| \),

\[
Ch_{\mu}^{(1)}(\lambda) = \frac{|\lambda|!}{(|\lambda| - |\mu|)!} \cdot \frac{\chi_{\mu 1}^{\lambda 1} n-k}{\dim(V_\lambda)}.
\]

Introduced by S. Kerov, G. Olshanski in the case \(\alpha = 1 \), by M. Lassalle in the general case.
A function on the set of all Young diagrams

Definition
Let μ be a partition of k without part equal to 1. Define

$$\text{Ch}^{(\alpha)}_{\mu}(\lambda) = \begin{cases} z_{\mu}^{\lambda, (\alpha)} \mu_{1}^{n-k} & \text{if } n = |\lambda| \geq k; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (M. Lassalle)
For any r, the application

$$(\lambda_1, \ldots, \lambda_r) \mapsto \text{Ch}^{(\alpha)}_{\mu}((\lambda_1, \ldots, \lambda_r))$$

is a polynomial in $\lambda_1, \ldots, \lambda_r$. Besides, it is symmetric in $\lambda_1 - 1, \ldots, \lambda_r - r$.

In other words, $\text{Ch}^{(\alpha)}_{\mu}$ is a shifted symmetric function.
Consider two lists \(p \) and \(q \) of positive integers of the same size, with \(q \) non-decreasing. We associate to them the partition

\[
\lambda(p, q) = (q_1, \ldots, q_1, q_2, \ldots, q_2, \ldots).
\]

You can see the Young diagram of \(\lambda(p, q) \) below.
Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q non-decreasing.
We associate to them the partition

$$\lambda(p, q) = (\underbrace{q_1, \ldots, q_1}_{p_1 \text{ times}}, \underbrace{q_2, \ldots, q_2}_{p_2 \text{ times}}, \ldots).$$

Conjecture (M. Lassalle)

Let μ be a partition of k. $(-1)^k \operatorname{Ch}_{\mu}^{(\alpha)}(\lambda(p, q))$ is a polynomial in

$$p_1, p_2, \ldots, -q_1, -q_2, \ldots, \alpha - 1$$

with non-negative integer coefficients.

Polynomiality in p and q: consequence of shifted symmetry
Polynomiality in α: F., Dołęga 2012
Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same size, with q non-decreasing. We associate to them the partition

$$\lambda(p, q) = (q_1, \ldots, q_1, q_2, \ldots, q_2, \ldots).$$

Conjecture (M. Lassalle)

Let μ be a partition of k. $(-1)^k \text{Ch}_{\mu}^{(\alpha)}(\lambda(p, q))$ is a polynomial in

$$p_1, p_2, \ldots, -q_1, -q_2, \ldots, \alpha - 1$$

with non-negative integer coefficients.

Hard, interesting still open part: non-negativity (and integrity).
Case $\alpha = 1$

Goal of the next few slides: sketch the proof of Lassalle’s conjecture in the case $\alpha = 1$.

Let μ be a partition of k. $(-1)^k \text{Ch}_{\mu}^{(1)}(\lambda(p, q))$ is a polynomial in $p_1, p_2, \ldots, -q_1, -q_2, \ldots$ with non-negative integer coefficients.

Reminder: if $|\mu| < |\lambda|,$

$$\text{Ch}_{\mu}^{(1)}(\lambda) = \frac{|\lambda|!}{(|\lambda| - |\mu|)!} \cdot \frac{\chi_{\mu 1n-k}^\lambda}{\dim(V_\lambda)}.$$

Hence, we need to know how to compute $\chi_{\mu 1n-k}^\lambda$.

Next step: construction of irreducible representations of S_n.

Young’s symmetrizer (1/3)

Let λ be a partition of n.

Choose a filling T_0 of λ.

Example:

$\lambda = (2, 2)$, $T_0 = \begin{array}{cc} 2 & 4 \\ 1 & 3 \end{array}$.
Let λ be a partition of n.

Choose a filling T_0 of λ. Define

$$a_\lambda = \sum_{\sigma \in S_n} \sigma \in \mathbb{C}[S_n],$$

where $\text{RS}(T_0)$ is the row stabilizer of T_0;

Example:

$$\lambda = (2, 2), \quad T_0 = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}.$$

$$a_\lambda = \text{id} + (1 \ 3) + (2 \ 4) + (1 \ 3)(2 \ 4)$$

Everything depends on T_0, although that is hidden in notations.
Young’s symmetrizer (1/3)

Let λ be a partition of n.

Choose a filling T_0 of λ. Define

$$a_\lambda = \sum_{\sigma \in S_n, \sigma \in RS(T_0)} \sigma \in \mathbb{C}[S_n],$$

where $RS(T_0)$ is the row stabilizer of T_0;

$$b_\lambda = \sum_{\tau \in S_n, \tau \in CS(T_0), \in \mathbb{C}[S_n]} \varepsilon(\tau) \tau$$

$CS(T_0)$ is the column stabilizer of T_0.

Example:

$\lambda = (2, 2)$, $T_0 = \begin{bmatrix} 2 & 4 \\ 1 & 3 \end{bmatrix}$.

$$a_\lambda = \text{id} + (1 \, 3) + (2 \, 4) + (1 \, 3)(2 \, 4)$$

$$b_\lambda = \text{id} - (1 \, 2) - (3 \, 4) + (1 \, 2)(3 \, 4)$$

Everything depends on T_0, although that is hidden in notations.
Consider
\[a_\lambda \cdot b_\lambda = \sum_{\sigma \in S_n}^{\sigma \in \text{RS}(T_0)} \sum_{\tau \in S_n}^{\tau \in \text{CS}(T_0)} \varepsilon(\tau) \sigma \tau \]

Lemma

Then \(p_\lambda = \alpha_\lambda a_\lambda \cdot b_\lambda \) is a projector \((i.e. \ p_\lambda^2 = p_\lambda)\) for a well-chosen constant \(\alpha_\lambda \).
Reminder: $p_\lambda = \alpha_\lambda a_\lambda \cdot b_\lambda$ is a projector.
Reminder: $p_\lambda = \alpha_\lambda a_\lambda \cdot b_\lambda$ is a projector.

Set $V_\lambda = \mathbb{C}[S_n]p_\lambda$, subspace of the group algebra.

Then S_n acts by left multiplication on V_λ.

Reminder: $p_\lambda = \alpha_\lambda a_\lambda \cdot b_\lambda$ is a projector.

Set $V_\lambda = \mathbb{C}[S_n]p_\lambda$, subspace of the group algebra.

Then S_n acts by left multiplication on V_λ.

Theorem (Young, 1901)

$(V_\lambda)_{\lambda \vdash n}$ forms a complete set of irreducible representations of S_n.

note: in fact, $\alpha_\lambda = \frac{\dim(V_\lambda)}{n!}$.
Young symmetrizer (3/3)

Reminder: \(p_\lambda = \alpha_\lambda a_\lambda \cdot b_\lambda \) is a projector.

Set \(V_\lambda = \mathbb{C}[S_n]p_\lambda \), subspace of the group algebra.

Then \(S_n \) acts by left multiplication on \(V_\lambda \).

Theorem (Young, 1901)

\((V_\lambda)_{\lambda \vdash n}\) forms a complete set of irreducible representations of \(S_n \).

note: in fact, \(\alpha_\lambda = \frac{\dim(V_\lambda)}{n!} \).

Next step: compute the trace.
Reformulation

Our goal

Let μ be a partition of n and π a permutation of cycle-type μ. We want to compute the trace χ^λ_μ of

$$\rho^\lambda(\pi) : \mathbb{C}[S_n]p_\lambda \rightarrow \mathbb{C}[S_n]p_\lambda$$

$$x \mapsto \pi \cdot x$$
Reformulation

Our goal

Let μ be a partition of n and π a permutation of cycle-type μ. We want to compute the trace χ^λ_μ of

$$\rho^\lambda(\pi) : \mathbb{C}[S_n]p_\lambda \rightarrow \mathbb{C}[S_n]p_\lambda$$

$$x \mapsto \pi \cdot x$$

Problem: $\mathbb{C}[S_n]p_\lambda$ does not have an explicit basis
Reformulation

Our goal

Let μ be a partition of n and π a permutation of cycle-type μ. We want to compute the trace χ_μ^λ of

$$\rho^\lambda(\pi) : \mathbb{C}[S_n]p_\lambda \rightarrow \mathbb{C}[S_n]p_\lambda$$

$x \mapsto \pi \cdot x$

Problem: $\mathbb{C}[S_n]p_\lambda$ does not have an explicit basis

Lemma

$$\text{tr}(\rho^\lambda(\pi)) = \text{tr} \left(\begin{array}{c} \mathbb{C}[S_n] \rightarrow \mathbb{C}[S_n] \\ x \mapsto \pi \cdot x \cdot p_\lambda \end{array} \right)$$

Proof: $\mathbb{C}[S_n] = \mathbb{C}[S_n]p_\lambda \oplus \mathbb{C}[S_n](1 - p_\lambda)$ and the application $(x \mapsto \pi xp_\lambda)$ is $\rho^\lambda(\pi)$ on $\mathbb{C}[S_n]p_\lambda$ and 0 on $\mathbb{C}[S_n](1 - p_\lambda)$
Reformulation

Our goal
Let μ be a partition of n and π a permutation of cycle-type μ. We want to compute the trace χ_μ^λ of

$$\rho^\lambda(\pi) : \mathbb{C}[S_n]p_\lambda \rightarrow \mathbb{C}[S_n]p_\lambda$$

$$x \mapsto \pi \cdot x$$

Problem: $\mathbb{C}[S_n]p_\lambda$ does not have an explicit basis

Lemma

$$\text{tr}(\rho^\lambda(\pi)) = \text{tr}\left(\mathbb{C}[S_n] \rightarrow \mathbb{C}[S_n] \quad x \mapsto \pi \cdot x \cdot p_\lambda\right)$$

Corollary

$$\chi_\mu^\lambda = \text{tr}(\rho^\lambda(\pi)) = \alpha_\lambda \sum_{\sigma \in S_n} \sum_{\tau \in S_n} \varepsilon(\tau) \text{tr}(x \mapsto \pi \cdot x \cdot \sigma \cdot \tau)$$
Reformulation

Our goal

Let μ be a partition of n and π a permutation of cycle-type μ. We want to compute the trace χ_μ^λ of

$$\rho^\lambda(\pi) : \mathbb{C}[S_n]\rho_\lambda \rightarrow \mathbb{C}[S_n]\rho_\lambda$$

$$x \mapsto \pi \cdot x$$

Problem: $\mathbb{C}[S_n]\rho_\lambda$ does not have an explicit basis

Lemma

$$\text{tr}(\rho^\lambda(\pi)) = \text{tr} \left(\begin{array}{cc} \mathbb{C}[S_n] & \mathbb{C}[S_n] \\ x & \pi \cdot x \cdot \rho_\lambda \end{array} \right)$$

Corollary

$$\chi_\mu^\lambda = \text{tr}(\rho^\lambda(\pi)) = \alpha_\lambda \sum_{\sigma \in S_n} \sum_{\tau \in S_n} \varepsilon(\tau) \sum_{g \in S_n} \delta_{\pi \cdot g} \cdot \sigma \cdot \tau \cdot g$$
First formula

\[
n! \frac{\text{tr}(\rho^\lambda(\pi))}{\dim(V_\lambda)} = \sum_{\sigma \in S_n} \delta_{\pi g \sigma \tau = g} \sum_{\tau \in CS(T_0)} \sum_{\sigma \in RS(T_0)} \varepsilon(\tau) \delta_{\pi g \sigma \tau = g}
\]
Case $\alpha = 1$ and Young symmetrizer

First formula

$$n! \frac{\text{tr}(\rho^\lambda(\pi))}{\dim(V_\lambda)} = \sum_{\sigma \in S_n} \sum_{\tau \in S_n} \varepsilon(\tau) \sum_{g \in S_n} \delta_{\pi g \sigma \tau = g}$$

...(some combinatorial manipulations on sums)...

$$n! \frac{\chi^\lambda_\mu}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_n} \varepsilon(\tau) F_{\sigma, \tau}(\lambda),$$

where

$$F_{\sigma, \tau}(\lambda) = \left\{ \text{fillings } T \text{ of } \lambda \text{ such that } \sigma \in \text{RS}(T), \tau \in \text{CS}(T) \right\}$$

Example for $\sigma = (1, 2) \in S_6, \tau = (1, 3) \in S_6$: filling $T = \begin{array}{ccc} 5 & 2 & 1 \\ 4 & 3 & 6 \end{array}$
Further simplifications

Reminder: \[n! \frac{\chi_\mu}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_n} \varepsilon(\tau) F_{\sigma, \tau}(\lambda). \]

We are interested in \(\chi_\mu^{\lambda n-k} \Rightarrow \) we can choose \(\pi \in S_k \subset S_n \).
Further simplifications

Reminder:

\[n! \frac{\chi^\lambda_{\mu}}{\text{dim}(V_\lambda)} = \sum_{\sigma, \tau \in S_n} \varepsilon(\tau) F_{\sigma, \tau}(\lambda). \]

We are interested in \(\chi^\lambda_{\mu 1^n-k} \Rightarrow \) we can choose \(\pi \in S_k \subset S_n \).

Observation:

- terms vanish except for \(\sigma, \tau \) also in \(S_k \);
- for \(\sigma, \tau \) in \(S_k \),

 \[F_{\sigma, \tau}(\lambda) = (n-k)! \tilde{N}_{\sigma, \tau}(\lambda), \]

where \(\tilde{N}_{\sigma, \tau}(\lambda) = \left| \left\{ \text{injective functions } f : \{1, \cdots, k\} \to \lambda \text{ such that } \sigma \in \text{RS}(f), \tau \in \text{CS}(f) \right\} \right| \)

Example for \(\sigma = (1, 2) \in S_3, \tau = (1, 3) \in S_3 \): filling \(T = \begin{array}{ccc} 2 & 1 & \text{ } \\ \text{ } & \text{ } & \text{ } \\ 3 & \text{ } & \text{ } \end{array} \)
Further simplifications

Reminder:
\[n! \frac{\chi_\mu^\lambda}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_n} \varepsilon(\tau) F_{\sigma, \tau}(\lambda). \]

We are interested in \(\chi_{\mu, 1}^{\lambda, n-k} \Rightarrow \) we can choose \(\pi \in S_k \subset S_n \).

Observation:
- terms vanish except for \(\sigma, \tau \) also in \(S_k \);
- for \(\sigma, \tau \) in \(S_k \),
 \[F_{\sigma, \tau}(\lambda) = (n - k)! \tilde{N}_{\sigma, \tau}(\lambda), \]
 where \(\tilde{N}_{\sigma, \tau}(\lambda) = \left\| \left\{ \text{injective functions } f : \{1, \cdots, k\} \to \lambda \text{ such that } \sigma \in RS(f), \tau \in CS(f) \right\} \right\| \)

We obtain:
\[\frac{n!}{(n - k)!} \frac{\chi_{\mu, 1}^{\lambda, n-k}}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_k} \varepsilon(\tau) \tilde{N}_{\sigma, \tau}(\lambda), \]
Further simplifications

Reminder: \[n! \frac{\chi^\lambda_{\mu}}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_n, \sigma \tau = \pi} \varepsilon(\tau) F_{\sigma, \tau}(\lambda). \]

We are interested in \(\chi^\lambda_{\mu 1^{n-k}} \Rightarrow \) we can choose \(\pi \in S_k \subset S_n \).

We have obtained:

\[
\frac{n!}{(n-k)!} \frac{\chi^\lambda_{\mu 1^{n-k}}}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_k, \sigma \tau = \pi} \varepsilon(\tau) \tilde{N}_{\sigma, \tau}(\lambda),
\]

where \(\tilde{N}_{\sigma, \tau}(\lambda) = \left| \left\{ \text{injective functions } f : \{1, \cdots, k\} \to \lambda \text{ such that } \sigma \in RS(f), \tau \in CS(f) \right\} \right| \)
Further simplifications

Reminder:

\[n! \frac{\chi_{\mu}^\lambda}{\dim(V_\lambda)} = \sum_{\sigma,\tau \in S_n \atop \sigma \tau = \pi} \varepsilon(\tau) F_{\sigma,\tau}(\lambda). \]

We are interested in \(\chi_{\mu 1}^{\lambda n-k} \Rightarrow \) we can choose \(\pi \in S_k \subset S_n \).

We have obtained:

\[\frac{n!}{(n-k)!} \frac{\chi_{\mu 1}^{\lambda n-k}}{\dim(V_\lambda)} = \sum_{\sigma,\tau \in S_k \atop \sigma \tau = \pi} \varepsilon(\tau) N_{\sigma,\tau}(\lambda), \]

where \(N_{\sigma,\tau}(\lambda) = \left\{ \text{functions } f : \{1, \cdots, k\} \to \lambda \text{ such that } \sigma \in RS(f), \tau \in CS(f) \right\} \)

One can forget injectivity condition: non-injective functions have a total 0-contribution.
End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[
\frac{n!}{(n-k)!} \frac{\chi^\lambda_{\mu_1} \chi^{n-k}}{\dim(V_\lambda)} = \sum_{\sigma, \tau \in S_k, \sigma \tau = \pi} \varepsilon(\tau) N_{\sigma, \tau}(\lambda)
\]

Proof: the few previous slides!
Case $\alpha = 1$ and Young symmetrizer

End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

$$\text{Ch}_{\mu}^{(1)}(\lambda) = \sum_{\sigma, \tau \in S_k \atop \sigma \tau = \pi} \varepsilon(\tau) N_{\sigma, \tau}(\lambda)$$

Proof: the few previous slides!
End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[(-1)^k \text{Ch}_{\mu}^{(1)}(\lambda) = \sum_{\sigma, \tau \in S_k} (-1)^{|C(\tau)|} N_{\sigma, \tau}(\lambda) \]

\(|C(\tau)|\): nombre de cycle de \(\tau\).
End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[(-1)^k \text{Ch}_{\mu}^{(1)}(\lambda) = \sum_{\sigma, \tau \in S_k} (-1)^{|C(\tau)|} N_{\sigma, \tau}(\lambda) \]

\(|C(\tau)|\): nombre de cycle de \(\tau\).

Lemma

Let \(\sigma, \tau\) in \(S_k\). Then \(N_{\sigma, \tau}(\lambda(p, q))\) is a polynomial in \(p\) and \(q\) with non-negative integer coefficients and degree \(|C(\sigma)|\) in \(p\) and \(|C(\tau)|\) in \(q\).
End of our proof

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[-1]^k \text{Ch}_{\lambda}^{(1)} = \sum_{\sigma, \tau \in S_k, \sigma \tau = \pi} (-1)^{|C(\tau)|} N_{\sigma, \tau}(\lambda)\]

|\(C(\tau)|\): nombre de cycle de \(\tau\).

Lemma

Let \(\sigma, \tau\) in \(S_k\). Then \(N_{\sigma, \tau}(\lambda(p, q))\) is a polynomial in \(p\) and \(q\) with non-negative integer coefficients and degree \(|C(\sigma)|\) in \(p\) and \(|C(\tau)|\) in \(q\).

Corollary

\([-1]^k \text{Ch}_{\lambda}^{(1)}(\lambda(p, q))\) is a polynomial in \(p\) and \(-q\) with non-negative integer coefficients.
An example of $N_{\sigma,\tau}(\lambda(p,q))$

Let $\sigma = (1 2)$ and $\tau = \text{id}_2$. $N_{\sigma,\tau}(\lambda)$ count the number of ordered choice of two boxes of λ in the same row.
Case $\alpha = 1$ and Young symmetrizer

An example of $N_{\sigma,\tau}(\lambda(p, q))$

Let $\sigma = (1 \ 2)$ and $\tau = \text{id}_2$. $N_{\sigma,\tau}(\lambda)$ count the number of ordered choice of two boxes of λ in the same row.

Recall that $\lambda(p, q) =$.

![Diagram](image-url)
An example of $N_{\sigma, \tau}(\lambda(p, q))$

Let $\sigma = (1 2)$ and $\tau = \text{id}_2$.
$N_{\sigma, \tau}(\lambda)$ count the number of ordered choice of two boxes of λ in the same row.

Recall that $\lambda(p, q) = \ldots$.

Hence

$$N_{(1 2), \text{id}_2}(\lambda(p, q)) = \sum_{i \geq 1} p_i q_i^2.$$
Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[
(-1)^k \text{Ch}^{(1)}_{\mu}(\lambda) = \sum_{\sigma, \tau \in S_k, \sigma \tau = \pi} (-1)^{|C(\tau)|} N_{\sigma, \tau}(\lambda)
\]

Lemma

Let σ, τ in S_k. Then $N_{\sigma, \tau}(\lambda(p, q))$ is a polynomial in p and q with non-negative integer coefficients and degree $|C(\sigma)|$ in p and $|C(\tau)|$ in q.

Corollary

\[-1 \right^k \text{Ch}^{(1)}_{\mu}(\lambda(p, q)) \text{ is a polynomial in } p \text{ and } -q \text{ with non-negative integer coefficients.}\]
Case $\alpha = 1$ and Young symmetrizer

Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

$$S_k \times S_k \iff \left\{ \begin{array}{l} \text{bicolored graphs} \\
\text{embedded in orientable surfaces} \\
\text{with } k \text{ labelled edges.} \\
\end{array} \right. \right.$$

(up to isomorphism (with a slight technical condition)
Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

\[S_k \times S_k \leftrightarrow \{ \text{bicolored oriented maps with } k \text{ labelled edges.} \} \]
There is a (classical) bijection between

\[S_k \times S_k \quad \overset{\sim}{\leftrightarrow} \quad \begin{cases} \text{bicolored oriented maps} \\ \text{with } k \text{ labelled edges.} \end{cases} \]
There is a (classical) bijection between

\[S_k \times S_k \iff \left\{ \text{bicolored oriented maps with } k \text{ labelled edges.} \right\} \]
Pair of permutations and graphs embedded in surfaces

There is a (classical) bijection between

\[S_k \times S_k \iff \begin{cases} \text{bicolored oriented maps} \\ \text{with } k \text{ labelled edges.} \end{cases} \]

\[\sigma = (1 \ 5 \ 2)(3 \ 4) \]
\[\tau = (1 \ 2 \ 3 \ 5 \ 4) \]
There is a (classical) bijection between

\[S_k \times S_k \iff \{ \text{bicolored oriented maps with } k \text{ labelled edges.} \} \]

\[\sigma = (1 \ 5 \ 2)(3 \ 4) \]
\[\tau = (1 \ 2 \ 3 \ 5 \ 4) \]

- cycles of the product \leftrightarrow “faces” of the map;
- $N_{\sigma,\tau}$ depends only on the underlying graph (neither on the embedding nor on edge multiplicities).
Case $\alpha = 1$ and Young symmetrizer

Stanley’s formula in terms of map

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

$$(-1)^k \text{Ch}^{(1)}_{\mu}(\lambda) = \sum_{M \text{ bipartite oriented map of face-type } \mu} (-1)^{|V^\bullet(M)|} N_{G(M)}(\lambda)$$
Stanley’s formula in terms of map

Theorem (F., Śniady 2007, conjectured by Stanley 2006)

\[
(-1)^k \text{Ch}_{\mu}^{(1)}(\lambda) = \sum_{M \text{ bipartite oriented map of face-type } \mu} (-1)^{|V_{\bullet}(M)|} N_{G(M)}(\lambda)
\]

It is classical to count maps via characters of the symmetric group using **Frobenius counting formula** (Stanley, Jackson, Vinsenti, Jones, Zagier, Goupil, Schaeffer, Poulhalon).

But both formulas do not seem to be linked!
We just proved Lassalle’s conjecture for $\alpha = 1$.
We just proved Lassalle’s conjecture for $\alpha = 1$.

Theorem (F. Śniady, 2011)

Lassalle’s conjecture holds also for $\alpha = 2$.

Next two slides:

- representation-theoretical interpretation of $\theta_{\mu}^{\lambda,(2)}$ (involves Gelfand pair);
- combinatorial formula for $\text{Ch}_{\mu}^{(2)}$.
Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G. We say that (G, K) is a Gelfand pair if

- The induced representation 1^G_K is multiplicity free;
- or equivalently, the $\mathbb{C}[K \backslash G / K]$ is commutative

$\mathbb{C}[K \backslash G / K]$: subalgebra of $\mathbb{C}[G]$ formed by elements invariants by left and right multiplication by $k \in K$
Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G. We say that (G, K) is a **Gelfand pair** if

- The induced representation 1^G_K is multiplicity free;
- or equivalently, the $\mathbb{C}[K \backslash G/K]$ is commutative

Theory of Gelfand pairs extends representation theory of finite groups (RTFG).

<table>
<thead>
<tr>
<th>RTFG</th>
<th>Gelfand pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(\mathbb{C}[G])$</td>
<td>$\mathbb{C}[K \backslash G/K]$</td>
</tr>
<tr>
<td>representations</td>
<td>?</td>
</tr>
<tr>
<td>normalized irreducible character values</td>
<td>zonal spherical functions</td>
</tr>
</tbody>
</table>
Definition of Gelfand pairs

Let G be a finite group and K a subgroup of G. We say that (G, K) is a **Gelfand pair** if

- The induced representation 1^G_K is multiplicity free;
- or equivalently, the $\mathbb{C}[K \backslash G / K]$ is commutative

Theory of Gelfand pairs extends representation theory of finite groups (RTFG).

<table>
<thead>
<tr>
<th>RTFG</th>
<th>Gelfand pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z(\mathbb{C}[G])$</td>
<td>$\mathbb{C}[K \backslash G / K]$</td>
</tr>
<tr>
<td>representations</td>
<td>?</td>
</tr>
<tr>
<td>normalized irreducible character values</td>
<td>zonal spherical functions</td>
</tr>
</tbody>
</table>

Theorem (Stembridge, 1992)

$\theta^{\lambda,(2)}_{\mu}$ are the zonal spherical values of the Gelfand pair (S_{2n}, H_n) (H_n is the hyperoctahedral group).
Combinatorial formula for $\text{Ch}_{\mu}^{(2)}$

Theorem (F., Śniady 2011)

$(-1)^k 2^{\ell(\mu)} \text{Ch}_{\mu}^{(2)}(\lambda) = \sum_{M \text{ bipartite non-oriented maps of face-type } \mu} (-2)^{|V(M)|} N_{G(M)}(\lambda)$
Case $\alpha = 2$ and Hecke algebra of (S_{2n}, B_n)

Combinatorial formula for $\text{Ch}^{(2)}_{\mu}$

Theorem (F., Śniady 2011)

$$(-1)^k 2^{\ell(\mu)} \text{Ch}^{(2)}_{\mu}(\lambda) = \sum_{M \text{ bipartite non-oriented maps of face-type } \mu} (-2)^{|V^\bullet(M)|} N_{G(M)}(\lambda)$$

Implies Lassalle’s conjecture for $\alpha = 2$.
Case $\alpha = 2$ and Hecke algebra of (S_{2n}, B_n)

Combinatorial formula for $\text{Ch}^{(2)}_{\mu}$

Theorem (F., Śniady 2011)

$$(-1)^k 2^{\ell(\mu)} \text{Ch}^{(2)}_{\mu}(\lambda) = \sum_{M \text{ bipartite non-oriented maps of face-type } \mu} (-2)^{|V(M)|} N_{G(M)}(\lambda)$$

Implies Lassalle’s conjecture for $\alpha = 2$.

There is a formula, analog to *Frobenius counting formula*, counting non-oriented maps using zonal spherical functions of (S_{2n}, H_n) (Goulden, Jackson, 1996). But, once again, it does not seem related to our formula!
A combinatorial solution to the general case?

Conjecture (hope?)

There exists a weight $w_M(\alpha - 1)$, polynomial with non-negative coefficients in $\alpha - 1$, such that

$$(-1)^k \operatorname{Ch}_{\mu}^{(\alpha)}(\lambda) = \sum_{M \text{ bipartite non-oriented map of face-type } \mu} w_M(\alpha - 1) N_{G(M)}(\lambda)$$
A combinatorial solution to the general case?

Conjecture (hope ?)

There exists a weight $w_M(\alpha - 1)$, polynomial with non-negative coefficients in $\alpha - 1$, such that

$(-1)^k \text{Ch}^{(\alpha)}(\lambda) = \sum_{\text{M bipartite non-oriented map of face-type } \mu} w_M(\alpha - 1) N_{G(M)}(\lambda)$

Goulden and Jackson (1996) have a similar conjecture for an extension of Frobenius counting formula. But still open!
A combinatorial solution to the general case?

Conjecture (hope?)

There exists a weight $w_M(\alpha - 1)$, polynomial with non-negative coefficients in $\alpha - 1$, such that

$$(-1)^k \text{Ch}^{(\alpha)}_{\mu}(\lambda) = \sum_{M \text{ bipartite non-oriented map of face-type } \mu} w_M(\alpha - 1) N_{G(M)}(\lambda)$$

A partial result (Dołęga, F., Śniady, 2013)

There exist a combinatorial weight $w_M(\alpha - 1)$ such that, for any rectangular Young diagrams, the formula above holds.
A combinatorial solution to the general case ?

Conjecture (hope ?)

There exists a weight $w_M(\alpha - 1)$, polynomial with non-negative coefficients in $\alpha - 1$, such that

$$(-1)^k \text{Ch}_{\mu}^{(\alpha)}(\lambda) = \sum_{M \text{ bipartite non-oriented map of face-type } \mu} w_M(\alpha - 1) N_{G(M)}(\lambda)$$

A partial result (Dołęga, F., Śniady, 2013)

There exist a combinatorial weight $w_M(\alpha - 1)$ such that, for any rectangular Young diagrams, the formula above holds.

But this specific weight does not work in general (fails for $\mu = (9)$ and λ non trivial superposition of 3 rectangles).
Conclusion and perspectives

- Still some weights to test…
Conclusion and perspectives

- Still some weights to test…

- Cases $\alpha = 1$ and 2 can be proved *a posteriori without* representation theory. So, if we *guess* the general combinatorial formula, there is some chance that we may *prove* it.
Conclusion and perspectives

- Still some weights to test...

- Cases $\alpha = 1$ and 2 can be proved a posteriori without representation theory. So, if we guess the general combinatorial formula, there is some chance that we may prove it.

- But, of course, what would be really nice is a representation-theoretic interpretation for general α. Perhaps solving Lassalle’s conjecture would help.
Conclusion and perspectives

- Still some weights to test…

Cases $\alpha = 1$ and 2 can be proved a posteriori without representation theory. So, if we guess the general combinatorial formula, there is some chance that we may prove it.

- But, of course, what would be really nice is a representation-theoretic interpretation for general α. Perhaps solving Lassalle’s conjecture would help.

- In any case, Jack polynomials are well-studied objects and a new combinatorial description would be welcome.
Conclusion and perspectives

- Still some weights to test...

- Cases $\alpha = 1$ and 2 can be proved a posteriori without representation theory. So, if we guess the general combinatorial formula, there is some chance that we may prove it.

- But, of course, what would be really nice is a representation-theoretic interpretation for general α. Perhaps solving Lassalle’s conjecture would help.

- In any case, Jack polynomials are well-studied objects and a new combinatorial description would be welcome.

- From a combinatorial point of view, the conjecture suggest an interpolation between oriented and non-oriented framework: puzzling!