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1 Introduction

Figure 1: A picture of Sister Celine by Herbert Wilf

Mary Celine Fasenmyer was an American mathematician known mostly for her work in
linear algebra and on hypergeometric sums.

In her Ph.D. thesis at the University of Michigan in 1945, she developed a method for
systematically finding recurrence relations for (sums of) hypergeometric polynomials. Before
her work, finding such a recurrence relation was a question of trial and error involving the use of
various ”algebraic tricks”. Her methods were capable of finding recurrence relations for a specific
subset of generalized hypergeometric polynomials including, among others, the Legendre- and
Jacobi- polynomials. In her second publication [2], she illustrated her general method by going
back to results from her Ph.D. Only in 1978 did Doron Zeilberger fall back on Sister Celine’s
”method”. In my text I will also be following a part of his paper [3]. Her method (or extensions
thereof, such as Zeilberger’s algorithm which will also be the topic of three seminar talks) is
now used by computer algebra systems such as Mathematica and Maple.

2 Problem statement
In general we are looking for a simplification of the sum

G(n) =
∞∑

k=−∞
F (n, k), (1)

where F : Z2 → C is multi-hypergeometric, according to the following definition. Sister Celine’s
Method provides tools described in 3 and formalised in 4 that find a linear recurrence relation
satisfied by G(n). The tools are guaranteed to work if the terms F (n, k) are of a special form
(namely if they are proper hypergeometric, see section 4). I will very briefly mention how to
obtain a closed form from these recurrence relations in section 3.3.
Definition 1. A function F : Z2 → C is called multi-hypergeometric if and only if there exist
non-zero polynomials P1, Q1, P2, Q2 : Z2 → C such that for all (n, k) ∈ Z2, we have

P1(n, k)F (n, k)−Q1(n, k)F (n− 1, k) = 0 and
P2(n, k)F (n, k)−Q2(n, k)F (n, k − 1) = 0.

(2)
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In the following, χS will denote the characteristic function of a set S, given by χS(x) = 1 if
x ∈ S and χS(x) = 0 if x 6∈ S.

Example 1. The function F (n, k) = 2kχ[0,n](k) is multi-hypergeometric. Indeed, we can choose
Q1(n, k) = P1(n, k) and Q2(n, k) = 2P1(n, k) to be any non-zero polynomials which are 0 if
k = n and (2) will be satisfied. Another example is F (n, k) = χ[0,n](k)·(c+kq) for any constants
c, q ∈ R (this corresponds to the arithmetic series).

Example 2. If we define the binomial coefficient by
(
n
k

)
= χ[0,n](k)· n!

k!(n−k)! (with the convention
that 0 · undefined = 0), then any product of binomial coefficients is multi-hypergeometric. For
example, for any r > 0, the function F (n, k) =

(
n
k

)r
satisfies (2) with P1(n, k) = nr, Q1(n, k) =

(n− k)r, P2(n, k) = kr, Q2(n, k) = (n− k + 1)r.

The idea of the algorithm is to first find a linear recurrence relation for the term F , such
that the coefficients of this recurrence do not rely on k. Then, we sum this recurrence over all
integers k in order to get a recurrence for G. In a final step (which is not part of Sister Celine’s
method), we solve this recurrence in order to obtain a simpler closed form for G.

The following definition is useful:

Definition 2. A function G : Z → C is called P-recursive iff there exists a C ∈ N0 =
{0, 1, 2, 3, . . . } and polynomials P0, . . . , PC such that P0 and PC are not identically 0 and

C∑
i=0

Pi(n)G(n− i) = 0 (3)

for all n ∈ Z. The number C is called the order of the recursion. For example, hypergeometric
functions are P-recursive functions of order 1.

Indeed, under certain circumstances described in section 4, the sum G(n) = ∑∞
k=−∞ F (n, k),

if well-defined, is P-recursive. We are interested in finding the polynomials Pi such that (3)
holds.
Remark 1. Notice that if F is multi-hypergeometric and F (n, ·) has compact support for all
n ∈ Z, i.e. if

supp(F (n, ·)) Def.= {k ∈ Z : F (n, k) 6= 0}
is compact (which in this case is equivalent to finite), then G(n) is well-defined. Indeed, this
means that we can study all finite sums of the form

n∑
k=0

F (n, k) =
∞∑

k=−∞
χ[0,n](k) · F (n, k). (4)

3 General algorithm
I will now try to outline the general algorithm for the simplification of G(n) = ∑∞

k=−∞ F (n, k).

3.1 Finding a recurrence relation for the summands
First, we will be looking for non-negative integers M,N and coefficients ar,s : Z → C for
r, s ∈ Z such that

M∑
r=0

N∑
s=0

ar,s(n)F (n− r, k − s) = 0 (5)
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for all n, k ∈ Z. It is important to note that the ar,s are independent of k, for reasons seen
later. In section 4, I will give some quantitative estimates for the choice of M,N .

Obtaining such a recurrence for given M,N is fairly straight-forward: By condition (2),
we know that each F (n−r,k−s)

F (n,k) is a quotient of two polynomials of n and k (provided that
F (n, k) 6= 0). Indeed fix any n, k such that F (n, k) 6= 0 (we can assume that such n, k exist
since the case F (n, k) ≡ 0 is not interesting). We can write (5) in the form

M∑
r=0

N∑
s=0

ar,s(n) F (n− r, k − s)
F (n, k)︸ ︷︷ ︸

=quotient of two polynomials

= 0. (6)

The left-hand side of this equation (consisting of the sum of the product of the ar,s and
rational functions) can be put over a single common denominator. The numerator is now a
polynomial in n and k so we can collect powers of k. Setting all coefficients of k to 0, we get a
system of linear equations for each n where the unknowns are the ar,s(n).

If the only solution to this linear equation system for some n is ar,s(n) = 0 for all r, s,
then we have to try again with bigger constants M,N . Otherwise, we have succesfully found a
(non-degenerate) recurrence relation for the F (n, k) in the form of (5).

Example 3. Consider again the term F (n, k) =
(
n
k

)
. Then for 0 ≤ k ≤ n (for other k,

F (n, k) = 0), we have F (n−1,k)
F (n,k) = n−k

n
and F (n,k−1)

F (n,k) = k
1−k+n . By performing the above steps

for M = N = 1, we obtain the recurrence (note that this recurrence is well-known as Pascal’s
rule)

F (n, k)− F (n− 1, k)− F (n− 1, k − 1) = 0. (7)

3.2 Finding a recurrence relation for the sum
After we found a recurrence relation in the form of (5), we can quickly find a recurrence relation
for the sum G(n) with the following useful Lemma:

Lemma 1. If F is multi-hypergeometric such that G(n) = ∑∞
k=−∞ F (n, k) is well-defined for

all n and if F satisfies a recurrence of the form (5), then G(n) satisfies the linear recurrence
relation

M∑
r=0

G(n− r) ·
(

N∑
s=0

ar,s(n)
)

= 0 for all n ∈ Z. (8)

Proof. The Lemma can be proven by switching the summation order after summing (5) over k
(note that this is possible since I am ”extracting” only finite sums which means that I am just
using the linearity of the limit,´ i.e. limN→∞ aN + bN = limN→∞ aN + limN→∞ bN .)

0 =
∞∑

k=−∞

0︷ ︸︸ ︷
M∑
r=0

N∑
s=0

ar,s(n)F (n− r, k − s) =
M∑
r=0

N∑
s=0

ar,s(n)

G(n−r)︷ ︸︸ ︷
∞∑

k=−∞
F (n− r, k − s)

=
M∑
r=0

N∑
s=0

ar,s(n)G(n− r)

=
M∑
r=0

G(n− r) ·
(

N∑
s=0

ar,s(n)
)
.
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Example 4. Coming back to 3, let us consider the sum

G(n) =
∞∑

k=−∞

(
n

k

)
=

n∑
k=0

(
n

k

)
. (9)

We already know that the summand satisfies the recurrence

F (n, k)− F (n− 1, k)− F (n− 1, k − 1) = 0.

From Lemma 1, we thus obtain that G(n) = 2G(n−1) and hence from G(0) = 1 that G(n) = 2n.
(Note that this result can be achieved immediately with the smart observation that G(n) =
(1 + 1)n by the Binomial Theorem.)

Example 5. Consider the sum with summands F (n, k) =
(
n
k

)2
. Applying the procedure from

3.1 for M = N = 2, we get the recurrence

a0,0(n)F (n, k) + a1,0(n)F (n− 1, k) + a2,0(n)F (n− 2, k)
+ a1,1(n)F (n− 1, k − 1) + a2,1(n)F (n− 2, k − 1) + a2,2(n)F (n− 2, k − 2) = 0, (10)

where a0,0(n) = n, a1,0(n) = a1,1(n) = 1 − 2n, a2,0(n) = a2,2(n) = n − 1 and a2,1(n) = 2 − 2n.
Using Lemma 1, we obtain that G(n) = ∑n

k=0

(
n
k

)2
satisfies

nG(n) + (2− 4n)G(n− 1) = 0, i.e. for n 6= 0, G(n) = 4n− 2
n

G(n− 1). (11)

This, together with G(0) = 0, implies that G(n) =
(

2n
n

)
.

3.3 Obtaining a closed form for the sum
Suppose that we found, for example using the methods from the previous two sections, a
recurrence of the form

M∑
r=0

P (r, n)G(n− r) = 0. (12)

We are now interested in finding a closed form for G(n), i.e. an expression of the type G(n) =(
2n
n

)
(I will not give a precise definition of closed form here.)

There is an algorihmic approach called algorithm hyper, which will also be treated within
this seminar.

4 The fundamental Theorem
In this section, I will try to give some quantitative estimates on when to expect the approach
of the previous section to work, and what M,N need to be chosen. This section is following
the fourth chapter of the great book A=B [4].

Definition 3. A function F : Z2 → C is called proper hypergeometric iff there exist constants
U, V ∈ N, ai, bi, ci, uj, vj, wj ∈ Z for i = 1, . . . , U and j = 1, . . . , V , x ∈ C and finally a
polynomial P : Z2 → C such that

F (n, k) = P (n, k) ·
∏U
i=1(ain+ bik + ci)!∏V
i=1(uin+ vik + wi)!

xk (13)

for all n, k ∈ Z.
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Remark 2. It should be noted that (13) is well-defined only if ain+ bik+ ci ≥ 0 for all i. Also,
the convention used here is that F (n, k) = 0 if uin+ vik + wi < 0 for any i.
Remark 3. The ideas described here arose initially in the original paper by Sister Celine [2]
where she was studying quote ”many of the classical polynomials, for example, the Laguerre,
and [...] those of Jacobi, Legendre”.

Example 6. The function

F (n, k) =
(
n

k

)
2k = n!2k

k!(n− k)! (14)

is proper hypergeometric. So is the function

F (n, k) = 1
d1n+ d2k + d3 + 1 = (d1n+ d2k + d3)!

(d1n+ d2k + d3 + 1)! (15)

for any constants d1, d2, d3 ∈ N.

Theorem 1. Let F be a proper hypergeometric function written in the form (13). Then there
exist M,N ∈ N0 and polynomials ar,s : Z → C for r = 0, . . . ,M and s = 0, . . . , N which are
not all identical to 0, such that the recurrence (5) holds.

Remark 4. Furthermore, it can be shown (I will omit the proof of this fact here) that such a
recurrence holds for the particular choice

M =
U∑
s=1
|bs|+

V∑
s=1
|vs| and N = 1 + deg(P ) +M ·

(
−1 +

U∑
s=1
|as|+

V∑
s=1
|us|

)
. (16)

Proof. For this proof I will use the short-hand notation

rf(x, y) =
x∏
j=1

(y + j), and ff(x, y) =
x−1∏
j=0

(y − j). (17)

For illustrative purposes, let me first consider the case of a ”simple” function f(n, k) =
(an+ bk + c)!. For this function,

f(n− j, k − i)
f(n, k) =

(ff(aj + bi, an+ bk + c))−1 , if aj + bi ≥ 0,
rf(|aj + bi|, an+ bk + c), if aj + bi < 0.

(18)

Now I will get to the general case: For F written in the form (13), we have (assuming
F (n, k) 6= 0) F (n−j,k−i)

F (n,k) = ν(n,k)
δ(n,k) , where

νr,s(n, k) = P (n−r, k−s)
∏

1≤i≤U
air+bis<0

rf(|air+bis|, ain+bik+ci)
∏

1≤i≤V
uir+bis≥0

ff(uir+vis, uin+vik+wi),

(19)
and

δr,s(n, k) = P (n, k)xs
∏

1≤i≤U
air+bis≥0

ff(air+bis, ain+bik+ci)
∏

1≤i≤V
uir+vis<0

rf(|uir+vis|, uin+vik+wi). (20)

If we try to apply the procedure in section 3.1, we get the equation
M∑
r=0

N∑
s=0

ar,s(n)νs,r(n, k)
δs,r(n, k) = 0. (21)
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The next step is to put all terms in the sum (21) over a (least) common denominator. Looking
at the explicit form of δr,s(n, k), we see that P (n, k) must be in this common denominator. Let
me introduce another shorthand notation: For x ∈ R, let x+ = max(x, 0). Then we have for
integers a, b,

max{|ar + bs| : ar + bs < 0, 0 ≤ s ≤ N, 0 ≤ r ≤M} = (−a)+M + (−b)+N (22)
and

max{ar + bs : ar + bs ≥ 0, 0 ≤ s ≤ N, 0 ≤ r ≤M} = a+M + b+N, (23)

so that the notation gets much clearer.
We still want to find the least common multiple of all the δr,s. It is convenient that the

rising factorials rf and the falling factorials ff share many factors. Indeed, for each i in the
product of (20), a common multiple of all the falling factorials is the falling factorial with the
largest argument, that is

ff((ai)+M + (bi)+N, ain+ bik + ci). (24)

Analogously, a common multiple of all the rising factorials is

rf((−ui)+M + (−vi)+N, uin+ vik + wi). (25)

It follows that if we define the polynomial

∆(n, k) = P (n, k)·
U∏
i=1

ff((ai)+M+(bi)+N, ain+bik+ci)
V∏
i=1

rf((−ui)+M+(−vi)+N, uin+vik+wi),

(26)
then by rewriting (21) as

M∑
r=0

N∑
s=0

ar,s(n) νs,r(n, k) ∆
δs,r(n, k)︸ ︷︷ ︸

polynomial in n and k

= 0, (27)

I get a polynomial equation in the ar,s(n). All that is left to do is to collect powers of k and
set all coefficients of the powers of k to 0. This amounts in a linear equation system.

It is thus enough to show that if M and N are large enough, then there will be more
unknowns ar,s(n) than equations. By construction, there are (M + 1)(N + 1) unknowns. The
number of equations is equal to the number of (distinct) powers of k that appear in the sum
(27). So I will now study the number of powers of k appearing in (27).

Indeed, the degree in k of each rising and falling factorial in (27) grows linearly with M and
N and hence the degrees in k of the ν’s, δ’s and ∆ also grow linearly with M,N . So there is a
linear function L : N2 → R and a constant C ≥ 0 such that

number of powers of k in (27) ≤ L(M,N) + C. (28)

Since for M,N large enough we have (M + 1)(N + 1) > MN � L(M,N) + C, the claim
follows.

5 Some examples

5.1 Example 1

As another example, I want to consider the sum G(n) = ∑n
k=0 k

3
(
n
k

)
.
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Remark 5. By repeatedly using the identity
(
n
k

)
= n

k

(
n−1
k−1

)
and performing algebraic manipula-

tions, one can also obtain the result proven below with Sister Celine’s method. See [5].
Using the attached Mathematica script, more specifically the function findRecur, we find

that the F (n, k) = k3
(
n
k

)
satisfy the recurrence (5) with M = N = 2 and the coefficients

(ar,s(n))r,s∈{0,1,2} =

(−5n2+11n−6)a1,1(n)
n

−
(10n3−33n2+29n−2)a0,1(n)

(n−1)2

4(n+2) a0,1(n) 0
n(10n3−37n2+37n−4)a0,1(n)

(n−1)3 +(5n−8)a1,1(n)
2(n+2) a1,1(n) −n3a0,1(n)

(n−1)3

−n(10n2−21n+3)a0,1(n)+5(n−1)3a1,1(n)
4(n−1)2(n+2) −n(n2−6n+1)a0,1(n)+(n−1)3a1,1(n)

(n−1)2(n+2)

n(6n2+3n−1)a0,1(n)

(n−1)2 +(n−1)a1,1(n)
4(n+2)


(29)

Notice that, since we have more unknowns than linear equations, we have the functions
a0,1(n) and a1,1(n) that are freely choosable. For example, I will choose (see also the attached
Mathematica script) a0,1(n) = (n − 1)2 and a1,1(n) = n. This arbitrary choice was made
in order to cancel some of the denominators. From Lemma 1, which was implemented as
findRecurForSum in the Mathematica script, we get the linear recurrence relation

4(n− 5)n2G(n− 2) + 2(13− 4n)n2G(n− 1) +
(
3n3 − 14n2 + 15n− 2

)
G(n) = 0. (30)

Using Mathematica’s RSolve function, which seems to be an implementation of algorithm
Hyper, we get that the general solution to this recurrence is

G(n) = C12n−3n2(3 + n) + C2 · something(n), (31)

where C1 and C2 are arbitrary constants.The solution we are looking for is with C1 = 1 and
C2 = 0 so that

G(n) =
n∑
k=0

k3
(
n

k

)
= 2n−3n2(3 + n). (32)

Remark 6. Since the choice C1 = 1 and C2 = 0 is independent of Sister Celine’s method, I will
not further explain it here (it should be noted that the term something(n) by Mathematica is
quite ”ugly”.)

5.2 Example 2

As a final example, I will consider the sum G(n) = ∑n
k=0

(
n
k

)(
2k
k

)
(−2)n−k. Using the findRecur

function (see again the attached program), we find that the F (n, k) =
(
n
k

)(
2k
k

)
(−2)n−k satisfy

the recurrence (5) with M = 2, N = 1 and the coefficients

(ar,s(n))r,s =


a0,0(n) 0

2(2n−1)a0,0(n)
n

−2(2n−1)a0,0(n)
n

4(n−1)a0,0(n)
n

−8(n−1)a0,0(n)
n

 , (33)

where a0,0(n) is again freely choosable. I will choose a0,0(n) = n, since this cancels all the
denominators in the other coefficients, and by Lemma 1, I obtain the recurrence

nG(n) = 4(n− 1)G(n− 2). (34)
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Indeed it follows that (the following formula is expressed a bit more clumsily by Mathemat-
ica)

G(n) =
0, if n is odd(

n
n
2

)
, if n is even . (35)
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