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Summary
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We put them in bijection with decorated trees.
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Trees = “recursive structure” ⇒ easy to handle
⇒ combinatorial proofs of a lot of formulas.
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Summary

We consider unicellular maps.
Counting this object is a problem related
to matrix integrals, symmetric group al-
gebra, . . .

Unicellular = “global condition” ⇒ hard to handle

We put them in bijection with decorated trees.
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Trees = “recursive structure” ⇒ easy to handle
⇒ combinatorial proofs of a lot of formulas.

The bijection converses a lot of structure ,
but is not explicit .

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 2 / 16



Outline of the talk

1 Presentations of the objects

2 Existence of a bijection

3 Combinatorial proofs of enumerative formulas for maps
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Presentations of the objects Unicellular maps

What is a (rooted) unicellular maps?

3 equivalent descriptions
A graph drawn of a 2-dimension
surface such that
the complementary is homeomor-

phic to an open disc.

genus of the surface
g = 1/2 · (|E |+ 1 − |V |).
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Presentations of the objects Unicellular maps

What is a (rooted) unicellular maps?

3 equivalent descriptions
A graph drawn of a 2-dimension
surface such that
the complementary is homeomor-

phic to an open disc.

genus of the surface
g = 1/2 · (|E |+ 1 − |V |).

A graph with a cyclic order of
edges around vertices such that
there is only one face
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Presentations of the objects Unicellular maps

What is a (rooted) unicellular maps?

3 equivalent descriptions
A graph drawn of a 2-dimension
surface such that
the complementary is homeomor-

phic to an open disc.

genus of the surface
g = 1/2 · (|E |+ 1 − |V |).

A merging of the edges of a poly-
gon

There are (2n − 1)!! rooted uni-
cellular maps with n edges.

But it is hard to count them with
a prescribed genus (or number of
vertices).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 4 / 16



Presentations of the objects Decorated trees

C -permutation

Definition

A C -permutation of size n + 1 is a permutation of n + 1

with only cycles of odd lengths;

with the additional data of a sign for each cycle.
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Presentations of the objects Decorated trees

C -permutation

Definition

A C -permutation of size n + 1 is a permutation of n + 1

with only cycles of odd lengths;

with the additional data of a sign for each cycle.
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genus: g := 1/2(n + 1 −#(cycles)).
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Presentations of the objects Decorated trees

Decorated trees

Definition

A C -decorated tree is a couple (T , σ), where T is a tree with n+ 1 vertices
and σ a C -permutation of size n + 1.
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Presentations of the objects Decorated trees

Decorated trees

Definition

A C -decorated tree is a couple (T , σ), where T is a tree with n+ 1 vertices
and σ a C -permutation of size n + 1.
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We can see the permutation as acting on the vertices of the tree by doing
(for instance) a left-to-right depth-first traversal.
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Presentations of the objects Decorated trees

Underlying graph

If we merge the vertices in the same cycles, we get a (rooted) graph called
underlying graph C -decorated tree.
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Existence of a bijection Main result

Statement of the main result

Notations:
Eg (n) set of maps with n edges of genus g

Tg (n) set of C -decorated trees with n edges of genus g

Theorem

There is a bijection
[

2n+1
]

× Eg (n) ≃ Tg (n)

which preserves the underlying graphs.

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 8 / 16



Existence of a bijection Main result

Statement of the main result

Notations:
Eg (n) set of maps with n edges of genus g

Tg (n) set of C -decorated trees with n edges of genus g

Theorem

There is a bijection
[

2n+1
]

× Eg (n) ≃ Tg (n)

which preserves the underlying graphs.

Proof.

True for g = 0.
We will see that the two sets fulfill the same induction relation on g .
For unicellular maps, we use a previous construction of G. Chapuy.
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Existence of a bijection Decomposition of unicellular maps

Chapuy’s bijection (1/2)

:

We want to decrease the genus without changing the number of edges;
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Existence of a bijection Decomposition of unicellular maps

Chapuy’s bijection (1/2)

:

We want to decrease the genus without changing the number of edges;

From a map of genus g , we can obtain a map of genus g + 1 by
merging 3 vertices.

Mergings in maps are not well-defined (a lot of choices to do).
The unicellular condition is not necessarily preserved when we glue 3
vertices (→ quite technical construction).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 9 / 16



Existence of a bijection Decomposition of unicellular maps

Chapuy’s bijection (2/2)

This defines a map
E
(3)
g (n) −→ Eg+1(n),

where E
(3)
g (n) set of maps with n edges of genus g with 3 marked vertices.
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Existence of a bijection Decomposition of unicellular maps

Chapuy’s bijection (2/2)

This defines a map
E
(3)
g (n) −→ Eg+1(n),

where E
(3)
g (n) set of maps with n edges of genus g with 3 marked vertices.

After a careful (and hard!) analysis, one can prove:

Theorem (Chapuy, 2009)

for g > 0 and n ≥ 0,

[2g ]× Eg (n) ≃ E
(3)
g−1(n) + E

(5)
g−2(n) + E

(7)
g−3(n) + · · ·+ E

(2g+1)
0 (n). (1)
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Existence of a bijection Decomposition of unicellular maps

Chapuy’s bijection (2/2)

This defines a map
E
(3)
g (n) −→ Eg+1(n),

where E
(3)
g (n) set of maps with n edges of genus g with 3 marked vertices.

After a careful (and hard!) analysis, one can prove:

Theorem (Chapuy, 2009)

for g > 0 and n ≥ 0,

[2g ]× Eg (n) ≃ E
(3)
g−1(n) + E

(5)
g−2(n) + E

(7)
g−3(n) + · · ·+ E

(2g+1)
0 (n). (1)

In addition, if M and (M ′,S ′) are in correspondence, then the underlying

graph of M is obtained from the underlying graph of M ′ by merging the

vertices in S ′ into a single vertex.

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 10 / 16



Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16
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Lemma

There is a bijection
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We cut the permutation at 1:
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We would like the end to be a cycle of the C -permutation.

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16



Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

We cut the permutation at 1:

437|1562.

We would like the end to be a cycle of the C -permutation.

Problem: it has even size! We move the second element (here 5) and
record that operation with a − sign: we get

4375, −(162).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16



Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

4375, −(162)

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16



Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

4375, −(162)

We cut the word at its new minimum (here 3):

4|375, −(162).

The second part is of odd size, we can consider it as a cycle of the
C -permutation (we assign a + sign to it).

4, +(375) −(162)

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16
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Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

4, +(375) −(162)

One more iteration, we get:

+(4) +(375) −(162).
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Existence of a bijection Decomposition of decorated trees

A variant of Foata fundamental transform

Lemma

There is a bijection

ϕ : Sn × {−; +} ≃ {C-permutation of n}.

Description of the bijection on the example (4371562,−).

4, +(375) −(162)

One more iteration, we get:

+(4) +(375) −(162).

The first cycle has always a + sign! We assign to it the sign of the input
instead.

ϕ
(

(4371562,−)
)

= −(4) +(375) −(162)

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 11 / 16



Existence of a bijection Decomposition of decorated trees

Decomposition of C -permutations

Take a C -permutation with a marked element.

+(16X ) −(2783549)
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Existence of a bijection Decomposition of decorated trees

Decomposition of C -permutations

Take a C -permutation with a marked element.

+(16X ) −(2783549)

Take the cycle containing the marked element and write it as a word
beginning by the marked element.

(5492783,−)

Apply the previous bijection to this signed word.

+(5) +(497) −(283)

Put this back in the C -permutations and mark the new cycle.

+(16X ) +(5) +(497) −(283)
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Existence of a bijection Decomposition of decorated trees

Decomposition of C -permutations

Take a C -permutation with a marked element.

+(16X ) −(2783549)

Take the cycle containing the marked element and write it as a word
beginning by the marked element.

(5492783,−)

Apply the previous bijection to this signed word.

+(5) +(497) −(283)

Put this back in the C -permutations and mark the new cycle.

+(16X ) +(5) +(497) −(283)

This is invertible!
V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 12 / 16



Existence of a bijection Decomposition of decorated trees

Decomposition of C -decorated trees

Notations
Pg (n) : set of C -permutations of genus g and size n.

P
(k)
g (n): idem with k marked cycles.

Corollary

There is a bijection

ϕ : [n + 1]× Pg (n + 1) ≃ P
(1)
g (n + 1)

⊔ P
(3)
g−1(n + 1) ⊔ · · · ⊔ P

(2g+1)
0 (n + 1).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 13 / 16
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Moreover, the partition into cycles of x is obtained by merging the marked

cycles in the partition of ϕ(x).
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Existence of a bijection Decomposition of decorated trees

Decomposition of C -decorated trees

Notations
Pg (n) : set of C -permutations of genus g and size n.

P
(k)
g (n): idem with k marked cycles.

Corollary

There is a bijection

ϕ : [n + 1]× Pg (n + 1) ≃ [n + 1 − 2g ]× Pg (n + 1)

⊔ P
(3)
g−1(n + 1) ⊔ · · · ⊔ P

(2g+1)
0 (n + 1).

Moreover, the partition into cycles of x is obtained by merging the marked

cycles in the partition of ϕ(x).
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Decomposition of C -decorated trees

Notations
Pg (n) : set of C -permutations of genus g and size n.

P
(k)
g (n): idem with k marked cycles.

Corollary

There is a bijection

ϕ : [2g ]× Pg (n + 1) ≃

⊔ P
(3)
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Existence of a bijection Decomposition of decorated trees

Decomposition of C -decorated trees

Notations
Pg (n) : set of C -permutations of genus g and size n.

P
(k)
g (n): idem with k marked cycles.

Corollary

There is a bijection

ϕ : [2g ]× Pg (n + 1) ≃

⊔ P
(3)
g−1(n + 1) ⊔ · · · ⊔ P

(2g+1)
0 (n + 1).

Moreover, the partition into cycles of x is obtained by merging the marked

cycles in the partition of ϕ(x).

But Tg (n) = {arbres à n sommets} × Pg (n + 1).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 13 / 16



Existence of a bijection Decomposition of decorated trees

Decomposition of C -decorated trees

Notations
Pg (n) : set of C -permutations of genus g and size n.

P
(k)
g (n): idem with k marked cycles.

Corollary

There is a bijection

Ψ : [2g ]× Tg (n) ≃ T
(3)
g−1(n + 1) ⊔ · · · ⊔ T

(2g+1)
0 (n + 1).

Moreover, the underlying graph of x is obtained by merging the marked

vertices in the underlying graph of Ψ(x).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 13 / 16



Existence of a bijection Decomposition of decorated trees

End of the proof

Suppose that for all g ′ < g , there exists a underlying graph preserving
bijection

[

2n+1
]

Eg ′(n) ≃ Tg ′(n)

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 14 / 16



Existence of a bijection Decomposition of decorated trees

End of the proof

Suppose that for all g ′ < g , there exists a underlying graph preserving
bijection

[

2n+1
]

Eg ′(n) ≃ Tg ′(n)

Using the decomposition of the previous slides,

[2g ]×
[

2n+1
]

× Eg (n) ≃ [2g ]× Tg (n),

with a bijection preserving underlying graphs.
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Existence of a bijection Decomposition of decorated trees

End of the proof

Suppose that for all g ′ < g , there exists a underlying graph preserving
bijection

[

2n+1
]

Eg ′(n) ≃ Tg ′(n)

Using the decomposition of the previous slides,

[2g ]×
[

2n+1
]

× Eg (n) ≃ [2g ]× Tg (n),

with a bijection preserving underlying graphs.

One has to extract a bijection from the 2g -to-2g correspondence
above. This can be done using Hall marriage theorem
( not explicit!).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 14 / 16



Enumeration of maps Combinatorial proofs

Lehman-Walsh formula

Theorem (Lehman and Walsh, 1972)

The number of maps of genus g with n edges is given by

|Eg (n)| =
(2n)!

n!(n + 1 − 2g)!22g

∑

γ⊢g

(n + 1 − 2g)ℓ
∏

i mi !(2i + 1)mi

,

where (x)k = x(x − 1) . . . (x − k), ℓ is the number of parts of γ, and mi is

the number of parts of length i in γ.

Proof.

Look at the possible cycle types of a C -permutation of genus g . Details on
the white board.

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 15 / 16



Enumeration of maps Combinatorial proofs

Lehman-Walsh formula

Theorem (Lehman and Walsh, 1972)

The number of maps of genus g with n edges is given by

|Eg (n)| =
(2n)!

n!(n + 1 − 2g)!22g

∑

γ⊢g

(n + 1 − 2g)ℓ
∏

i mi !(2i + 1)mi

,

where (x)k = x(x − 1) . . . (x − k), ℓ is the number of parts of γ, and mi is

the number of parts of length i in γ.

Remark: this is the first combinatorial proof of this formula. We obtain
combinatorial proofs of a lot of formulae in a unified way (Harer-Zagier
recurrence, Jackson summation, Goupil-Schaeffer formulae)

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 15 / 16



End Open problems

Open problems

Find an explicit bijection.

Read “some” information on the rotation system on the tree model, for
example to count constellations (Poulhalon-Schaeffer formula).

V. Féray (with G. Chapuy and E. Fusy) () Unicellular maps are trees! GT CÉA, 2012–01 16 / 16


	Presentations of the objects
	
	

	Existence of a bijection
	
	
	

	Combinatorial proofs of enumerative formulas for maps
	

	End
	


