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Definitions and examples

Motivations
The aim of this work is to study combinatorially the function

ΨG =
∑

w∈L(G)

ψw, where

ψ1234...n :=
1

(x1 − x2)(x2 − x3) · · · (xn−1 − xn)
,

G is an oriented graph andL(G) the set of its linear extensions.

This function appears in the following contexts:

•Greene (1992) has computed this function for some graphs to give a
new proof of the Murnaghan-Nakayama formula.

•ΨG is the Laplace transform of the characteristic function of some
pointed cone (current work with Victor Reiner).

Examples (readG from left to right)

• If G =
1

2

3

4

5 then
ΨG = ψ12345 + ψ12435 + ψ21345 + ψ21435

= x1·x2−x1·x5−x2·x5−x3·x4+x3·x5+x4·x5
(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x3−x5)(x4−x5)

,

• if G is disconnected thenΨG = 0,

• if G is acyclic thenΨG = 1
∏

(i,j) edges ofG
(xi−xj)

.

Some known results
For Hasse diagrams of posets, the denominator of the reducedΨG is:

∏

(i,j) edges ofG

(xi − xj)

For a general class of graphs, Greene gives the following formula:

Theorem 1 (Greene, 1992) If G is the Hasse diagram of a con-
nected “strongly-planar” posetP , then

ΨG =
∏

y,z∈P

(xy − xz)
µP (y,z)

whereµ(x, y) denotes the M̈obius function on the posetP .

For instance,

G =
1

2

3

4

5

6

7

8

9

10 11 12 ΨG =
(x1 − x5)(x5 − x10)

2(x1 − x10)
∏

(i,j)∈G

(xi − xj)

An inductive algorithm

Goal To computeN(G) := ψG ·
∏

edge(i,j)
(xi − xj).

An equality on linear extensions
LetG be an oriented graph with a cycleC.
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C = 6−8− 5−
7− 4− 1−6

The edges ofC are not necessarily oriented as inG.
LR(C) :=

{

edges(i, j) for which both orientations coincide
}

.

Proposition 2
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Corollary

Proposition 3

N(G) =
∑

E ′⊆LR(C)
E ′ 6=∅



(−1)|E
′|−1N(G\E ′)

∏

(i,j)∈E ′

(xi − xj)



 .

Iteration of this proposition⇒ ∃ coefficientscT in Z such that :

N(G) =
∑

T subtree ofG

cT
∏

e∈EG\ET

(xα(e) − xω(e)).

Of course, the coefficientscT depend on the chosen cyclesC.

All the summands in the right-hand side are polynomials! This for-
mula gives aquicker way to compute N(G) (usually done by enu-
merating linear extensions).

Consequences

A combinatorial formula for N(G)

Suppose thatG can be embedded in the plane. If we iterate the last
proposition only for cyclesC with counterclockwise orientation, we
always obtain the same coefficientscT . Moreover, they are either0 or
1. So:

N(G) =
∑

T s.t. cT=1





∏

(i,j)∈EG\ET

(

xi− xj
)



 .

The coefficient of a treeT in G can be determined in this way:

•fix a corner in the external face ofG ;

•make thetourof the tree ;

• cT = 1 iff, for any edge not in the tree,
one crosses his first dart before the sec-
ond one.

.
This generalizes to graphs with a rooted embedding of higher genus.

Chain factorization
Let us cut a graphG into several pieces along a chain:

9 10

18 7 8 19

11 12 15

16

171 2 13 3 4 5 6 14 cut along
−−−−→

a chain

2 3 4

9 10

13 5 6

11 12

3 4 5 6

7 818 19

14

15

16

17

The numerator of the corresponding function can be factorized:

N





9 10

18 7 8 19

11 12 15

16

171 2 13 3 4 5 6 14



 =

N

(

2 3 4

9 10

13

)

·N

(

5 6

11 12

)

·

N

(

3 4 5 6

7 818 19

)

·N

(

14

15

16

17

)

With this property, we can recover andextend Greene’s theorem. For
instance, Greene’s formula is also true for the following poset:

N





1 2 3 4 5 6

7 8

9



 = N

(

1 2 3 4

7
)

·N

(

2 3 4 5

8
)

·N

(

3 4 5 6

9

)
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