Cyclic inclusion/exclusion

Valentin Féray

LaBRI, CNRS, Bordeaux

Journées Combinatoire Algébrique du GDR-IM, Rouen

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011-06 1 / 16

What is this talk about?

To a bipartite graph, we will associate a formal series:

$$\bigwedge_{O}^{\bullet} \mapsto \sum_{i,j} p_i p_j q_{\max(i,j)}$$

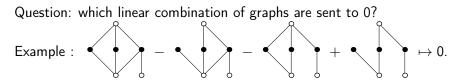
- 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

What is this talk about?

To a bipartite graph, we will associate a formal series:

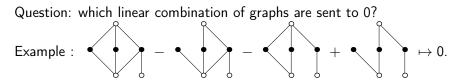
$$\bigwedge_{O}^{\bullet} \mapsto \sum_{i,j} p_i p_j q_{\max(i,j)}$$



What is this talk about?

To a bipartite graph, we will associate a formal series:

$$\bigcirc \qquad \longmapsto \sum_{i,j} p_i p_j q_{\max(i,j)}$$



Motivation : computation of irreducible character values of symmetric groups.

Let \mathbf{p} , \mathbf{q} be two infinite set of variables.

$$G =$$

 $N(G) =$

General formula:

$$N(G) = \in \mathbb{Q}[\mathbf{p}, \mathbf{q}],$$

Valentin Féray (LaBRI, CNRS)

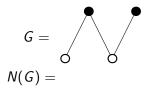
Cyclic inclusion/exclusion

Rouen, 2011-06

3 / 16

<ロト < 回 > < 回 > < 回 > < 三 > 三 三

Let **p**, **q** be two infinite set of variables.



General formula:

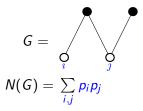
N(G) = $\in \mathbb{Q}[\mathbf{p},\mathbf{q}],$

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ○ のへの Rouen, 2011-06

Let \mathbf{p} , \mathbf{q} be two infinite set of variables.



General formula:

$$N(G) = \sum_{\varphi: V_{\circ} \to \mathbb{N}} \prod_{\circ \in V_{\circ}} p_{\varphi(\circ)} \in \mathbb{Q}[\mathbf{p}, \mathbf{q}]$$

Valentin Féray (LaBRI, CNRS)

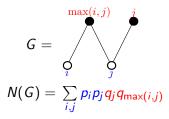
Cyclic inclusion/exclusion

Rouen, 2011-06

- 2

3 / 16

Let \mathbf{p} , \mathbf{q} be two infinite set of variables.



General formula:

$$N(G) = \sum_{\varphi: V_{\circ} \to \mathbb{N}} \prod_{\circ \in V_{\circ}} p_{\varphi(\circ)} \prod_{\bullet \in V_{\bullet}} q_{\psi(\bullet)} \in \mathbb{Q}[\mathbf{p}, \mathbf{q}],$$

with $\psi(\bullet) = \max_{\bigcirc \to \bullet} \varphi(\circ).$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆 ○ のへの

N as an algebra morphism

Let \mathcal{BG} be the $\mathbb Q$ vector space of linear combination of bipartite graphs. It is an algebra

$$G \cdot G' = G \sqcup G'.$$

N defines a morphism of algebra

$$egin{array}{rcl} \mathcal{BG} & o & \mathbb{Q}[\mathbf{p},\mathbf{q}] \ \mathcal{G} & \mapsto & \sum_{arphi: V_{\circ} o \mathbb{N}} \prod_{\circ \in V_{\circ}} p_{arphi(\circ)} \prod_{ullet \in V_{ullet}} q_{\psi(ullet)} \end{array}$$

Question

What is the kernel of N?

Valentin Féray (LaBRI, CNRS)

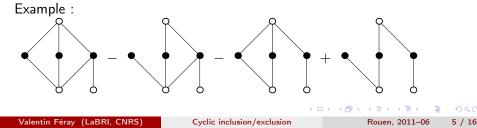
(B)

Cyclic inclusion/exclusion

Consider a bipartite graph G endowed with an oriented cycle C.

We define the following element of \mathcal{BG} :

$$\mathcal{A}_{G,C} = \sum_{E \subseteq E_{\circ} \to \bullet(C)} (-1)^{|E|} G \setminus E$$



Proposition

 $N(\mathcal{A}_{G,C}) = 0.$

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011-06 6 / 16

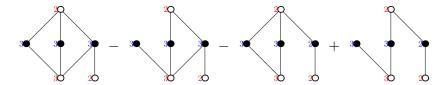
- 2

<ロ> (日) (日) (日) (日) (日)

Proposition

$$N(\mathcal{A}_{G,C})=0.$$

Sketch of proof. We look at the contribution of a fixed function $\varphi: V_{\circ}(G) \to \mathbb{N}$.

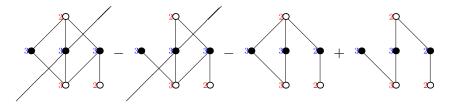


3

Proposition

$$N(\mathcal{A}_{G,C})=0.$$

Sketch of proof. We look at the contribution of a fixed function $\varphi: V_{\circ}(G) \to \mathbb{N}$.



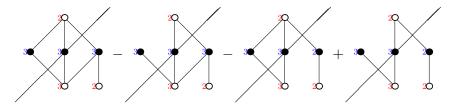
3

(日) (四) (日) (日) (日)

Proposition

$$N(\mathcal{A}_{G,C})=0.$$

Sketch of proof. We look at the contribution of a fixed function $\varphi: V_{\circ}(G) \to \mathbb{N}$.



3

(日) (四) (日) (日) (日)

Presentation of the next few slides

We will show that N defines an injective morphism

 $\mathcal{BG}/\langle \mathcal{A}_{G,C} \rangle \hookrightarrow \mathbb{Z}[[p,q]].$

Method:

- Construct a family of graphs G_I .
- Show that G_I is a generating family in the quotient

 $\mathcal{BG}/\langle \mathcal{A}_{G,C} \rangle.$

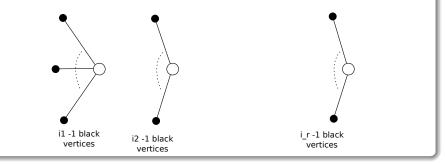
• Prove that $N(G_l)$ is linearly independent in $\mathbb{Z}[[\mathbf{p},\mathbf{q}]]$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

A generating family

Definition

Let $I = (i_1, i_2, ..., i_r)$ be a composition. Define G_I as the following bipartite graph:

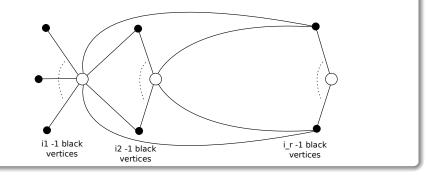


- 3

A generating family

Definition

Let $I = (i_1, i_2, ..., i_r)$ be a composition. Define G_I as the following bipartite graph:



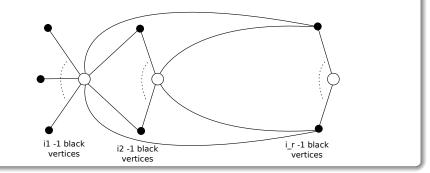
8 / 16

<ロト <部ト <きト <きト = 3

A generating family

Definition

Let $I = (i_1, i_2, ..., i_r)$ be a composition. Define G_I as the following bipartite graph:



Proposition

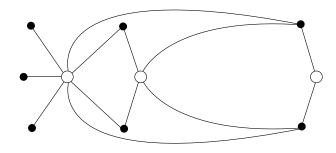
 $\{G_I, I \text{ composition}\}$ is a linear generating set of $\mathcal{BG}/\mathcal{I}.$

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Proposition

 $\{G_I, I \text{ composition}\}$ is a linear generating set of $\mathcal{BG}/\mathcal{I}.$



graph G_l

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

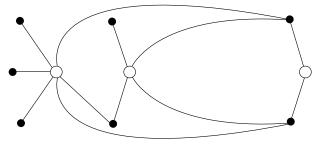
Rouen, 2011-06 9 / 16

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

 $\{G_I, I \text{ composition}\}\$ is a linear generating set of \mathcal{BG}/\mathcal{I} .



Consider a graph $G \neq G_I$

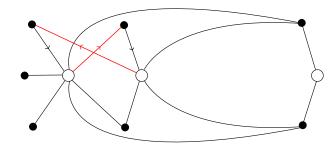
Cyclic inclusion/exclusion

3

- 4 周 ト - 4 日 ト - 4 日 ト

Proposition

 $\{G_I, I \text{ composition}\}$ is a linear generating set of $\mathcal{BG}/\mathcal{I}.$



There is a graph G_0 with an oriented cycle C such that $G_0 \setminus E_{\frown}(C) = G$

э

(日) (周) (日) (日)

Proposition

 $\{G_I, I \text{ composition}\}\$ is a linear generating set of \mathcal{BG}/\mathcal{I} .

Consider a graph $G \neq G_I$.

Lemma: There is a graph G_0 with an oriented cycle C such that:

$$G_0 \setminus E_{\circ} (C) = G$$

Consequence : in \mathcal{BG}/\mathcal{I} , G = linear combination of bigger graphs.

 \rightarrow we iterate until we obtain a linear combination of G_I 's.

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011–06 9 / 16

Lemma

The $N(G_I)$, where I runs over all compositions are linearly independent.

Gradation: $N(G_I)$ is a homogenous polynomial of degree $r = \ell(I)$ in **p** and of total degree n = |I|.

3

Lemma

The $N(G_I)$, where I runs over compositions of length r and size n are linearly independent.

Consider $M_{G_I}(p_1, p_2, ..., p_r, q_1, q_2, ..., q_r)$ (we truncate the alphabets to $r = \ell(I) = |V_{\circ}(G_I)|$ variables)

Lemma

The $N(G_I)$, where I runs over compositions of length r and size n are linearly independent.

Consider $M_{G_I}(p_1, p_2, ..., p_r, q_1, q_2, ..., q_r)$ (we truncate the alphabets to $r = \ell(I) = |V_{\circ}(G_I)|$ variables)

We will consider only *p*-square free monomials.

As total degree in p is r, they are:

$$T_J = p_1 q_1^{j_1-1} p_2 q_2^{j_2-1} \cdots p_r q_r^{j_r-1},$$

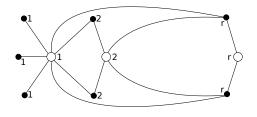
where J is a composition of n and length r.

In $N(G_I)$, they correspond to bijections $\varphi : V_{\circ}(G_I) \simeq \{1, \ldots, r\}$.

- ロ ト - 4 同 ト - 4 回 ト - 4 回 ト

Lemma

The $N(G_I)$, where I runs over compositions of length r and size n are linearly independent.



 $M_{G_I} = T_I$

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

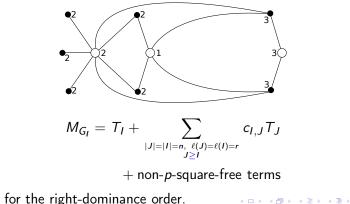
Rouen, 2011-06

< 47 → <

3.5 3

Lemma

The $N(G_I)$, where I runs over compositions of length r and size n are linearly independent.



 \geq stands for the right-dominance order.

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

naa

10 / 16

Rouen, 2011-06

We considered a morphism

$$\mathcal{BG} \longrightarrow \mathbb{Q}[[\mathbf{p},\mathbf{q}]]$$

Э

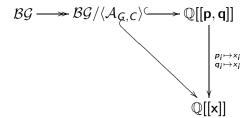
11 / 16

(日) (四) (日) (日) (日)

It factorizes via

 $\mathcal{BG} \longrightarrow \mathcal{BG}/\langle \mathcal{A}_{G,C} \rangle \longrightarrow \mathbb{Q}[[\mathbf{p},\mathbf{q}]]$

Same kernel if we identify p_i and q_i !



Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

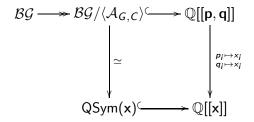
Rouen, 2011-06

3

11 / 16

イロト 不得下 イヨト イヨト

We can describe the image



QSym(x): ring of quasi-symmetric function in x. Example: $M_{1,2}(x_1, x_2, x_3) = x_1x_2^2 + x_1x_3^2 + x_2x_3^2$.

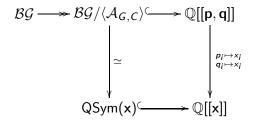
Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011-06

医下子 医下口

We can describe the image



QSym(x): ring of quasi-symmetric function in x. Example: $M_{1,2}(x_1, x_2, x_3) = x_1x_2^2 + x_1x_3^2 + x_2x_3^2$.

 $\mathcal{BG} \to \mathsf{QSym}$ is a Hopf algebra morphism!

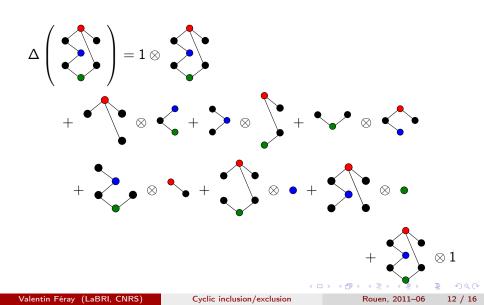
Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011-06

(세종) 세종) 등 문

Coproduct on \mathcal{BG}



Some variants

•
$$N'(G) := \sum_{\substack{\varphi: V_G \to \mathbb{N} \\ (\circ, \bullet) \in E_G \Rightarrow \varphi(\circ) \le \varphi(\bullet)}} \left(\prod_{v \in V_G} x_{\varphi_G} \right)$$
. Then
Ker $(N') = \operatorname{Ker}(N)$.

Some variants

•
$$N'(G) := \sum_{\substack{\varphi: V_G \to \mathbb{N} \\ (\circ, \bullet) \in E_G \Rightarrow \varphi(\circ) \le \varphi(\bullet)}} \left(\prod_{v \in V_G} x_{\varphi_G} \right).$$
 Then
Ker $(N') = \operatorname{Ker}(N).$

• The definition above is naturally extended to acyclic directed graphs.

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Rouen, 2011-06

3

13 / 16

< 日 > (一) > (二) > ((二) > ((L) > ((L)

Some variants

•
$$N'(G) := \sum_{\substack{\varphi: V_G \to \mathbb{N} \\ (\circ, \bullet) \in E_G \Rightarrow \varphi(\circ) \le \varphi(\bullet)}} \left(\prod_{v \in V_G} x_{\varphi_G} \right)$$
. Then
Ker $(N') = \operatorname{Ker}(N)$.

- The definition above is naturally extended to acyclic directed graphs.
- One can also consider labeled graphs and polynomials in non-commutative variables (QSym is replaced by WQSym).

$$N(G) = \sum_{\substack{f: [n] \to G \\ f \not>}} a_{f(1)} \dots a_{f(n)},$$

where the *a*'s are *non-commutative* variables.

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

Does cyclic inclusion/exclusion always span the kernel?

Same method as before:

- Construct a family of (labelled/unlabelled) (bipartite/directed acyclic) graphs.
- Show that it is a generating family in the quotient

 $\mathcal{G}_{\star}/\langle \mathcal{A}_{G,C} \rangle.$

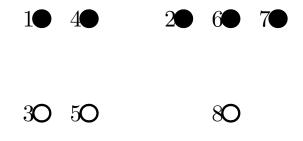
- **③** Prove that the corresponding functions are linearly independant.
- 3 is hard in non-commutative setting.

The family of graphs in the bipartite labelled setting

We consider set compositions (or ordered set-partitions) *I*. Example: I = 35 | 14 | 8 | 267. We associate the following graph G_I :

The family of graphs in the bipartite labelled setting

We consider set compositions (or ordered set-partitions) *I*. Example: I = 35 | 14 | 8 | 267. We associate the following graph G_I :



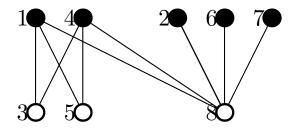
Cyclic inclusion/exclusion

Rouen, 2011-06

15 / 16

The family of graphs in the bipartite labelled setting

We consider set compositions (or ordered set-partitions) *I*. Example: I = 35 | 14 | 8 | 267. We associate the following graph G_I :



I need some help here!

Proposition

The graphs G_I generate the quotient

 $\mathcal{G}_{\star}/\langle \mathcal{A}_{G,C} \rangle$

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

3 × 4 3 × Rouen, 2011-06

3

16 / 16

I need some help here!

Proposition

The graphs G_I generate the quotient

 ${\cal G}_{\star}/\langle {\cal A}_{{\it G},{\it C}}
angle$

Conjecture

 $N(G_I)$, where I runs over all set compositions, is a basis of WQSym.

Equivalently, the $\mathcal{A}_{G,C}$ span the kernel of **N**.

→ ∃ →

э

I need some help here!

Proposition

The graphs G_I generate the quotient

 $\mathcal{G}_{+}/\langle \mathcal{A}_{G,C} \rangle$

Conjecture

 $N(G_I)$, where I runs over all set compositions, is a basis of WQSym.

Equivalently, the $\mathcal{A}_{G,C}$ span the kernel of **N**.

Thanks for listening!

э

16 / 16

Valentin Féray (LaBRI, CNRS)

Cyclic inclusion/exclusion

3 N (K 3 N Rouen, 2011-06