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Definitions and examples

Motivations Goal To computeN (G) :=vg- || (x; — ;). A combinatorial formulafor N(G)
The aim of this work Is to study combinatorially the function edge(:.J) Suppose thaf’ can be embedded in the plane. If we iterate the last
U — Z .. Where An equality on linear extensions proposition only for cycle€” with counterclockwise orientation, we
weL(C) Let & be an oriented graph with a cydle always obtain the same coefficiemts Moreover, they are eithéror
1. So:
1 —_ —
¢1234...n = (,flfl L LEQ)(ZEQ L Zlfg) o (Qf 1 — T )7
| | \Eno1 7 En) C=6-8—5 NG = ) I (zi—a)
G is an oriented graph an€l(G) the set of its linear extensions. T 416 T ster=1 | (ij)eE\ By

The coefficient of a tre&’ In G can be determined In this way:

This function appears in the following contexts:

e Greene (1992) has computed this function for some graphsd¢cag The edges of are not necessarily oriented asin

new proof of the Murnaghan-Nakayama forml.JIa.. | LR(C) = { edgeq(i, j) for which both orientations coincidg e make thetour of the tree ;
e U~ IS the Laplace transform of the characteristic functionahe oy — 1 iff, for any edge not in the tree

pointed cone (current work with Victor Reiner).

e fiX a corner In the external face 6f ;

one crosses his first dart before the sec-
ond one.

Proposition 2
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'
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Examples (readG from left to right | .
ples( ght) Thisgeneralizesto graphs with a rooted embedding of higher genus.

2 4
5 Ve = 19345 + V12435 + V21345 + V21435
¢ If G — 1 then _ L1 Xo—T 1 T5—LoL5—T3 La+T3T5+T4 T y
(z1—3) (11— 24) (T2—23) (T2 —24) (X3—5) (T4—1T5)

o if (G IS disconnected theti; = 0,

oif G'is acyclic thenl = — L et

(4,j) edges ofz

Chain factorization
Let us cut a grapld’ into several pieces along a chain:
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H (z; — x;) The numerator of the corresponding function can be factdriz

Corollar
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Some known results
For Hasse diagrams of posets, the denominator of the reducesd

(¢,7) edges ofz

For a general class of graphs, Greene gives the followinguda:

15

Theorem 1 (Greene, 1992) If G Is the Hasse diagram of a con- O 3 45 A
nected “strongly-planar” poseP, then ) ) N <1.8-9> -V
_ o \HP(Y,2) E'CLR(C) . .
Vo = H (Ty = z2) E'70 With this property, we can recover aegtend Greene’s theorem. For
v P . . - .. . - ) - -
e lteration of this propositiors 3 coefficientse, in Z such that : instance, Greene’s formula is also true for the followinggto
whereu(x, y) denotes the Mbius function on the posét.
N(G> — Z cT H (xa(e) o xw(e))- . o 7 8 3 % 2 6
For instance, T subtree of7 ecEq\Er N 16 =N (1 2 3 4> N (2 3 4 5> N ( 9 >
) Of course, the coefficients depend on the chosen cyclés
Uy = ($1 — £U5)($5 — 5510) ($1 — $10)
[ (=i -2 All the summands in the right-hand side are polynomials! sTii- References
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merating linear extensions).
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