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1 Introduction
1.1 General question and motivation
Consider

• a combinatorial class C, i.e., a set of combinatorial objects with finitely
many objects of each size (permutations, graphs, words, lattice paths);

• for each n, a probability measure µn on the set Cn of objects of size n;
most of the time, this is the uniform distribution;

• a function f : C → Z≥0 (or R), which we will refer to as statistics.

We consider the random variable Xn = f(cn), where cn has distribution µn.

Question: how does Xn behave asymptotically?

1. asymptotic equivalent for the expectation, the variance, or more generally
moments...

2. asymptotics of probability P(Xn = kn) for some sequence kn and/or con-
vergence in distribution after normalization (the first question is in general
stronger).
Auxiliary question: what is the speed of convergence?

3. deviation estimates, e.g. at which speed does P(Xn ≥ tn) (or P(Xn ≤ tn))
tend to 0 (when it tends to 0)?

Motivation:

• statistics (e.g.: compare "measured" Xn on random permutations with
the theoretical value to test the hypothesis "the permutation taken is uni-
form");

1



• statistical physics: in statistical physics, we take a microscopic configura-
tion at random among all possible ones and we want to describe behaviour
of some macroscopic quantity of the system (which would be the statistics
f);

• average analysis of algorithms: here, the combinatorial objects are the
input of some algorithm (e.g. a permutation to be sorted) and the statistics
is the time (or number of steps) taken by the algorithm (more standard,
but not necessarily relevant: worst-case complexity).

• "probabilistic method": prove the existence of combinatorial objects with
some given properties by proving that the probability that a random object
has these properties is nonzero.

1.2 Number of (short) cycles in random permutations
• Combinatorial class: permutations;

• probability measure: µn is the uniform distribution on the set Sn of per-
mutations of size n;

• statistics: total number of cycles Xn, or, for a given k ≥ 1, number of
cycles of length k.

Here are two theorems that we shall prove in the lecture, illustrating conver-
gence in distribution, one towards a discrete limit law, and the other one to a
continuous one...

Theorem 1.1 (Goncharov ’44). Fix some integer k ≥ 1 and define X
(k)
n the

number of cycles of length k in a random permutation in Sn. Then X
(k)
n is

asymptotically Poisson with parameter 1
k , that is: for all i,

lim
n→∞

P
(
X(k)

n = i
)
=

e−1/k

kii!
.

Theorem 1.2 (Goncharov ’44). The number of cycles Xn of a uniform random
permutation in Sn is asymptotically Gaussian with mean and variance log(n),
i.e.,

lim
n→∞

P
(
Xn ≤ log(n) + x

√
log(n)

)
=

1√
2π

∫ x

−∞
e−w2/2dw.
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1.3 Longest common substring
• Combinatorial class: pairs (w,w′) of words of the same length on some

finite alphabet A, i.e., the objects of size n are Cn = (An)2;

• probability measures: µn is the uniform distribution on Cn (w and w′ are
both uniform on An and independent);

• statistics: longest common substring Ln = L(w,w′) between w and w′.

Theorem 1.3. Let A be an alphabet of size k and Ln the longest common
substring of two independent uniform random words on the alphabet A. There
exists a real number γk such that

E(Ln) ∼ γkn.

Moreover,
P(|Ln − E(Ln)| ≥ tn) ≤ 2 exp(−t2n/4n).

The γk are known as the Chvátal-Sankoff constants. Proving their existence
is relatively easy (see exercices). Despite efforts in this direction, no formulas
for any of the γk are known!

1.4 Chromatic number and triangles in random graphs
• Combinatorial class: (simple, undirected, loopless) graphs = pairs (V,E)

with E ⊆
(
V
2

)
.

• probability measures: Gn is the Erdős-Rényi random graph G(n, p) (where
p = p(n) may depend on n) defined by

– V = [n]

– for each e ∈
(
V
2

)
, then e ∈ E independently with probability p

Note: if p = 1/2, uniform measure on all graphs with vertex set [n].

• statistics: Xn = χ(Gn) is the chromatic number of Gn.
Recall that a proper coloring of a graph G is a coloring ot the vertices of G
so that no two adjacent vertices share the same color. Then the chromatic
number χ(G) of G is the smallest number of colors needed in a proper
coloring of G.

Proposition 1.4 (Shamir–Spencer ’87). For any n, p and λ > 0, we have

P
[ ∣∣χ(Gn)− E[χ(Gn)]

∣∣ > λ
√
n− 1

]
< 2e−λ2/2.
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For p = 1/2, the mean is known to be asymptotically n/ log(n), but this is
a harder result than the deviation estimate above.

Other interesting statistics: let Tn be the number of triangles (=triple
{i, j, k} such that all of {i, j}, {j, k} and {i, k} are edges of the graph). A
variant is to consider 1[Tn > 0], i.e., we are interested only in the existence of
a triangle, not in their precise number.

Theorem 1.5 (Erdős–Rényi ’60, Bollobás ’81). Let pn be a sequence of real
number in [0, 1]

1. if pn ≪ 1/n, then P
(
G(n, pn) contains a triangle

)
→ 0 ;

2. if limn pn = c ∈ (0,+∞), then Tn converge in distribution to a Poisson
law of parameter c;

3. if pn ≫ 1/n, then P
(
G(n, pn) contains a triangle

)
→ 1 and the number

of triangles is asymptotically Gaussian.

We say that there is a threshold at pn = 1/n for the triangle containment
property. Existence and determination of thresholds is a common question in
random graph theory.

1.5 Number of prime divisors
An example from number theory... which can be treated by similar methods.

Fix some number n. Take uniformly a random number between 1 and n.
We denote ν(x) the number of prime divisor (without multiplicities) of x.

Theorem 1.6 (Erdös–Kac ’40). Let n be an integer and x a uniform random
number between 1 and n. Then ν(x) is asymptotically Gaussian with mean and
variance equivalent to log(log(n)).

1.6 Methods
0- Compute explicitly the probability that P(Xn = kn), for all kn, and take

limits when n tends to infinity.
Applicable to the number of cycles of fixed length in uniform permutations

(using inclusion-exclusion).

1- Compute the characteristic function E(eitXn) or, setting u = eit the prob-
ability generating function.

E(uXn)
∑
c∈Cn

µn(c)u
f(c).

Claim: If you can compute this function, you have access to "everything" (mo-
ments, convergence in distribution, deviation estimates).
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Among the above examples, this is applicable to cycles in permutations, and
to number of prime divisors (though in this case, the computation of the gen-
erating function is quite involved and we will not use this path in this lecture).

In some cases, this probability generating function can be evaluated through
analytic combinatorics, using bivariate generating functions.

2- When 1- does not work, one can try to evaluate asymptotically the mo-
ments E(Xr

n). Moments are suited for combinatorial quantities: if Xn counts
some substructures in the random object cn, then Xn =

∑
a 1[a ∈ cn], and one

can expand Xr
n.

Moments can be used to give:

• some deviation estimates, in particular a random variable with a small
variance is concentrated around its mean (second moment method);

• some convergence in distribution (moment method);

Among the above examples, this is used for triangles in random graphs, and
for the number of prime factors in random integers. It is also applicable to fixed
length cycles in permutations.

3- The deviation estimates obtained with moments are usually not good
(polynomial decay instead of exponential). We can instead use martingales and
Azuma’s inequality (even without being able to compute the mean!).

The deviation estimates above for longest common subword and for the chro-
matic number are straightforward applications of Azuma’s inequality.

1.7 Exercises
Exercise 1.1 (Fekete’s lemma). A sequence (un) of real numbers is called super-
additive if and only if:

un+m ≥ un + um, for all n,m.

Show that limn→∞
un

n exists (it may be infinite) and is equal to supn≥1
un

n .
Hint: you may first consider the case where un

n has a maximal element uk

k
and consider the Euclidean division of n by k. Then deal with the general case.

Exercise 1.2. Denote ℓ
(k)
n = E[L(k)

n ] the expectation of the size of the longest
common subsequence of two uniform random words of size n on a k-letter al-
phabet.

1. Using the previous exercise, show that ℓ(k)n is asymptotically equivalent to
γkn for some number γk (when n tends to infinity and k is fixed).

5



2. Show that for any integer k and m,

γm·k ≤ γk.

3. Recall from the lecture that P(|L(k)
n − E(L(k)

n )| ≥ tn) ≤ 2 exp(−t2n/8n),

when tn → ∞. Find tn → ∞ such that a.s., we have |L(k)
n −E(L(k)

n )| ≤ tn
for n large enough.

6



2 Characteristic functions – the analytic approach
2.1 Basics on characteristic functions
Definition 2.1. Let X a real-valued random variable, its characteristic function
is defined as

φX(t) = E(eitX).

Notes: - sometimes called Fourier transform;
- the expectation above is always well-defined when t is a real number, so φX

is a function on R and |φX(t)| ≤ 1.
Here are the characteristic functions of some classical distribution

Uniform X ∼ U([a, b]) → φX(t) = eitb−eita

it(b−a) ;

Gaussian X ∼ N (m,σ2) → φX(t) = eitm−σ2t2/2 ;

Poisson X ∼ Poisson(λ) → eλ(e
it−1);

Geometric (starting at 1) X ∼ Geom(p) → peit

1−(1−p)eit .

Probability generating function (PGF). Assume X takes values on Z≥0 (we
will always assume this when speaking of PGF). Then we can write

φX(t) = E(eitX) =

∞∑
k=0

P(Xn = k)eitk = P (eit),

where P (u) :=
∑

k≥0 P(X = k)uk is the PGF of X (well-defined at least for
|u| ≤ 1).

Moments. Moments E(Xr), if they exist (nothing ensures in general that Xr

is in L1) can be recovered from the characteristic function/PGF by differenti-
ating at t = 0 (resp. u = 1).

• We have
E(Xr) =

1

ir
dr

dtr
E(eitX)|t=0.

• Sometimes, it is more appropriate to take logarithm of φX .

E(X) =
1

i

d

dt
log(φX(t))|t=0, Var(X) =

1

i2
d2

dt2
log(φX(t))|t=0.

Further derivative of log(φX(t)) are called cumulants of X. They can be
expressed in terms of moments, and conversely.

• Differentiating the PGF gives
dr

dur
P (u)|u=1 = E[X(X − 1) . . . (X − r + 1)].

The right-hand side is called factorial moments of X. We can express
moments in terms of factorial moments and conversely.
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Continuity theorem.

Theorem 2.2. A sequence (Xn)n≥1 of random variables tends in distribution
to X if and only if, for each t ∈ R,

limφXn
(t) = φX(t).

2.2 First convergence results using characteristic functions
Some examples:

1. Let F (σ) denote the set of fixed points of a permutation σ. We consider
Xn = |F (σn)|, i.e., the number of fixed points in a uniform random
permutation of size n. Its PGF is

Pn(u) =
1

n!

∑
σ∈Sn

u|F (σ)|.

Useful trick (related to inclusion-exclusion1): set u = v + 1 and using
(v + 1)|F | =

∑
E⊆F v|E|, we have

Pn(v + 1) =
1

n!

∑
σ∈Sn

E⊆F (σ)

v|E| =
1

n!

∑
|E|⊆[n]

v|E|#{σ ∈ Sn : F (σ) ⊇ E}

The above cardinality is easily seen to be (n − |E|)! (we permute freely
elements in [n] \ E), so that the summand only depends on k := |E|.

Pn(v + 1) =
1

n!

n∑
k=0

(
n

k

)
vk(n− k)! =

n∑
k=0

vk

k!
. (1)

Clearly, Pn(v + 1) → ev for all complex numbers v, so, in particular
Pn(u) → eu−1 for u = eit. Using the continuity theorem we know that
Xn tends in distribution to a Poisson law of parameter 1.
Since the limiting distribution is discrete, this means concretely that, for
all i ≥ 0,

P(Xn = i) → 1

e i!
.

2. Let κ(σ) be the number of cycles of a permutation σ. We consider Xn =
κ(σn), i.e., the total number of cycles in a random permutation of size n.
To compute its PGF, we note that σn can be recursively sampled as
follows. Take a uniform random permutation σn−1 of size n− 1 and write
it in cycle decomposition. Then

1In particular, setting v = −1 in Eq. (1) below gives the standard inclusion-exclusion
formula for the number of permutations without fixed points (aka derangements).

8



• for each i ≤ n− 1, with probability 1/n, we add n right after i in its
cycle.

• with probability 1/n, we add n as a new fixed point.

Claim (straightforward to check): the resulting permutation σn is uni-
formly generated.
Note: this recursive way of constructing a uniform permutation of size n
is known as the Chinese Restaurant Process.
Consequence on PGF:

Pn(u) =
(
n−1
n + u 1

n

)
Pn−1(u).

Together with P1(u) = u, we get the following formula for Pn(u)

Pn(u) =

n−1∏
j=0

u+ j

j + 1
.

For future use, write

log(Pn(u)) =

n−1∑
j=0

log(1 + u−1
j+1 ) =

n−1∑
j=0

u− 1

j + 1
+O

(
(u− 1)2

)
, (2)

with a constant in the O symbol not depending on n. We compute easily

E(X) =
d

dt
log(Pn(e

t))|t=0 =

n−1∑
j=1

1

j + 1
= log(n) +O(1).

Var(X) =
d2

dt2
log(Pn(e

t))|t=0 =

n−1∑
j=1

(
1

j + 1
− 1

(j + 1)2

)
= log(n) +O(1).

We set X∗
n = Xn−log(n)√

log(n)
. Then

log(φX∗
n
(t)) = −it

√
log(n) + log(Pn(e

it/
√

log(n))).

Using Eq. (2) and expanding the exponential, we find that, for any fixed
real number t,

log(φX∗
n
(t)) = −it

√
log(n)+

n−1∑
j=0

it/
√
log(n)

j + 1
+
−t2/ log(n)

j + 1
+o(1) = − t2

2 +o(1).

By the continuity theorem, X∗
n converges in distribution to a standard

Gaussian random variable.

Quasi-power theorem: We end this section by proving asymptotic normality,
whenever the PGF is close to a power.
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Theorem 2.3. Let Xn be a real-valued random variables. Assume that, uni-
formly on a complex neighbourhood of t = 0, we have

E(eitXn) = exp(βnU(it) + V (it))(1 + o(1)), (3)

where U(t) and V (t) are holomorphic functions with U(0) = V (0) = 0 and βn

tends to +∞. Assume finally that U ′′(0) ̸= 0. Then we have

E(Xn) = βnU
′(0) +O(1);

Var(Xn) = βnU
′′(0) +O(1).

Moreover, X∗
n = Xn−βnU

′(0)√
βnU ′′(0)

converges in distribution towards a standard Gaus-
sian random variable.

Note: the hypothesis (3) can be equivalently written in terms of the PGF
Pn(u): for u in a complex neighbourhood of 1, we have

Pn(u) = A(u)B(u)βn(1 + o(1)), (4)

for some holomorphic function A and B with A(1) = B(1) = 1 and

B′′(1) +B′(1)−B′(1)2 ̸= 0. ("variability condition")

Indeed, we can set u = eit and observe that A(eit) and B(eit) takes their
image in D(1, 1) for t in some neighbourhood of 0 and can therefore be written
A(eit) = exp(V (it)) and B(eit) = exp(U(it)), for some analytic functions U
and V , namely U(t′) = log(B(et

′
)) and V (t′) = log(A(et

′
)). with this change of

notation, Eq. (4) and Eq. (3) are equivalent. We can then reexpress the quantity
in the theorem as U ′(0) = B′(1) and U ′′(0) = B′′(1) +B′(1)−B′(1)2.

Proof. We have

log(E(eitXn)) = βn U(it) + V (it) + o(1).

Since we have uniform convergence of analytic functions around t = 0, we can
derive and keep an o(1) error term (see Proposition A.10). The above estimates
for the expectation and the variance follow.

For the convergence in distribution, write (the first equality is obtained as
in the computation for the total number of cycles)

log(φX∗
n
(t)) = −it

βnU
′(0)√

βnU ′′(0)
+ log(E(eitXn/

√
βnU ′′(0))

= −it
βnU

′(0)√
βnU ′′(0)

+ βn U
(
it/
√

βnU ′′(0)
)
+ V

(
it/
√
βnU ′′(0)

)
+ o(1).

The V (. . . ) term goes to 0 and we can use the expansion U(s) = U ′(0)s +
U ′′(0)s2 +O(s3), valid for small s. When t is fixed, s := it/

√
βnU ′′(0) tends to

0 so that we can use this expansion and find

log(φX∗
n
(t)) = −t2/2 + o(1).
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We conclude, from the continuity theorem, that X∗
n converges in distribution to

a standard Gaussian random variable.

Applications:

1. Standard central limit theorem: take (Yi)i≥1 i.i.d. s.t. E[exp(i t Y1)] is
holomorphic for t in a complex neighbourhood of 0. We have

E(exp(it(Y1 + · · ·+ Yn))) =
[
E exp(itY1)

]n
.

This is of the form (3) with βn = n, U(it) = E exp(itY1) and V (it) = 1.

Remark 1: note that the hypothesis put on the distribution of Y1 is
stronger than the usual one in central limit theorem (Y1 has finite vari-
ance). In particular, it implies that Y1 has finite moments of all orders

Remark 2: in general, the hypothesis (3) can be thought of as follows: the
variable “resembles” a sum of i.i.d. random variables (which explains the
asymptotic normality).

2. The asymptotic normality of the number of cycles Xn in random per-
mutations (proved above) can also be obtained using this theorem (see
exercise);

3. Examples in the next sections. . .

2.3 Bivariate generating series
In many cases, Pn(u) is not easy to compute directly but we can compute the
bivariate generating function (BGF)

C(z, u) :=
∑
c∈C

z|c|uf(c) =
∑

n,k≥0

an,kznu
k.

Here c is an object in C, |c| its size and f(c) the statistics of interest. In the
second formula, an,k = {c ∈ Cn : f(c) = k} is the number of objects of size n
on which the statistics takes value k. We do not know whether this infinite sum
converges for some values of the pair (z, u). The series C can however always be
defined as formal power series (i.e. series of the form

∑
n,k≥0 an,kz

nuk for some
complex coefficients an,k). We will however be interested in cases where it does
converge, and z and u can be replaced by (sufficiently small) complex numbers.

From BGF to PGF: The PGF of Xn for each n ≥ 1 can be recovered from
the BGF: if µn is the uniform distribution on Cn, then

Pn(u) =
[zn]C(z, u)

[zn]C(z, 1)
. (5)
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(if µn is not uniform, we would need to put weights in the definition of the BGF;
we will not discuss this here).

Cauchy formula for derivatives, and more generally the residue formula, are
powerful tools to perform the coefficient extraction in (5).

Product of combinatorial classes: Consider two combinatorial classes C and
D with some statistics fC and fD. Then the product E := C × D of these
classes is defined as the set C × D endowed with the following notion of size:
|(c,d)| = |c|+ |d|. (One checks easily that it has finitely many objects of each
size.) We also consider the statistics fE(c, d) = fC(c) + fD(d) on E .

Lemma 2.4. Let C and D be combinatorial classes and E their product, with
the above described statistics. Then we have

E(z, u) = C(z, u)D(z, u).

This always holds as an equality of formal power series. Moreover, if C and
D both converge (absolutely) for some values of (z, u), then E also does and
the above equality holds.

(Many statements with generating functions should be interpreted this way;
I shall not always repeat this.)

Proof. E(z, u) =
∑

(c,d)∈E

z|(c,d)|ufE(c,d) =
∑

(c,d)∈E

(z|c|ufC(c)) (z|d|ufD(d)),

where the second inequality uses |(c, d)| = |c|+ |d|
and fE(c, d) = fC(c) + fD(d).

The sequence operator: Let C be combinatorial class without element of size
0, with some statistics fC . Then we define

Seq(C) = {∅} ⊎ C ⊎ (C × C) ⊎ (C × C × C) ⊎ . . . ,

where ∅ is an element of size 0. In other words, an object in Seq(C) is a finite
list (possibly empty) of objects in C. Its size is the sum of the sizes of its
components; furthermore, we consider, as statistics f on Seq(C), the sum of the
statistics of its components. Note that (C)k (k times) has only objects of size
at least k (since all objects in C have size at least 1). This implies for a fixed n,
objects of size n in Seq(C) can only come from the (C)k for k ≤ n. In particular
since each of these (C)k has finitely many objects of size n, the set Seq(C) has
finitely many of size n and is indeed a combinatorial class.

Lemma 2.5. Let C be combinatorial class without element of size 0 and set
A = Seq(C). Then

A(z, u) =
1

1− C(z, u)
.

1− C(z, u) is invertible as power series since C(z, u) has no constant term.
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Proof. A(z, u) = 1 + C(z, u) + C(z, u)2 + C(z, u)3 + · · · = 1
1−C(z,u) .

Example 1: length of the first part in integer compositions An integer com-
position of n is a list a = (a1, . . . , ak) of positive integers that sum to n. We
take a(n) a uniform random composition of n and consider Xn = (a(n))1 its first
part. The BGF of non-empty compositions with the exponent of u being the
first part is

C(z, u) =
zu

1− zu

1

1− z/(1− z)
=

zu(1− z)

(1− zu)(1− 2z)
.

The first fraction corresponds to the first part which contributes zu + (zu)2 +
(zu)3 + . . . , depending on whether this part is 1, 2, 3, . . . The second fraction
corresponds to the other parts: a sequence of elements in {1, 2, . . . }, the GF of
the later being z + z2 + z3 + · · · = z/(1− z).

For fixed u, the function C(z, u) is meromorphic and has two poles 1/u and
1/2. For u of modulus 1, the pole 1/u is bigger than 3/4 (in modulus) and we
can write∮

∂D(0,3/4)

C(z, u)

zn+1
dz = 2πi

[
Res(C(z,u)

zn+1 ; 0) + Res(C(z,u)
zn+1 ; 1/2)

]
.

The path integral is bounded by 2π sup|z|=1
|C(z,u)|
(3/4)n+1 = O

(
(4/3)n

)
. The residue

in 0 is [zn]C(z, u), which is the quantity we’re interested in. Since the pole in
1/2 is simple, we can write

Res(C(z,u)
zn+1 ; 1/2) = lim

z→1/2

(z − 1/2)C(z, u)

zn+1

= 2n+1 lim
z→1/2

(z − 1/2)C(z, u) = (∗)︸︷︷︸ 2n+1 Res(C(z, u); 1/2) = −2n
u/2

1− u/2
.

A factorization, as (∗), in the residue of C(z,u)
zn always occurs when C(z, u) has

a simple pole. We get that

[zn]C(z, u) = 2n
u/2

1− u/2
+O

(
(4/3)n

)
.

Going back to the PGF, this gives

Pn(u) =
[zn]C(z, u)

[zn]C(z, 1)
=

u/2

1− u/2
+O

(
(2/3)n

)
.

The fraction u/2
1−u/2 is the PGF of the geometric distribution G of parameter

1/2 (starting at 1), i.e. P(G = k) = 1/2k. Since the above equation holds for
all u of modulus 1, i.e. for all u = eit we have convergence of the characteristic
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function of Xn to that of a geometric distribution, and therefore convergence
in distribution of Xn to G.

Remark. This could be obtained by more elementary means, but this is a
good illustration of the combination of BGF, residue theorem and the continuity
of the characteristic function.

Example 2: occurrences of the factor ab in random words
Let wn be a uniform random word of length n on the alphabet {a, b, c}

(i.e. a uniform random element of {a, b, c}n). We are interested in the number
Xn = #ab(wn) of consecutive occurrences (also called factors) of ab in wn.

The combinatorial class of words without statistics is Seq({a, b, c}). Let

W (z, u) =
∑

w∈{a,b,c}∗

z|w|u#ab(w)

be the associated BGF. Set u = v + 1. Then, denoting Occab(w) the set of
occurrences of w,

W (z, v + 1) =
∑

w∈{a,b,c}∗
E⊂Occab(w)

z|w|v|E|

is the BGF of words with some marked occurrences of ab. A word with marked
occurrences of ab decomposes as

w0abw1ab . . . abwk,

for some k and some words w0, . . . , wk. In terms of combinatorial class, this is

Seq({a, b, c})× Seq
(
{ab} × Seq({a, b, c})

)
.

The BGF is
W (z, v + 1) =

1

1− 3z
× 1

1− vz2 · 1
1−3z

,

implying
W (z, u) =

1

1− 3z − (u− 1)z2
.

For fixed u in a neighbourhood of 1 but different from 1, this function has two
poles

z±(u) =
3±

√
9 + 4(u− 1)

−2(u− 1)
,

one converging to +∞ and the other one to 1/3. Note that here above, we have a
square-root of a complex number (closed to 9 when u is close to 1); we interpret
that as the principal determination of the square-root, defined on C \ R.

Eventually restricting the neighbourhood of 1 where u lives, one can assume
that one is bigger than 1 (in modulus) and the other, that we denote ρ(u), is
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smaller. We apply the residue theorem to the function W (z, u)/zn+1 on the
circle ∂D(0, 1).∮

∂D(0,1)

W (z, u)

zn+1
dz = 2πi

[
Res(W (z,u)

zn+1 ; 0) + Res(W (z,u)
zn+1 ; ρ(u))

]
.

The path integral is bounded by 2π sup|z|=1 |W (z, u)| = O(1). The residue in
0 is [zn]W (z, u), which is the quantity we’re interested in. As above, since the
pole in ρ(u) is simple, we have

Res(W (z)
zn+1 ; ρ(u)) =

1

ρ(u)n+1
Res(W (z); ρ(u)).

To sum up we have

[zn]W (z, u) =
−Res(W (z); ρ(u))

ρ(u)

(
1

ρ(u)

)n

+O(1)

The same holds for u = 1 (there is only 1 pole ρ(1) = 1/3 in this case) and we
have

Pn(u) =
[zn]W (z, u)

[zn]W (z, 1)
= A(u)B(u)n +O(1)

with B(u) = ρ(1)
ρ(u) . This has the form of the quasi power theorem (Theorem 2.3).

Using for example Maple, we get B′(1) = 1/9 and B′′(1) = −1/81, and hence
U ′(0) = 1/9 and U ′′(0) = 7/81. We can apply Theorem 2.3 and get

Proposition 2.6. The number of factors ab in a random word on the alphabet
{a, b, c} of length n is asymptotically Gaussian with mean 1

9n and variance 7
81n.

Discussion:

• General idea: If the BGF is meromorphic, extracting the n-th coefficient
to compute the PGF can be done with the residue theorem: integrate the
function C(z, u)/zn+1 on a circle that contains the closest pole(s) to the
origin.

• Informally, if the pole does not move with u, then we will have a conver-
gence for fixed u and convergence of the variable without renormalization.
If the pole moves with u, then we are in the situation of the quasi-power
theorem. (This does not cover all cases; the function could not be mero-
morphic for some values of u, or the order of the pole could vary, e.g. as
for C(z, u) = 1

(1−z)(1−uz) ).

2.4 Labelled classes and exponential BGF
Definition 2.7. A labelled combinatorial class is a collection C = (CI)I⋐[n] of sets
of combinatorial objects, one for each finite subset of [n]. We always assume
that CI is finite and that |CI | = |CJ | whenever I = J .

Its exponential generating function (EGF) is C(z) =
∑

n≥0
|C[n]|
n! zn

15



Examples: the following formulas define labelled combinatorial class

• PI = {bijections I → I}, with EGF P (z) =
∑

n
n!
n!z

n = 1
1−z ;

• GI = {simple graphs with vertex set I} with EGF G(z) =
∑

n
2(

n
2
)

n! zn

(warning: does not converge for z > 0, purely formal expression);

• CI = {connected graphs with vertex I} with EGF C(z) computed later.

The product of labelled combinatorial classes C = A× B is defined by

CI =
⊔
J,K

J⊔K=I

AJ ×BK .

In words, an element with label set I in the product is a pair of elements in A
and B respectively, with disjoint label sets whose union is K.

Lemma 2.8. If C = A × B (as labelled combinatorial class), then their EGF
satisfies C(z) = A(z)B(z).

Proof. We note that

1

n!
|C[n]| =

1

n!

∑
J,K

J⊔K=[n]

|AJ | |BK | =
∑
j,k

j+k=n

1

j!k!
|A[j]| |B[k]|. (6)

The second equality is justified as follows: from the definition of labelled com-
binatorial classes, the summand |AJ | |BK | only depends on the set sizes j = |J |
and k = |K|, and the number of sets J,K with J ⊔ K = [n] and sizes j and
k (with j + k = n) is

(
n
j

)
= n!

j!k! . Finally (6) translates into C(z) = A(z)B(z)

(Cauchy product of series).

Other constructions: let A be a labelled combinatorial class without ele-
ments of size 0

• the class of sequences of elements of A is

C = Seq(A) := {∅} ⊎ A ⊎ (A×A) ⊎ (A×A×A) ⊎ . . . ,

Its EGF is C(z) = 1
1−A(z) .

• the class of sets (i.e. unordered sequences) of elements of A is

C = Set(A) := {∅} ⊎ A ⊎
[
(A×A)/S2

]
⊎
[
(A×A×A)/S3

]
⊎ . . . ,

The quotient by S2, S3 means that we identify sequences in different order
(corresponding to the same set). For each k ≥ 1, the EGF of (C × · · · ×
C)/Sk is A(z)k/k!. Indeed, each element of (C × · · · × C)/Sk corresponds
to k! elements in C × · · · × C (such elements are k-tuple of objects in A
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with disjoint supports, so there cannot be repetitions, ensuring that to a
non-ordered elements, corresponds exactly k! ordered versions).
We conclude that the EGF of Set(A) is

C(z) =
∑
k≥0

A(z)k

k!
= exp(A(z)).

Warning: the exponential formula for sets works only in the labelled setting,
not in the unlabelled one (because of potential repetitions).

Examples:

• If G and C are the class of graphs and connected graphs respectively, we
have G = Set(C) and hence G(z) = exp(C(z)). This is a purely formal
relation (convergent for no z) but nevertheless allows to compute C(z) =
log(G(z)).

• Consider the class C of cyclic permutations. There are (n − 1)! cyclic
permutations of [n]. Its EGF is

C(z) =
∑
n

(n− 1)!

n!
zn =

∑
n

1

n
zn = − log(1− z).

Then the class P of permutations is given by P = Set(C) and we find

P (z) = exp(− log(1− z)) =
1

1− z
,

as expected. This way of computing the EGF of permutations is useful
when we introduce statistics, see exercises.

Statistics on labelled classes and bivariate EGF A statistics on a labelled
combinatorial class is a function f : CI → R, for each I, such that, whenever
|I| = |J |, f is compatible with some bijection CI → CJ . (examples: num-
ber of cycles in permutations, number of connected components/ of triangles in
graphs).

Bivariate EGF (for N0-valued statistics):

C(z, u) =
∑

n,k≥0

an,k
n!

znuk,

where an,k = #{c ∈ C[n] : f(c) = k}.
The formulas for EGFs of products, sequences, sets of labelled combinatorial

classes are valid for bivariate EGF, as soon as the statistics is additive (i.e.
statistics in the product/sum/set class is the sum of the statistics on the original
class).
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The relation PGF-BGF also holds in the exponential/labelled setting

Pn(u) =
[zn]C(z, u)

[zn]C(z, 1)
.

Application: descents in uniform random permutations A descent in a per-
mutation σ of n in a permutation is an integer i ≤ n − 1 such that σi+1 < σi.
Let C(z, u) the bivariate EGF of permutations, where the exponent of u counts
the number of descents.

Step 1: computing C(z, u): As before, we set u = v + 1. Then D(z, v) :=
C(z, v + 1) is the EGF of permutations with marked descents, where the expo-
nent of v counts the number of marked descents.

Example of a permutation with marked descents: 7 8 5 3 2 4 1 9 6 . The un-
derline blocks of marked descents are decreasing segments. The bivariate EGF
of these decreasing segments (with statistics length minus 1, which is the num-
ber of marked descents in such a segment), including the trivial one of length 1
(non underlined in the example) is

∑
n≥1

1
n!v

n−1zn = ezv−1
v .

A permutation with marked descents is an (ordered) sequence of such de-
creasing segments, so that their bivariate EGF is

D(z, v) =
1

1− ezv−1
v

=
v

v − evz + 1
,

from which we get
C(z, u) =

u− 1

u− e(u−1)z

Step 2: analysis via residue theorem. For fixed u in a complex neighbourhood
of 1, the function C(z, u) is meromorphic with only simple poles at locations

ρk(u) =
log(u) + 2k π i

u− 1
, k ∈ Z.

Note that ρ0(u) tends to 1, when u tends to 1, while all other poles tend to
infinity. In particular, taking u in a sufficiently small neighbourhood of 1 (in
fact |u − 1| < 1/2 is good here), we can assume that |ρ0(u)| is smaller than 2
all other poles are bigger than 2.

Residue theorem tells us
1

2πi

∮
∂D(0,2)

C(z, u)dz

zn+1
= [zn]C(z, u) + (ρ0(u))

−n−1 Res(C(z, u), ρ0(u)).

A simple computation gives Res(C(z, u), ρ0(u)) = −1/u. Using the standard
estimates, the integral is O(2−n) uniformly for u in D(1, 1/2). Thus, we get

[zn]C(z, u) =
1

u
(ρ0(u))

−n−1 +O(2−n),

Dividing by [zn]C(z, 1) = 1 (why?), we get the probability generating function
is, uniformly for u in D(1, 1/2)

Pn(u) =
[zn]C(z, u)

[zn]C(z, 1)
=

1

u
(ρ0(u))

−n−1 +O(2−n).
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This is of the form of the quasi-power theorem with A(u) = (uρ0(u))
−1, B(u) =

(ρ0(u))
−1 and βn = n. After computing the derivatives B′(0) = 1/2 and

B′′(0) = −1/6 (painful by hand, better use a computer), we conclude that
the number of descents in a uniform random permutation is asymptotically
Gaussian with mean n/2 +O(1) and variance n/12 +O(1).

2.5 Concentration inequalities
What are concentration inequalities? Take the example of the number of Xn of
descents (but the following discussion holds for any asymptotically Gaussian
statistics). The above asymptotic Gaussianity result tells us that, for any fixed
t

lim
n→∞

P(Xn ≤ n/2 + t
√
n/12) = 1

2π

∫ t

−∞
e−u2/2du (7)

(Here and in what follows, A ∼ B means limA/B = 1.) What about P(Xn ≤
n/3)? For any M < 0 and n sufficiently large (how large depends on M), we
have n/3 ≤ n/2 +M

√
n/12 and thus

P(Xn ≤ n/3) ≤ P(Xn ≤ n/2 +M
√
n/12) → 1

2π

∫ M

−∞
e−u2/2du,

so that
lim sup
n→∞

P (Xn ≤ n/3) ≤ 1
2π

∫ M

−∞
e−u2/2du.

Since this holds for all M < 0, we have

lim
n→∞

P (Xn ≤ n/3) = 0.

This is a first answer, but how fast is this convergence to 0? Upper bounds on
this convergence rate are called concentration inequalities.

From PGF to concentration inequalities: Chernoff bounds

Lemma 2.9 (Chernoff bounds). Let X be a real-valued random variable. Then
for each a in R and any positive u > 1, we have

P(X ≥ a) ≤ E[uX ]

ua
; P(X ≤ a) ≤ E[u−X ]

u−a
.

Note: the LHS does not depend on t, so we can choose u as we want to
optimize the bound.

Proof. For any nonnegative random variable Y and a nonnegative s ≥ 0, we
have Y ≥ s1[Y ≥ s] a.s. which implies

E(Y ) ≥ sP[Y ≥ s].
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(This is called Markov’s inequality.) Chernoff bounds is simply Markov’s in-
equality applied to Y = uX (resp. Y = u−X), observing that by monotonicity
of the exponential function we P(X ≥ a) = P (uX ≥ ua) (resp. P(X ≤ a) =
P (u−X ≥ u−a)).

Back to the example. For u in D(1, 1/2), we have

E[u−Xn ] = Pn(1/u) = u(ρ0(1/u))
−n−1 +O(2−n).

From Chernoff bounds, we get

P(Xn ≤ n/3) ≤ u(ρ0(1/u))
−n−1 +O(2−n)

u−n/3

≤ u

ρ0(1/u)

(
u1/3

ρ0(1/u)

)n

(1 + o(1)).

Setting u = 1.4 gives P(Xn ≤ n/3) ≤ 2×.95n(1+o(1)) (with help of a computer).
We conclude that the probability that a random permutation has less than n/3
descents decays exponentially fast in n (and we could optimize the rate by using
other values of u).

2.6 Discussion
• The “analytic residue method” has been presented in this lecture only for

meromorphic functions. In fact it work for other functions, e.g. having
square root singularity as the Catalan generating functions (though with
much bigger error terms).

• From generating functions, we can get other probabilistic estimates, such
as lower bounds for concentration inequality (giving large deviation re-
sults), estimate of the speed of convergence in the central limit theorem
or local limit theorem (describing the probability P(Xn = kn) for a given
kn).

2.7 Exercises
Exercise 2.1. The purpose of this exercise is to show that the number Cn

2 of
cycles of length 2 in a random uniform permutation σn of size n is also asymp-
totically Poisson, with a parameter to be determined.

Denote, for a two element set I = {i, j} ⊆ {1, . . . , n},

δI(σ) =

{
1 if σ(i) = j and σ(j) = i;

0 otherwise.

• For distinct 2-element sets I1, . . . , Ik compute

E
(
δI1(σ

n) · · · δIk(σn)
)
.

Hint: beware that distinct 2-element sets are not necessarily disjoint.
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• How many sets {I1, . . . , Ik} of k pairwise disjoint two elements subsets are
there ?

• Compute the probability P (Cn
2 = 0).

• For a given integer r, compute P (Cn
2 = r) and conclude.

• (Bonus question) Fix a positive integer k. Show that the number Cn
k

of cycles of length k in a random uniform permutation of size n is also
asymptotically Poisson, with a parameter to be determined.

Exercise 2.2. Let Pn be the PGF of the number of fixed points in a uniform
permutations of size n.

• Prove that

Pn(u) = Pn−1(u) +
u− 1

n
(Pn−1(u)− P ′

n−1(u)).

• Deduce, by induction the formula given in the lecture

Pn(u) =

n∑
k=0

(u− 1)k

k!
.

Exercise 2.3. Let

f(z) = ez−2 +
3 sin

(
z − 2

)(
z − 2

)2 and g(z) =
1(

z − 2
)2 .

1. Find the type of singularity of f and g around z = 2.

2. Compute Res
( f(z)
zn+1 , 2

)
and Res

( g(z)
zn+1 , 2

)
, for all n ∈ N.

Exercise 2.4. In this exercise we prove the following nice property of power
series with non-negative real coefficients (extremely used in combinatorics).

Theorem (Pringsheim’s Theorem). Let f(z) =
∑

fnz
n a power series of radius

of convergence R ∈ (0,∞) with non-negative real coefficients. Then f has
a singularity in z0 = R.

1. By contradiction suppose that f is analytic at R. Therefore it is analytic
in a disk D(R, r) centered in R of radius r, for some r > 0. Compute
the series expansion of f around z0 = R − h for 0 < h < r/3 using the
"derivative formula for coefficients" applied to f(z) =

∑
fnz

n. (Why can
we do it?)

2. Substitute z = R+h in the expression obtained in the previous step (Why
can we do it?). Find a contradiction.
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Exercise 2.5. Prove the following lemma that we already saw during the lecture.

Lemma. Let C be combinatorial class without element of size 0 and set A =
Seq(C). Then

A(z, u) =
1

1− C(z, u)
.

Why 1− C(z, u) is invertible as power series?

Exercise 2.6. The goal of this exercise is to prove a central limit theorem for
the number of parts in compositions. We recall that a composition of an integer
n in kparts is a way of writing n as the sum of a sequence of (strictly) positive
k integers. Two sequences that differ in the order of their terms define different
compositions.
Example. The four compositions of 3 are:

• 1+1+1 (3 parts)

• 2+1 (2 parts)

• 1+2 (2 parts)

• 3 (1 part)

1. Find a way to represent every composition of n in k part as a permutation
of n dots and k − 1 bars.

2. We denote with C the combinatorial class of compositions, with {•} the
combinatorial class containing a single dot and with {•, |•} the combina-
torial class containing a single dot and a bar followed by a dot. Prove that
the following relation holds

C = {•} × Seq
(
{•, |•}

)
. (8)

3. Deduce from the previous equation that the BGF for the number of parts
in a composition is

C(z, u) =
uz

1− z(1 + u)
.

Hint: What is the BGF for {•, |•}? Note that in Equation (8) we are
"undercounting " by 1 the number of parts.

4. Deduce an expression for the PGF and conclude using the quasi-power
theorem.
Hint: Recall that 1

1−x =
∑

n≥0 x
n.

The following exercise sums up some of the most important properties of the
Gamma function. You can skip it and assuming all the results in order to solve
Exercise 2.8.
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Exercise 2.7. For z with ℜ(z) > 0, we define

Γ(z) =

∫ ∞

0

xz−1 e−xdx.

(Recall that xw := exp
[
w log(x)

]
is well defined for complex exponents w, when

x is a positive real number.)

1. Justify that the function is well-defined,i.e. that the integral is convergent
whenever ℜ(z) > 0.

2. Show that Γ is holomorphic on {z ∈ C : ℜ(z) > 0}.
Hint: use Morera’s criterium (recalled below), and Fubini’s theorem to
exchange the integral over a triangle and the one from 0 to +∞ in the
definition of Γ.
(Morera’s criterion) Let f : U → C continuous, U open. Assume that,
for all triangles [A;B;C;A] that are completely included in U ,∫

[A;B;C;A]

f(z)dz = 0.

Then f is holomorphic.

3. Prove that for each z > 0, one has Γ(z + 1) = zΓ(z). Conclude that
Γ(n) = (n− 1)! when n is a positive integer.

4. Show that Γ admits an analytic extension to C \ {0,−1,−2, . . . }. (Hint:
use the previous question to first extend Γ to {z ∈ C : ℜ(z) > −1}, and
then make an inductive proof.)

Exercise 2.8. In this exercise we re-derive the asymptotic normality of the num-
ber of cycles in a uniform permutation using the quasi-power theorem.

1. Starting from the formula (that we saw during the lecture) for the PGF
for the number of cycles in a uniform permutation, show that

Pn(u) =
Γ(u+ n)

Γ(u)Γ(n+ 1)
.

2. Conclude using the Stirling approximation Γ(z + 1) ∼
√
2πz

(
z
e

)z and the
quasi-power theorem.

Exercise 2.9. Compute the bivariate exponential generating functions for:

1. the number of cycles in permutations,

2. the total length of cycles in permutations.
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Deduce the corresponding probability generating functions.

Exercise 2.10. The goal of this exercise is to rederive the Poisson asymptotic
behavior for the number of cycles of fixed length m (see Exercise 1 in sheet 2).

1. For m = 1, show that the bivariate exponential generating function C(z, u)
for the number of cycles of length one (i.e., fixed points) in permutations
is

C(z, u) =
exp(z(u− 1))

1− z
.

2. What is the singularity of C(z, u)? Using the residue theorem deduce the
asymptotic behavior of [zn]C(z, u).

3. Deduce the asymptotic behavior for the corresponding PGF and conclude
using the continuity theorem.

4. Note that the previous result can be also obtained writing an explicit
expression for the coefficients [zn uk]C(z, u). What are this coefficients?
How can you deduce the Poisson asymptotic behavior?

5. Deduce the result for every m ≥ 1. Start by showing that the bivariate
exponential generating function Cm(z, u) for the number of cycles of length
m is

Cm(z, u) =
exp((u− 1) z

m

m )

1− z
.

Then use similar arguments to the ones used in points 2 and 3.

Exercise 2.11. The goal of this exercise is to derive the asymptotic normality
for the number of parts in set-compositions.

We recall that a set composition of size n is an ordered sequence of disjoint
and non-empty sets (called parts) whose union is {1, 2, . . . , n}.
Example. ({1, 3}, {7, 5}, {4, 6, 8}, {2}) is a set partition of size 8 in 4 parts.

1. Show that the bivariate exponential generating function C(z, u) for the
number of parts in set-compositions is

C(z, u) =
1

1− u(exp(z)− 1)
.

2. What are the singularities of C(z, u)? Is C(z, u) meromorphic?

3. Using the residue theorem deduce the asymptotic behavior of [zn]C(z, u).

4. Deduce the asymptotic normality for the corresponding PGF and conclude
using the quasi-power theorem.
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Exercise 2.12. Define the unit n-hypercube to be the set of points [0, 1]n ⊂ Rn.
For example, the unit 0-hypercube is a point, and the unit 3-hypercube is the
unit cube. Define a k-face of the unit n-hypercube to be a copy of the k-
hypercube on the boundary of the n-hypercube. More formally, a k-face of the
unit n-hypercube is a set of the form

∏
1≤i≤n Si, where Si is either{0}, {1} or

[0, 1] for each i between 1 and n and there are exactly k indices i such that
Si = [0, 1].

1. What are the number of k-faces in the unit n-hypercube? Derive the
corresponding ordinary BGF.

2. Use the ordinary BGF to derive the expected value of the dimension of a
random face of the unit n-hypercube.

Exercise 2.13. Let (Yi)i∈N be a sequence of i.i.d. real-valued random variables.
Set Xn =

∑n
i=1 Yi. Show that for each a in R and any positive u > 1, we have

P(Xn ≥ a) ≤ E[uX1 ]n

ua
and P(Xn ≤ a) ≤ E[u−X1 ]n

u−a
.

Exercise 2.14. Let (Yi)i∈N be a sequence of i.i.d. random variables such that

P(Yi = 1) = P(Yi = −1) = 1/2.

Set Xn =
∑n

i=1 Yi. Show, using the previous exercise, that for each a in R,

P(Xn ≥ a) = P (Xn ≤ −a) ≤ e
−a2

2n . (9)

(Hint: Note that ex+e−x

2 ≤ e
x2

2 .)
Deduce form (9) that if (Zi)i∈N is a sequence of i.i.d. random variables such

that
P(Zi = 1) = P(Zi = 0) = 1/2,

and Sn =
∑n

i=1 Zi then that for each a in R,

P(Sn − n

2
≥ a) ≤ e

−2a2

n .

Exercise 2.15. Let Tn be a tournament on n vertices, that is is a directed
graph (digraph) obtained by assigning a direction for each edge in an undirected
complete graph on n vertices. Given an ordering σ : [n] → [n], we say that i, j
form an upset if i → j but σ(i) > σ(j).

You can think at the following situation: imagine a tennis tournament among
n players where every player play a match against all the other players. If the
player i beats j we add the directed edge i → j. At the end of the tournament
we obtain a complete directed graph, i.e. a tournament. Moreover the ATP
ranking gives an ordering of the players. The event that the player i won against
j but ranked below j in the ATP ranking corresponds to an upset.
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1. Show that for every possible tournament on n vertices, there exist an
ordering σ such that the number of upsets is at most 1

2

(
n
2

)
.

2. Let now Tn be a uniform tournament on n vertices and fix an ordering
σ : [n] → [n]. Set Un(σ) be the number of upsets corresponding to the
tournament Tn and the ordering σ. Using the previous exercise show that

P
(
Un(σ)−

1

2

(
n

2

)
≤ −a

)
≤ e−

4a2

n2 .

3. Setting a = n
3
2

√
log(n) deduce that

P
(
∃σ s.t. Un(σ) ≤

1

2

(
n

2

)
− n

3
2

√
log(n)

)
≤ n!n−4n. (10)

4. Conclude that there exist a tournament T on n vertices such that for
every possible ordering σ : [n] → [n], the number of upsets in T is at least
1
2

(
n
2

)
− n

3
2

√
log(n).

Remark. Note that we proved a deterministic result using a probabilistic proof.
Remark. The exponential bounds obtained in Exercise 2.14 are very useful for
the union bound in Equation (10).
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3 First and second moment method
In cases where we cannot compute the characteristic functions, one can obtain
information by computing moments.

3.1 First moment method
The first moment method is used to prove that a random structure does not
contain a given substructure with high probability. We do this by computing
the expectation (or first moment) of the number of such substructures and by
using on the following simple lemma:

Lemma 3.1. Let X be a random variable with non-negative integer values (for
example X is counting something). Then

P (X = 0) > 1− E(X).

Proof. E(X) =
∑

k kP (X = k) ≥
∑

k≥1 P (X = k) = 1− P (X = 0).

Consequently, if Xn is a sequence of r.v. with limE(Xn) = 0, then P (Xn =
0) tends to 1.

Number of triangles in G(n, pn).
Reminder from Section 1.4: G(n, p) is the graph with vertex-set [n] :=

{1, . . . , n} and, for each pair {i, j} ⊂ [n], an edge between i and j indepen-
dently with probability p.

Let pn be a [0, 1]-valued sequence. We are interested in the number Tn of
triangles in G(n, pn). By definition, a triple I = {i, j, k} ⊂ [n] (i.e. I ∈

(
[n]
3

)
) is

a triangle in a graph G if {i, j}, {i, k} and {j, k} all belong to the edge-set EG.
We have

Tn =
∑

I∈([n]
3 )

1
[
I is a triangle in G(n, pn)

]
=

∑
I={i,j,k}∈([n]

3 )

1[{i, j} ∈ EG]1[{i, k} ∈ EG]1[{j, k} ∈ EG]

We take expectations: by definition, the random variables 1[e ∈ EG] all have
expectation pn and are independent. Therefore each summand above have ex-
pectation p3n. Since there are

(
n
3

)
summands, we get

E(Tn) =

(
n

3

)
p3n.

When pn = o(n−1), we have that E(Tn) tends to 0, and therefore that P (Tn = 0)
tends to 1. This proves the first item in Theorem 1.5, which we restate here for
convenience:

Proposition 3.2. If pn ≪ 1/n, then P
(
G(n, pn) contains a triangle

)
→ 0 ;
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Cliques, independent sets and Ramsey numbers A clique in a graph G is a
subset I of the vertices, such that any two vertices of I are connected by an
edge. An independent set is a subset I of the vertices, so that no pair of vertices
in I are linked by an edge. We consider the random variable Xk

n, which is the
total number of cliques and independent sets of size k in a uniform random
graph with vertex-set [n] (i.e. in G(n, 1/2)). A similar computation as above
gives

E(Xk
n) =

(
n

k

)(
1

2

)(k2)
.

Theorem 3.3 (Erdős, 1947). Let n =
⌊

k
e
√
2
2k/2

⌋
. Then for k large enough,

there exists a graph with n vertices and no cliques or independent sets of size k.
Proof. As k tends to infinity, with n given as above, we have (A ∼ B means
limA/B = 1):

E(Xk
n) ∼

nk

k!

(
1

2

)(k2)
∼ 1

2πk
→ 0.

The first step uses that
(
n
k

)
∼ nk

k! , which is valid when n and k tend simulta-
neously to infinity, as long as k = o(

√
n) (exercise!). The second step uses the

formula for n and Stirling formula.
Using the above lemma, we conclude that P(Xk

n) = 0 tends to 1 as k tends
to infinity and n =

⌊
k

e
√
2
2k/2

⌋
. In particular, there exists a graph G with

Xk
n(G) = 0, i.e. with no cliques or independent sets of size k.

Historical/general comments. This theorem is interesting because of an ear-
lier result of Ramsey (1930): for every k, there exists R(k, k) such that every
graph with at least R(k, k) contains either a clique or an independent set of size
k. W.l.o.g., we can assume R(k, k) minimal with this property. The question is
then: what is the value of R(k, k)?

Erdős theorem shows that R(k, k) > k
e
√
2
2k/2, for large k. The best current

known asymptotic lower bound is only twice Erdős’ lower bound (even if this is
a famous and widely studied question).

It might seem non-natural to consider random graphs to find a graph of size
n without cliques or independent sets of size k (the question is not probabilistic
in nature!). However, a deterministic construction of such a graph is not known
for n =

⌊
k

e
√
2
2k/2

⌋
(in fact, not for any n growing exponentially fast with respect

to k). So that considering random graphs is in fact a wonderful idea (Erdős was
the first to study random graphs, precisely in this context). Considering random
objects can be used to show the existence of various combinatorial objects with
given properties (without constructing them explicitly): this is known as the
probabilistic method.

Increasing subsequences in random permutations: Consider a uniform ran-
dom permutation of size n and Ln the length of its largest increasing subse-
quence.
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Proposition 3.4.
P (Ln ≥ 3

√
n) → 0.

Proof. Let Xn be the number of increasing subsequences of size 3
√
n in a uniform

random permutation (to simplify notation, we suppose that 3
√
n is an integer;

for the general case, replace 3
√
n by ⌈3

√
n⌉:

Xn =
∑

I∈( [n]

3
√

n
)

1[σ/I is increasing ].

Fix I ∈
( [n]
3
√
n

)
. Then

P[σ/I is increasing ] =
1

n!
#{σ ∈ Sn : σ/I is increasing ]}.

The numerator can be computed as follows: choose the set of values of σ/I
(
(

n
3
√
n

)
choices; since σ/I is increasing, this determines entirely σ/I), and choose

how to complete the permutations (still n−3
√
n elements to send in all possible

ways to n− 3
√
n values, thus (n− 3

√
n)! choices). To sum up,

P[σ/I is increasing ] =

(
n

3
√
n

)
(n− 3

√
n)!

n!
=

1

(3
√
n)!

and
E(Xn) =

(
n

3
√
n

)
1

(3
√
n)!

=
n!

(n− 3
√
n)!(3

√
n)!2

.

Using Stirling formula, we have

E(Xn) ∼
nne3

√
n

(n− 3
√
n)n−3

√
n(9n)3

√
n(6π

√
n)

.

Noting that

(n− 3
√
n)n−3

√
n = nn−3

√
n(1− 3n−1/2)n−3

√
n = nn−3

√
n e−3

√
n O(1),

we have

E(Xn) ∼
(e2)3

√
n

93
√
n(6π

√
n)

→ 0.

This implies that Xn = 0 with probability tending to 1, i.e. that, with probabil-
ity tending to 1, a uniform random permutation has no increasing subsequence
of length 3

√
n (i.e. Ln ≤ 3

√
n).

Historical/general comments. The study of largest increasing subsequences
in (random) permutations leads to beautiful mathematics, using surprisingly
many different methods, see
D. Romik, The Surprising Mathematics of Longest Increasing Subsequences,
Cambridge University Press, 2015.
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Remarks:

• in all examples, we write the r.v. of interest as a sum and use the linearity
of expectation (expectation is linear, regardless of independence, which is
good!).

• Using only first moments, one cannot prove the existence of some object
with high probability ;

E(Xn) → ∞ does NOT imply P (Xn = 0) → 0.

Indeed, consider the sequence Xn, such that Xn = n2 with probability
1/n and 0 otherwise; it satisfies E(Xn) → ∞ and P (Xn = 0) → 1.

3.2 Second moment method
The second moment method allows to prove that a random object contains a
given substructure with high probability (and more precisely, that the number of
copies of that substructure is concentrated around its expectation.) It relies on
computing the variance of this number of substructures and uses the following
simple lemma:

Lemma 3.5 (Chebyshev’s inequality).

P
(
|X − E(X)| ≥ λ

√
Var(X)

)
≤ 1/λ2.

In particular,

P(X = 0) ≤

(√
E(X)

Var(X)

)2

.

Proof. Again this uses Markov’s inequality, which we recall for convenience: if
Y is a non-negative r.v., then P (Y ≥ a) ≤ E(Y )/a.

We apply this to Y = (X − E(X))2 and a = λ2 Var(X) = λ2E(Y ). The
result follows immediately.

Consequently, if Xn is a sequence of r.v. s.t. Var(X) = o
(
E(X)2

)
, then

P(Xn = 0) → 1 and more precisely Xn

E(Xn)
→ 1 in probability (use Chebyshev’s

inequality with λ = ε E(X)√
Var(X)

).

Application to triangles in Erdős-Rényi random graph.
As above, let Tn be the number of triangles in G(n, pn). We recall that

Tn =
∑

I∈([n]
3 )

∆I , where ∆I is the indicator function of the event “the triangle
I is in the graph”.

We have computed the expectation E(Tn) =
(
n
3

)
p3n. Let us consider the

variance.

Var(Tn) = Var

 ∑
I∈([n]

3 )

∆I

 =
∑

I,J∈([n]
3 )

Cov
(
∆I ,∆J

)
.
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• If I have J have at most 1 element in common, then the corresponding
triangles are edge-disjoint and the r.v. ∆I and ∆J are independent; the
covariance Cov

(
∆I ,∆J

)
is therefore 0.

• if I have J have exactly one edge in common, then

Cov
(
∆I ,∆J

)
= E(∆I ∆J)− E(∆I)E(∆J) = p5n − p6n = p5n(1− pn).

There are
(
n
3

)
3 (n− 3) such terms (choose I, choose which edge it shares

with J , choose the last vertex in J).

• If I = J then

Cov
(
∆I ,∆J

)
= Var(∆I) = E(∆I)− E(∆I)

2 = p3n(1− p3n).

There are
(
n
3

)
such terms in the above sum.

Finally we have

Var(Tn) =

(
n

3

)
3 (n− 3)p5n(1− pn) +

(
n

3

)
p3n(1− p3n).

From now on, we assume n pn → +∞ as n → ∞. We have

Var(Tn)

E(X)2
= O

(
1

n2 pn
+

1

n3p3n

)
= o(1).

We conclude that, when n pn → +∞, the random graph G(n, pn) contains a
triangle with probability tending to 1 (this was the first part of item 3. of
Theorem 1.5; the Gaussian fluctuations are to be proved later in the lecture).

Descents in uniform random permutations
Let Xn be the number of descents in a uniform random permutations. (We

forget the results proved with generating functions; this is an alternate approach,
shown on the same example to compare the methods.) We write Xn =

∑n−1
i=1 Di,

where Di(σ) = 1 if σ has a descent in position i and 0 otherwise.

To compute its moments, we will use the following construction. Take n
i.i.d. uniform random variables U1,. . . , Un in [0, 1] and let σ be the (random)
permutation such σi = j is Ui is the j-th smallest value in {U1, . . . , Un}.

Claim: σ is uniformly distributed.
Proof of the claim. Since transpositions generate the symmetric group, it

is enough to prove that σ and τ = σ ◦ (i, i′) are identically distributed for any
transposition (i, i′) in Sn. But if σ is associated with U1, . . . , Un by the above
procedure, then τ is associated with the list V1, . . . , Vn obtained from U1, . . . , Un

by swapping Ui and Ui′ . But, for fixed (i, i′), the vectors (U1, . . . , Un) and
(V1, . . . , Vn) are identically disctributed, implying that σ and τ are identically
distributed, as wanted.
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Back to descents. Note that, with the above construction, Di(σ) = 1 if and
only if Ui > Ui+1. Using this, we can compute the first moments of Xn. First,

E(Xn) =

n−1∑
i=1

E(Di) =
n− 1

2
.

Indeed, E(Di) = P(Di = 1) = P(Ui > Ui+1) = 1/2. Furthermore

Var(Xn) =
∑

1≤i,j≤n−1

Cov(Di, Dj).

• If |i− j| > 1, then Di and Dj are independent. With the above represen-
tation of σ, the r.v. Di depends on {Xi, Xi+1}, while Dj depends on the
disjoint set {Xj , Xj+1}.

• If j = i+ 1 or i = j + 1, then

Cov(Di, Dj) = E(Di Dj)− E(Di)
2 =

1

6
− 1

4
= − 1

12
.

For E(Di Dj), we observe that (assuming w.l.o.g. j = i + 1) Di Dj = 1
if σ(i) > σ(i + 1) > σ(i + 2) (or equivalently, Ui > Ui+1 > Ui+2) and 0
otherwise; this implies E(Di Dj) = 1/6 (all 6 possible relative orders of
σ(i), σ(i+1), σ(i+2), or equivalently Ui, Ui+1, Ui+2 are equally likely), as
claimed above. There are 2(n− 2) such terms.

• It i = j, then Cov(Di, Dj) = Var(Di) =
1
4 . There are n such terms.

We conclude that

Var(Xn) = − 1
12 · 2(n− 2) + 1

4 n = 1
12n+ 1

6 .

Clearly, Var(Xn) = o
(
E(Xn)

2
)

and we conclude that Xn

E(Xn)
tends to 1 in prob-

ability (the fact that P(Xn = 0) tends to 0 is trivial in this example). More
precisely, we have the concentration inequality

P
[
|Xn − E(Xn)| ≥ εE(Xn)

]
≤ ε−2

(
Var(X)

E(X)2

)
∼ ε−2

3n
.

This concentration inequality is less good that the one obtained through char-
acteristic function (we saw that such quantities decay exponentially fast in n).
However computing the variance is easier than computing the full probability
generating functions (e.g. for triangles in random graphs, we do not know how
to compute the PGF), so that Chebyshev’s inequality is a good tool to get some
first nonsharp concentration inequalities.
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3.3 Exercises
Exercise 3.1. Show that with probability tending to one, a uniform random
permutation does not contain three consecutive entries with three consecutive
increasing values (i.e. there is no i s.t. σi−1 + 1 = σi+1 − 1 = σi).

Exercise 3.2. Using the Stirling’s formula, prove the claim from the lecture: If
n and k tend simultaneously to infinity with k = o(

√
n), then we have(

n

k

)
∼ nk

k!
.

Exercise 3.3. We denote with K4 a 4 clique. The graph H is obtained from K4

by adding an extra vertex and edge linking this new vertex to some vertex in
K4 as shown below:

Let XK4
and XH be the number of copies of K4 and H in the Erdős-Rényi

graph G(n, pn), respectively.

1. Show that for pn ≪ n−4/6 then E(XK4) tends to zero. What can you
conclude?

2. Show that for pn ≫ n−5/7 then E(XH) tends to infinity.

3. Find a range of values of pn for which E(XH) tends to infinity, but the
probability P(XH > 0) tends to 0?

Exercise 3.4 (Finiteness of Ramsey’s numbers). Prove that, for every t, s > 0,
there exists R(t, s) such that every graph with at least R(t, s) vertices contains
either a clique of size t or an independent set of size s. We recall that the
minimal R(t, s) with this property is called Ramsey number.

Hint: prove that R(t, s) ≤ R(t− 1, s) +R(t, s− 1). For that it’s convenient
to consider a graph G with R(t− 1, s)+R(t, s− 1) vertices, an arbitrary vertex
v in such a graph and the induced graph on N(v) (neighborhood of v) and
V \ {N(v) ∪ {v}}. Then...
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Exercise 3.5. We say that a set A = {a1, . . . , ak} ⊂ [n] is sum-free if for all S ⊂
[k] the sums

∑
i∈S ai are distinct. Let K(n) denotes the maximal cardinality of

a sum-free set contained in [n].

1. Show that for every n ≥ 1,

K(n) ≥ log2(n).

2. Show that for every n ≥ 1, K(n) satisfies the inequality

K(n) · n ≥ 2K(n).

3. Deduce that
K(n) ≤ log2(n) + log2(log2(n)) + cost.

4. Fix a sum-free set A = {a1, . . . , ak} ⊂ [n] of cardinality k. Consider now
the following random variable

X =

k∑
i=1

εiai,

where εi are i.i.d. Bernoulli random variables of parameter 1/2. Show that

P(|X − E[X]| ≥ n
√
k) ≤ 1

4
.

5. Deduce that
3

4
2k ≤ 2n

√
k.

6. Conclude that

K(n) ≤ log2(n) +
1

2
log2(log2(n)) + cost.

Exercise 3.6. Let G(n, pn) the Erdos–Rényi graph. In class we saw that as
npn → ∞ then G(n, pn) contains a triangle with probability tending to one.

Show that when p ∈ (0, 1) is fixed and Tn denotes the number of triangles
in G(n, p), then, almost surely,

Tn

E[Tn]
−→ 1.

Exercise 3.7 (One-side bound). Let X be a random variable with expectation
m and variance σ2.
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1. Show that

P (X ≥ λ) ≤ σ2

σ2 + (λ−m)2
, for all λ ≥ m.

Hint: Apply Markov to P (f(X) ≥ f(λ)) for a well-chosen linear function
f .

2. Compare with Chebishev’s inequality for P (|X −m| ≥ λ−m).

Exercise 3.8. The goal of this exercise is to estimate the number of primes that
divide an integer smaller than n.

In what follow p denotes a prime number. Let x ∈ N>0 and set

ν(x) := number of p s.t. p|x.

For example ν(12) = 2. We want to prove the following:
Fix an arbitrary slowly increasing sequence ω(n) → ∞. Then for all but o(n)

integers x ≤ n we have that

|ν(x)− log(log(n))| ≤ ω(n)
√

log(log(n)).

In particular
ν(x) ∼ log(log(n)).

We prove this result using the Second moment method.

1. Let Z(x) :=
∑

p≤n0.1 1{p|x}. Note that |ν(x)− Z(x)| ≤ 10 for all x ≤ n.

We now consider a uniform integer x from 1 to n.

2. Show that E[1{p|x}] =
⌊n/p⌋

n .

3. Using that
∑

p≤t
1
p = log(log(t)) +O(1), show that

E[Z(x)] = log(log(n)) +O(1).

4. Show that Var[Z(x)] = E[Z(x)] +O(1).

(Hint: first show that Cov(1{p|x},1{q|x}) ≤ 3
n for every pair of primes

p < q)

5. Conclude using the Second moment method.
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4 Moment method
In the previous section, we have used the first and second moments to get par-
tial information about the asymptotic distribution of a sequence of r.v. (Xn)
(estimating P(Xn = 0), concentration of Xn around its mean). In this sec-
tion, we will see that, by controlling all moments, we can prove convergence in
distribution.

4.1 Convergence in distribution and convergence of mo-
ments

For a sequence of r.v. (Xn) and a candidate limit Z, we want to compare the
two following properties.

Convergence in distribution Xn
d−→ Z.

Convergence of moments For any positive integer r, we have E[Xr
n] → E[Zr].

From convergence in distribution to convergence of moments. Convergence in
distribution does not imply convergence of moments; consider for example a
sequence Xn such that

P(Xn = n) = 1/n = 1− P(Xn = 0).

Then Xn converges in distribution to 0, while E(Xn) = 1 for all n ≥ 1.
However, moment convergence holds with additional assumptions.

Proposition 4.1. Let r be a positive integer and s be a real number with r < s.
Assume Xn

d−→ Z and E[|Xn|s] bounded (say by M). Then E[Xr
n] tends to

E[Zr].

In particular, if all (absolute) moments of Xn are bounded, then convergence
in distribution implies moment convergence.

Proof. Fix ε > 0. Denoting PXn
the law of Xn, we can write, for any A > 0,

E[Xr
n] =

∫ +∞

−∞
trPXn

(dt) =

∫ −A

−∞
trPXn

(dt)+

∫ A

−A

trPXn
(dt)+

∫ +∞

A

trPXn
(dt).

(11)
The first term is bounded as follows∣∣∣∣∣

∫ −A

−∞
trPXn

(dt)

∣∣∣∣∣ ≤
∫ −A

−∞

|t|s

As−r
PXn

(dt) ≤ E[|Xn|s]
As−r

≤ M

As−r
.

The third term is bounded by the same quantity. Choosing A = A0 such that
P(Z = A0) = 0 (this will be used later) and M

As−r
0

≤ ε, we have∣∣∣∣∣E[Xr
n]−

∫ A0

−A0

trPXn
(dt)

∣∣∣∣∣ ≤ 2ε.
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We use the same argument for moments of the limiting variable Z. By
Skorohod’s representation theorem and Fatou’s lemma, we have

E[|Z|s] ≤ lim inf
n→∞

E[|Xn|s] ≤ M

from which we deduce as above:∣∣∣∣∣E[Zr]−
∫ A0

−A0

trPZ(dt)

∣∣∣∣∣ ≤ 2ε.

We conclude that∣∣∣E[Xr
n]− E[Zr]

∣∣∣ ≤ ∣∣∣∣∣
∫ A0

−A0

trPXn
(dt)−

∫ A0

−A0

trPZ(dt)

∣∣∣∣∣+ 4ε.

Since Xn
d−→ Z, the difference of integrals tends to 0 as n tends to infinity (for

fixed A0), so that
lim inf
n→∞

|E[Xr
n]− E[Zr]| ≤ 4ε.

Since this holds for any ε > 0, the LHS is zero and E[Xr
n] tends to E[Zr] as

claimed.

From moment convergence to convergence in distribution
Conversely, does convergence of moments imply convergence in distribution?

Again, we will need some extra assumption.
Definition 4.2. Let X be a r.v. with finite moments. We say that X is deter-
mined by its moments if, for a r.v. Y ,(

∀ r ≥ 1, E[Y r] = E[Xr]
)
⇒ (X

d
= Y ).

Theorem 4.3 (Moment method). Let Xn and X be r.v. such that, for all
r ≥ 1, the convergence E(Xr

n) → E(Xr) holds (in particular, we assume that
they have moments of all orders). Assume moreover that X is determined by
its moments. Then Xn

d−→ X.

The condition “X is determined by its moments” is clearly necessary. If
this is not the case, the convergence of moments cannot imply convergence in
distribution (this would contradict uniqueness of the limit). It’s remarkable
that it’s also a sufficient condition.

To prove the theorem, we need the notion of tightness.
Definition 4.4. A sequence (Xn) of real-valued random variables is tight if for
every ε > 0, there exists a finite interval I ⊂ R so that P(Xn ∈ I) ≥ 1 − ε for
all n. (I depends on ε but not on n.)
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Tightness is a kind of compactness for r.v. If Xn converges in distribution,
then it is tight. Conversely, a tight sequence always has a subsequence converg-
ing in distribution. We also have the following convergence criterion (which we
don’t prove here).

Proposition 4.5. Let Xn is a tight sequence and X a r.v. Assume that any
subsequence of Xn that converges at all converges to X. Then Xn converges to
X in distribution.

Proof of Theorem 4.3. We first prove the tightness of Xn using Markov’s in-
equality, which yields P(|Xn| ≥ K) ≤ E(X2

n)
K2 . The numerator E(X2

n) converges
and hence is bounded, so that P(|Xn| ≥ K) tends to 0 as K tends to infinity,
uniformly in n, i.e. Xn is tight.

Consider a subsequence Xφ(n) of Xn that converges in distribution to a
random variable Y . We want to prove that Y

d
= X. For any even integer s > 0,

the sequence E[|Xφ(n)|s] = E[Xs
φ(n)] is bounded (since it converges). Therefore,

from Proposition 4.1, the moments of Xφ(n) converge to that of Y . But since
Xφ(n) is a subsequence of Xn, they also converge to the moments of X. By
uniqueness of the limit, we conclude that X and Y have the same moment.
Since X is determined by its moments, X d

= Y .
From the above convergence criterion (Proposition 4.5), we conclude that

Xn
d−→ X.

Uniqueness of measure with given moments.
To apply the above theorem, we need to argue that the limiting distribu-

tion is determined by its moments. Luckily there is an easy to check sufficient
condition for that.

Proposition 4.6. Let X with finite moments. If there exists C > 0 s.t.
|E(|X|r)| ≤ Crr! holds for any r ≥ 1, then X is determined by its moments.

This applies to most classical distributions: Gaussian, Poisson, geometric,
any bounded distribution, . . .

Proof. Let Y be a r.v. with the same moment of X; we want to prove that
X

d
= Y . For any r > 0, we denote αr := E(Xr) = E(Y r) < ∞. We also denote

βk = E(|X|k) the absolute moments of X (which are a priori not equal to that
of Y ). As a preparation, we prove that our hypothesis on the usual moments
αk implies an analogue one on the absolute moments.

For even k, absolute and usual moments coincide. For odd k, we use that,
for any real number x,

|x|2k−1 ≤ 1 + x2k,

so that
β2k−1 ≤ 1 + α2k ≤ 1 + C2k(2k)! ≤ (C ′)2k−1(2k − 1)!.
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The idea is to express the characteristic function of X (and Y ) in terms of
their moments and to use uniqueness of characteristic functions. Informally

eitX ∼
∞∑
k=0

(itX)k/k!

so that taking expectation, one has

φX(t) ∼
∞∑
k=0

(it)k αk/k!

Rigorously, we have by Taylor theorem the bound:∣∣∣∣∣eitX −
N∑

k=0

(itX)k/k!

∣∣∣∣∣ ≤ |hx|N+1

(N + 1)!

Taking expectation,∣∣∣∣∣φX(t)−
N∑

k=0

(it)k αk/k!

∣∣∣∣∣ ≤ |h|N+1

(N + 1)!
βN+1 ≤ (C ′|h|)N+1.

Using our bound above for |h| < ρ := 1/C ′, RHS tends to 0 and

φX(t) =

∞∑
k=0

(it)k αk/k!.

A similar formula holds for Y , and therefore φX(t) = φY (t) since they have
the same moments. But this only holds on a small interval near 0, namely for
|t| ≤ ρ, while we need that on the whole line to apply the uniqueness theorem
for characteristic function!

To get equality on the whole line, we write∣∣∣∣∣eit0X
(
eitX −

N∑
k=0

(itX)k/k!

)∣∣∣∣∣ ≤ |hx|N+1

(N + 1)!

so that, for t < ρ

φX(t0 + t) =

∞∑
k=0

E(eit0XXk) (it)k/k!.

Denote the expectation ct0,k(X). These are the successive derivates of φX at
t0, so that, for t0 < ρ,

ct0,k(X) = ct0,k(Y )

Hence for t < ρ and t0 < ρ,

φX(t0 + t) = φY (t0 + t)

that is φX and φY coincides on (−2ρ, 2ρ). Redoing the same proof shows that
they coincide on (−3ρ, 3ρ), and so on.... The characteristic functions φX and
φY coincide on the whole real line, proving X

d
= Y .
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4.2 Factorial moments and Poisson distribution
We will see a first example of application of the moment method, proving con-
vergence to a Poisson distribution. For this it is often easier to use factorial
moments than moments.
Definition 4.7. The r-th factorial moment of a r.v. with finite moments is

E (X)r = E
(
X(X − 1) · · · (X − r + 1)

)
.

Lemma 4.8. Let Xn and X be r.v. with finite moments. The following are
equivalent:

• for any r ≥ 1, we have limn→∞ E[Xr
n] = E[Xr];

• for any r ≥ 1, we have limn→∞ E[(Xn)r] = E[(X)r].

Proof. As (xr)r≥0 and ((x)r)r≥0 are both bases of the polynomial ring Q[x],
one has

(x)r =

r∑
k=0

Cr,kx
k, xr =

r∑
k=0

Dr,k(x)k,

for some constant Cr,k and Dr,k. Thus usual moments are linear combination
of factorial moments, and conversely. This implies the lemma.

Corollary 4.9 (of this Lemma and the moment method). Let Xn and X be
r.v. such that, for all r ≥ 1, E (Xn)r → E (X)r (in particular, we assume that
they have moments of all orders). Assume moreover that X is determined by
its moments. Then Xn →d X.

Why factorial moments?

• Poisson distribution has particularly simple factorial moments. Indeed,
if X is a Poisson distribution of parameter λ, we recall that its PGF is
P (u) = eλ(u−1), implying

E[(X)r] =
dr

dur
P (u)|u=1 = λr.

• Factorial moments of sums of indicator variable write nicely

E
[(∑

α∈A
Iα

)
r

]
=

∑
α1,...,αr∈A

distinct

E
(
Iα1 . . . Iαj

)

Application to triangles in random graph G(n, pn) for pn = c/n:
As above, we denote by Tn the number of triangles in Erdős-Rényi random

graph G(n, pn). We will, show that, when limn→∞ npn = c ∈ (0,+∞), then Tn

converges in distribution to a Poisson random variable.
We start by a purely combinatorial lemma.
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Lemma 4.10. Let I1, ..., Ir be distinct triangles with vertex sets included in [n].
Denote V (r), resp. E(r), the union of their vertex sets, respectively edge sets.
Then |E(r)| ≥ |V (r)| with equality if and only if the triangles are vertex-disjoint.

Proof. We proceed by induction on r. For r = 1, the statement is trivial.
Let r ≥ 1 and consider r + 1 triangles with vertex sets included in [n].

By induction hypothesis we assume |E(r)| ≥ |V (r)|. We look at the possible
intersections of the last triangle Ir+1 with the previous ones.

• If Ir+1 has no vertex in common with I1,. . . ,Ir, then it has no edge in
common either. We have |V (r+1)| = |V (r)|+3 and |E(r+1)| = |E(r)|+3,
implying |E(r)| ≥ |V (r)|.

• If Ir+1 has one vertex in common with I1,. . . ,Ir, then it cannot share an
edge with one of these triangles. We have |V (r + 1)| = |V (r)| + 2 and
|E(r + 1)| = |E(r)|+ 3, implying |E(r)| > |V (r)|.

• If Ir+1 has two vertices in common with I1,. . . ,Ir, then it cannot share at
most one edge with one of these triangles. We have |V (r+1)| = |V (r)|+1
and |E(r + 1)| ≥ |E(r)|+ 2, implying |E(r)| > |V (r)|.

• If Ir+1 has all its three vertices in common with I1,. . . ,Ir, it can share up
to three edges with one of these triangles. We have |V (r + 1)| = |V (r)|
and |E(r+1)| ≥ |E(r)|, implying |E(r)| ≥ |V (r)|. The equality case occur
when each edge of Ir+1 is already in one of the triangles I1,. . . ,Ir. Since
the triangles Ii are assumed to be distinct, they have to be in different
triangles. This cannot happen when I1,. . . ,Ir have disjoint vertex-set.

This concludes the induction step and proves that |E(r)| ≥ |V (r)| for all r ≥ 1.
The equality case follows also by induction, using the above discussion.

Theorem 4.11. Let pn ∼ c/n. Then the number of triangles Tn in a random
graph G(n, pn) tends in distribution towards a Poisson law of parameter c3/6.
In particular, P (Tn = 0) → exp(−c3/6) (compare this last statement with what
was proved for npn → 0 and npn → +∞).

Proof. We have already seen that

E[Tn] =

(
n

3

)
p3n ∼ c3

6
.

Let us consider higher factorial moments

E[(Tn)r] =
∑

I1,...,Ir∈([n]
3
)

distinct

E[∆I1 . . .∆Ir ]. (12)

By definition of G(n, pn), we have

E[∆I1 . . .∆Ir ] = p|E(r)|
n .
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We denote G[I1, . . . , Ir] the graph whose vertex and edge sets are the unions of
those of I1,. . . ,Ir. Then consider (I1, . . . , Ir) and (I ′1, . . . , I

′
r) to be equivalent

if G[I1, . . . , Ir] and G[I ′1, . . . , I
′
r] are isomorphic. For fixed r, the number of

equivalence classes of r-uples of triangles does not depend on n (for large n).
The number of r-uples equivalent to a given (I1, . . . , Ir) is O(n|V (r)|): indeed, to
construct an element in this class, we need to choose how to relabel the vertices
of G[I1, . . . , Ir].

Let us split the sum in (12), depending on the equivalence class of r-uples of
triangles. The total contribution of the equivalence class of a given (I1, . . . , Ir)

is O(n|V (r)|p
|E(r)|
n ). When pn ∼ c/n, this is O(n|V (r)|−|E(r)|), which is, from the

above Lemma, o(1), unless (I1, . . . , Ir) are vertex-disjoint. Therefore we have

E[(Tn)r] =
∑

I1,...,Ir∈([n]
3
)

disjoint

E[∆I1 . . .∆Ir ] + o(1)

=

(
n

3

)(
n− 3

3

)
. . .

(
n− 3r + 3

3

)
p3rn + o(1) ∼ c3r

6r
.

This is the r-th factorial moment of a Poisson random variable of parameter
c3/6. Applying the moment method, we conclude that Tn converges in distri-
bution to a Poisson random variable of parameter c3/6.

4.3 Cumulants and Normal distribution
We now turn to proving convergence to a Gaussian distribution, using the mo-
ment method. In this context, it is easier to use cumulants than moments.
Definition 4.12. Let X be a r.v. with finite moment. Its cumulant are defined
by the formal equality

log
(
E(euX)

)
= log

∑
j≥0

E(Xj)

j!
uj

 =
∑
j≥0

κj(X)

j!
uj

Examples:

• κ1(X) = E(X), κ2(X) = Var(X), κ3(X) = E(X3)− 3E(X)2E(X) + 2E(X)3.

• If Z ∼ C is deterministic, then κ1(Z) = C and κr(Z) = 0 for r ≥ 2.

• If Z ∼ N (m,σ), then it is known that E(euZ) = exp(mu+ σ2u2/2), from
which we deduce

κ1(Z) = m, κ2(Z) = σ2, κr(Z) = 0 for r ≥ 3.

Some properties:
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• If X and Y are independent, we have E(eu(X+Y )) = E(euX)E(euY ) and
hence

κj(X + Y ) = κj(X) + κj(Y )

In particular, if C is constant, X+C has the same cumulant as X, except
the first one (which is shifted by C).

• If
∑

j≥0 E(Xj)tj/j! has a non-zero radius of convergence, the equality in
the definition is not only formal, but holds for small t.

• In general, we have

κr = E(Xr) + a polynomial in E(X), E(X2), . . . , E(Xr−1).

We can invert this formula and write

E(Xr) = κr(X) + a polynomial in E(X), E(X2), . . . , E(Xr−1)

= κr(X) + a polynomial in κ1(X), κ2(X), . . . , κr−1(X).

For the second equality, we assumed by induction hypothesis that such a
formula exists for E(X), E(X2), . . . , E(Xr−1).
These formulas imply that convergence of all moments and convergence
of all cumulants are independent (as for factorial moments).

Therefore we have the following criterion for convergence in distribution.

Proposition 4.13 (moment method via cumulants). Let X and Xn be r.v. with
finite moments. Assume X is determined by its moments. If, for all integers
r ≥ 1, κr(Xn) → κr(X). Then Xn tends in distribution towards X.

Why cumulants?

• Gaussian distributions have easy cumulants.

• Cumulants behave well with respect to independence.

When Xn is a sum of indicator, to compute κr(Xn), it is useful to consider
a multilinear version of cumulants, called joint cumulants (as covariance is a
bilinear version of variance).
Definition 4.14 (joint cumulants). Let X1, ..., Xr be r.v. with finite moments.
Their mixed/joint cumulant is defined as

κ(X1, . . . , Xr) = [u1 · · ·ur] log
(
E(eu1X1+···+urXr )

)
,

where [u1 · · ·ur]F denotes the coefficients of u1 . . . ur of F , either seen as a formal
series in u1,. . . , ur or as an analytic function of u1,. . . , ur around (0, . . . , 0).

Proposition 4.15. 1. κr is a symmetric, multi-linear functional;

2. κr(X) = κ(X, ...,X) (argument is r times the same variable X) ;
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3. κ(X1, ..., Xr) = 0 as soon as the set of variables {X1, ..., Xr} can be par-
titioned in two mutually independent sets.

Proof. 1. is trivial.
For 2. we write

κ(X, . . . ,X) = [u1 · · ·ur log
(
E(e(u1+···+ur)X)

)
= [u1 · · ·ur]

∞∑
k=0

∑
j≥0

κj(X)

j!
(u1 + · · ·+ ur)

j

We can exchange the infinite sum and coefficient extraction (we’re working with
formal series). Since [u1 . . . ur](u1 + · · ·+ ur)

j = δj,rj!, we get

κ(X, . . . ,X) = κr(X).

Let us now prove 3. By symmetry we assume w.l.o.g. that X1, ..., Xi is
independent from Xi+1, ..., Xr (for some i between 1 and r − 1). Then

log
(
E(ei(t1X1+···+trXr )

)
= log

(
E(ei(t1X1+···+tiXi)

)
+log

(
E(ei(ti+1Xi+1+···+trXr )

)
The coefficient of t1 · · · tr is zero, since the first part does not depend on ti+1, . . . , tr
and the second not on t1, . . . , ti.

We also note that there are formulae relating joint cumulants and joint
moments, for example

κ(X) = E(X), κ(X,Y ) = E(XY )− E(X)E(Y ) = Cov(X,Y ),

κ(X,Y, Z) = E(XY Z)− E(XY )E(Z)− E(XZ)E(Y )− E(Y Z)E(X) + 2E(X)E(Y )E(Z);

E(X) = κ(X), E(XY ) = κ(X,Y ) + κ(X)κ(Y ),

E(XY Z) = κ(X,Y, Z) + κ(X,Y )κ(Z) + κ(X,Z)κ(Y ) + κ(Y, Z)κ(X) + κ(X)κ(Y )κ(Z).

The general form uses the combinatorics of set-partitions. The detail will not
be useful here, but we shall use the following consequence.

Lemma 4.16. For any r > 0, there exists a constant Br > 0 such that, for any
r.v. X1, . . . , Xr bounded by 1 (e.g. indicators), we have

|κ(X1, . . . , Xr)| ≤ Br.

Proof. Joint cumulants can be written in terms of joint moments with coeffi-
cients which do not depend of the variables X1,. . . ,Xr. But joint moments of
variables bounded by 1 are bounded by 1 themselves. This ends the proof.

Application to number of triangles in G(n, p) As above, let Tn be the num-
ber of triangles in G(n, p); (for simplicity, we take pn = p constant). We set

T̂n =
Tn − E(Tn)√

Var(Tn)
,
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and recall that Var(Tn) = Θ(n4).
We analyse the cumulants of Tn.

κr(Tn) = κr

 ∑
I∈([n]

3 )

∆I

 =
∑

I1,...,Ir∈([n]
3 )

κ
(
∆I1 , . . . ,∆Ir

)
(13)

As for factorial moments, it is clear that the summand κ
(
∆I1 , . . . ,∆Ir

)
only

depends of the isomorphism class of the graph G[I1, . . . , Ir].
Call (C) the property “the graph G[I1, . . . , Ir] is edge-connected in the sense,

that it cannot be split into two collections of triangles so that no triangles of
the first collection share an edge with a triangle of the second collection”. If
(C) is not satisfied, then the corresponding random variables ∆I1 , . . . ,∆Ir can
be split into two collections of mutually independent random variables and the
cumulant κ

(
∆I1 , . . . ,∆Ir

)
is 0. Therefore the above sum can be restricted to

r-uples (I1, . . . , Ir) satisfying (C).

Claim: under condition (C), the graph G[I1, . . . , Ir] has at most r+2 vertices.
Proof: it is easy to see that, assuming condition (C), there exists a permu-

tation J1, . . . , Jr of I1, . . . , Ir such that for each s ≤ r, the family Js+1 shares
an edge with (J1, . . . , Js). Indeed, we construct J1, . . . , Js greedily: choose J1
as you want, and if (J1, . . . , Js) is constructed, the property (C) ensures you
that one of the not yet selected It’s share an edge with (J1, . . . , Js). Then an
immediate induction proves that, for any s ≤ r, the graph G[J1, . . . , Js] has at
most s+ 2 vertices, implying in particular the claim.

We deduce that the claim that, under condition (C), the number of r-tuples
in the same equivalence class than (I1, . . . , Ir) is O(nr+2). Since, κ

(
∆I1 , . . . ,∆Ir

)
is bounded by a universal constant Br (see above lemma), the total contribution
of that equivalence class to (13) is O(nr+2). Since the number of equivalence
classes does not depend on n (for large n), we have

κr(Tn) = O(nr+2).

Recall that shifting a variable by C does not change its cumulants (except the
first one), and multiplying by λ multiplies the r-th cumulant by λr. This implies
that, for r ≥ 2,

κr(T̂n) =
κr(Tn)√
Var(Tn)

r = O(n−r+2).

In particular κr(T̂n) is 1 for r = 2 and tends to 0 for r > 2, implying that T̂n

converges in distribution to a standard Gaussian random variable. This proves
Theorem 1.5, item iii) from the introduction in the case pn = p.

Comment: In fact, Tn converges after renormalization to a standard Gaus-
sian distribution as soon as npn → ∞ and n2(1 − pn) → ∞ (recall that the
above proof only considers the case where pn = p is constant). This can also
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be proved using cumulants, but the combinatorial analysis of cumulants is then
more delicate. In particular, the bound |κr(∆H1 , . . . ,∆Hr )| ≤ Br is in general
too coarse.

Also, similar results can be proved for the number of copies of other sub-
graphs than triangles. See Janson, Ĺuczak, Ruçinski, Random Graphs, Wiley
Interscience, 2000.

4.4 Exercices
Exercise 4.1. We consider the following situation: we have two uniformly shuf-
fled decks with 4n cards (n for each of the 4 possible suits). We turn the card
of the two decks one by one (one from each deck at each time) and we count
the number of times you get the same value, but possibly with different suits.
We denote this number as Xn.

1. Note that Xn is distributed as the number of i such that σ(i) ≡ i mod n
in a uniform permutation σ of size 4n.

2. Write Xn as a sum of indicator functions.

3. We recall that factorial moments of sums of indicator variables write
nicely:

E
[(∑

α∈A
Iα

)
r

]
=

∑
α1,...,αr∈A

distinct

E
(
Iα1

. . . Iαr

)
.

Using this result, write the r-th the factorial moment of Xn as:∑
i1,...,ir∈[4n]

distinct

P(σ(i1) ≡ i1 mod n, ..., σ(ir) ≡ ir mod n). (14)

4. Show that

P(σ(i1) ≡ i1 mod n, ..., σ(ir) ≡ ir mod n) ≤ 4r(4n− r)!

(4n)!
.

5. Show that the number of terms in Equation (14) where some ij ’s are
congruent to each other is O(nr−1).

6. Conclude that Xn converges to a Poisson random variable of parameter
4.

Exercise 4.2. Let X and Y be two real-valued random variables with densities:

fX(x) =
e− log(x)2/2

x
√
2π

1x>0,

fY (x) =
e− log(x)2/2

x
√
2π

(
1 + sin(2π log(x))

)
1x>0.
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(Why does this define random variables?)
Show that X and Y have the same moments but distinct distributions.
Hint: compute the r-th moments of X and Y as an integral and do the

change of variables x = log(t+ r).

Exercise 4.3. In this exercise we reprove the central limit theorem for the num-
ber Xn of descents in uniform random permutation using cumulants. You can
assume that (this was proved during the course)

Var(Xn) =
n

12
+O(1).

1. Write Xn as a sum of indicator functions.

2. Express the r-th cumulant of Xn as a sum of simpler cumulants.

3. Note that most of the simpler cumulants are equal to 0. Which ones?
Why?

4. Estimate the number of simpler cumulants that are different from zero.

5. Prove a central limit theorem for Xn.
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5 Azuma inequality
In this chapter we discuss again concentration inequalities, i.e. upper bounds
for P

[
|Xn−E(Xn)| ≥ εE(Xn)

]
. Assume that Xn is asymptotically normal with

expectation and variance of order n (e.g. the already discussed example of the
number of descents in uniform random permutations).

Then by Chebyshev’s inequality, we get, for fixed ε,

P
[
|Xn − E(Xn)| ≥ εE(Xn)

]
≤ 1

ε2
Var(Xn)

E(Xn)2
= O(n−1).

If we have convergence of the moments of (Xn−EXn)/
√

Var(Xn) to those of
the Gaussian distribution, then we can improve this bound by applying Markov’s
inequality to (Xn − E(Xn))

r/Var(Xn)
r/2. For even r, we have

P
[
|Xn − E(Xn)| ≥ εE(Xn)

]
= P

[
(Xn − E(Xn))

r

Var(Xn)r/2
≥ εrE(Xn)

r

Var(Xn)r/2

]
≤ E

[
(Xn − E(Xn))

r

Var(Xn)r/2

]
Var(Xn)

r/2

εrE(Xn)r
= O(n−r/2).

In the last estimate, we have used that E
[
(Xn−E(Xn))

r

Var(Xn)r/2

]
= O(1), (because it

converges). We have proved that the deviation probability decays faster than
any polynomial in n.

In case of descents in uniform random permutations, we have seen that it
decays exponentially fast in n, using Chernoff’s bound. This relies however on
the computation of the PGF. In this section, we will see a simple way to find
exponential bounds, without computing the PGF.

The theorem
Definition 5.1. A family {Di, i ∈ I} is called a multiplicative system if for any
non-empty subset J ⊆ I, we have E

(∏
j∈J Dj

)
= 0.

We note for later use that, for a multiplicative system {Di, i ∈ I} and families
{ai, i ∈ I} and {bi, i ∈ I} of scalars, one has

EE

(∏
i∈I

(ai + biDi)

)
=
∏
i∈I

ai =
∏
i∈I

EE(ai + biDi),

as if the Di were independent, but only for linear functionals.

Theorem 5.2 (Azuma’s inequality). Let {Di, i ∈ I} be a multiplicative system
of bounded r.v., i.e. for any i ∈ I, there exists Mi in R such that |Di| ≤ Mi

almost surely. Then, for any λ > 0,

P

(∣∣∣∣∣∑
i∈I

Di

∣∣∣∣∣ > λ

)
≤ 2 exp

(
− λ2

2
∑

i M
2
i

)
.

48



Note: there is no asymptotics in the statement. When we apply it to a
sequence of multiplicative families, we can have different λ and Mi for each of
these families, i.e. λ and Mi can depend on n.

Proof. Let X =
∑

i∈I Di. We will use Chernoff’s inequality. For this we need
to control

E
[
exp(uX)

]
= E

[∏
i∈I

exp(uDi)

]
.

The Di are not assumed to be independent, so that we cannot exchange the
product and the expectation. We need to control exp(uDi) by a linear func-
tional.

For any fixed t, x with |x| ≤ 1, using the convexity of etx, we have

etx ≤ cosh t+ x sinh t.

Setting x = Di/Mi and t = Mi u, we get

exp(uDi) ≤ cosh(Mi u) +
Di

Mi
sinh(Mi u).

Taking the product over i, the expectation, and using properties of multiplicative
system, we have

E

[∏
i∈I

exp(uDi)

]
≤ E

[∏
i∈I

(cosh(Mi u) +
Di

Mi
sinh(Mi u))

]
=
∏
i∈I

cosh(Mi u)

By Chernoff’s bound, for u > 0,

P

(∑
i∈I

Di > λ

)
≤ exp(−uλ)

∏
i∈I

cosh(Mi u).

To find the bound of the theorem, we use that cosh(x) ≤ exp(x2/2) for any
x ∈ R (which can be proved by comparing term by term their power series
expansion) and optimize over u:

P

(∑
i∈I

Di > λ

)
≤ inf

u>0
exp

(
− uλ+ 1

2

∑
i∈I

M2
i u

2
)
= exp

(
− λ2

2
∑

i∈I M
2
i

)
.

By symmetry (−Di is also a bounded multiplicative family), the same bounds
holds

How to construct multiplicative systems?
Imagine your random space is built by taking independent random variables

(A1, ..., AN ). i.e., Ω = Ω1 × Ω2 · · · × ΩN
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Examples: uniform random words, where each Ai is a letter, random graphs
G(n, p), where each Ai is the indicator of the presence of an edge, uniform ran-
dom permutations constructing by standardizing independent uniform variables
in [0, 1], where each Ai is one of these random variable.

We want to study some statistics X on such a probability space.

For 0 ≤ i ≤ n, consider the following random variable:

Fi(A1, ..., An) = E(X|A1, ..., Ai) (15)
= E(X(A1, ..., Ai, A

′
i+1, ..., A

′
n)).

In the second line, A1,. . . ,Ai are fixed and the expectation is taken with respect
to A′

i+1, . . . , A
′
n which are independent from each other and have the distribution

of Ai+1, . . . , An. Note that Fi depends in fact only of A1, ...Ai. For example,
F0 = E(X(A′

1, ..., A
′
n)) is a real number, while Fn = X(A1, ..., An) is the original

random variable X.
For i in {1, . . . , n}, we set Di = Fi − Fi−1. Note that

∑n
i=1 Di = Fn − F0 =

X − E(X).

Lemma 5.3. The family (Di)1≤i≤n is a multiplicative system.

Proof. In fact, we shall prove a more general statement: if G depends only on
A1, ..., Ai−1, then

E
(
G(A1, ..., Ai−1)Di

)
= 0. (16)

Proof of (16): we have

E
(
G(A1, . . . , Ai−1)Di

)
= E

[
E
(
G(A1, . . . , Ai−1)Di|A1, . . . , Ai−1

)]
= E

[
G(A1, . . . , Ai−1)

(
E(Fi|A1, . . . , Ai−1)− Fi−1

)]
= 0

Why is (16) stronger than the multiplicative system property? Let J ⊂
{1, . . . , n} be non-empty, we need to prove that E

(∏
i∈J Di

)
= 0. Let i0 =

max(J). We have

E

[∏
i∈J

Di

]
= E


 ∏

i∈J\{i0}

Di


︸ ︷︷ ︸

this is a G(A1,...,Ai0−1)

Di0

 = 0

Comment: (16), with the fact that Fi only depends on A1, . . . , Ai, says that
Fi is a martingale with respect to the obvious filtration associated to the (Ai);
and indeed (15) is a standard way of constructing martingale. The rest of the
proof shows that differences of martingale are multiplicative systems.
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Azuma’s inequality assumes the Di to be bounded a.s. How can we check
this assumption when Di is constructed as above? Recall that

Di = Fi−Fi−1 = E
[
X(A1, ..., Ai, A

′
i+1, ..., A

′
n)−X(A1, ..., A

′
i, A

′
i+1, ..., A

′
n)
]
.

In particular if X changes at most by Mi when the value of its i-th argument
changes, then Di ≤ Mi a.s. and we can apply Azuma’s inequality. Such a
property is usually straight-forward to check.

Application to the longest common substring problem. As in the introduc-
tion, let Ω be a finite alphabet with k letters (k fixed) and w and w′ be two
independent random words of length n with letters in Ω. We are interested in
the length Ln of the longest common substring between w and w′. Recall from
the introduction that E(Ln) ∼ γkn.

We set, for i between 0 and n (or 0 and n− 1)

F2i = E
[
Ln|w1, w

′
1, . . . , wi, w

′
i

]
;

F2i+1 = E
[
Ln|w1, w

′
1, . . . , wi, w

′
i, wi+1

]
.

Furthermore, let Di = Fi − Fi−1. As explained above
∑n

i=1 Di = Ln − E(Ln)
Since all the letters of w and w′ are independent from each other, the family
(Di)1≤i≤2n is multiplicative.

Moreover, changing one letter in one of the word can at most change Ln by
1, so that |Di| ≤ 1 almost surely. From Azuma’s inequality, we get, that for any
tn > 0,

P
[
|Ln − E(Ln)| ≥ tn

]
≤ 2 exp(−t2n/4n).

This proves the second part of Theorem 1.3 from the introduction.

Azuma’s inequality has a large range of applications in (and outside) com-
binatorics and is usually straight-forward to apply. Further applications can be
found in the exercises.

5.1 Exercises
Exercise 5.1. Let Tn be the number of triangles in the random Erdős-Rényi
graph G(n, p) (p might depend on n). Show that, for any t = tn, we have

P
[
|Zp

n − E(Zp
n)| ≥ tn

]
≤ exp

(
− t2n

n4

)
.

Exercise 5.2. Let Zp
n be the chromatic chromatic number of the random Erdős-

Rényi graph G(n, p) (p might depend on n). Show that, for any t = tn, we
have

P
[
|Zp

n − E(Zp
n)| ≥ tn

]
≤ exp

(
− t2n

2n

)
.
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A Scratch course/reminder of complex analysis
Notation: U ⊆ C an open set, D(z0, r) = {z : |z − z0| < r} an open disk.
Definition A.1 (holomorphic). We say that f : U → C is holomorphic on U if
one/both of the following equivalent conditions hold:

1. for every z0 ∈ U , the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists.

2. for every z0 ∈ U and every r > 0 s.t. D(z0, r) ⊆ U there exists a sequence
(an)n≥0 of complex numbers such that f(z) =

∞∑
n=0

an(z − z0)
n for all

z ∈ D(z0, r) (in particular, the RHS should converge for such z).

Note: equivalence is highly nontrivial and very surprising (item 2. implies
being infinitely many times differentiable and thus seems much stronger) !

Standard functions (polynomials, rational functions, exponential, linear com-
binations, products, quotients, compositions of those) are holomorphic on their
domain of definition. The logarithm and the noninteger power functions (z 7→
zα, with α /∈ Z) can be extended to holomorphic functions to the split plane
C \R≤0 (or to any set U obtained by removing from C a closed half-line ending
at 0).

Path integrals
Definition A.2 (path). A path γ is a continuous piecewise-C1 function from a
real bounded closed interval [a, b] to C.
Definition A.3 (path integrals). We consider a continuous function f : U → C
and a path γ : [a, b] → U . Then we define

∫
γ

f(z)dz :=

b∫
a

f(γ(t))γ′(t)dt.

Proposition A.4. One has
∣∣∣∫γ f(z)dz∣∣∣ ≤ sup

t∈[a;b]

|f(γ(t))| ·L(γ), where, by defi-

nition L(γ) :=
∫ b

a
|γ′(t)|dt is the length of the path γ.

The residue theorem. We now present the residue theorem, which evaluates
path integrals of quotients of holomorphic functions on a closed path (i.e., path
with γ(b) = γ(a)).
Definition A.5. • A meromorphic function on U is a quotient h(z) = f(z)/g(z)

of holomorphic functions on U (h might not be defined on the whole set
U).
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• A point a ∈ U is a pole of h if limz→a |h(z)| → +∞.
Note: a necessary condition for a to be a pole is that g(a) = 0, but it is not

sufficient (if f(a) = 0 as well, the limit limz→a |h(z)| might be finite). By the
isolated zero principle, the set of zeroes of g, and hence the set of poles of h has
no limit points in U .
Proposition A.6. Let h(z) be a meromorphic function on U and a ∈ U be a
pole of h. Then there exists r > 0, an integer m > 0 and coefficients (bn)n≥−m

such that D(a, r) ⊆ U and

h (z) =

+∞∑
n=−m

bn(z − a)n.

Definition A.7 (order and residue). The minimal m such that this expansion
exists is called the order of the pole and the coefficient b−1 is the residue of h
in a, denoted Res(h; a).

Note: if the limit limz→a(z− a)h(z) exists and is non-zero (and finite), then
m = 1 (the pole is called simple) and Res(h; a) = limz→a(z − a)h(z).

We now state the residue theorem: to simplify consider a closed path γ,
injective on [a, b). It separates the plane into two regions: the interior V and
the exterior C \ V (with this notation, γ([a, b]) = ∂V ). We also assume γ to be
oriented counterclockwise. Such paths are called (positive) contour. Contour
integral are sometimes denoted by

∮
.

Theorem A.8 (Residue theorem). Let h be a meromorphic function on U and
γ a contour in U , so that no poles of h are on the path γ. Then∮

γ

h(z)dz = 2π i
∑
a∈V

a pole of h

Res(h; a).

Corollary A.9 (Cauchy formula for derivatives). Let f(z) be a holomorphic
function on U . We fix z0 in U and a contour γ having z0 in its interior. Then

f (k)(z0)

k!
=

1

2π i

∮
γ

f(z)

(z − z0)k+1
dz.

Controlling derivatives A consequence is that, if we have some bounds on a
sequence of holomorphic functions fn on U , we can control its derivatives.
Proposition A.10. Let U be an open set containing 0 and fn : U → C be a
sequence of holomorphic functions. Assume there exist real numbers Cn, r > 0
and an integer d ≥ 0 such that, for |z| < r, we have z ∈ U and

|fn(z)| ≤ Cnz
d.

Then for any r′ < r, we have

f (k)
n (0) ≤ Cn(r

′)d−k.

In particular, if d > k, then f
(k)
n (0) = 0.
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Sketch of proof. Easy consequence of Cauchy formula for derivatives (using the
circle of radius r′ as contour path) and of the standard estimate for path inte-
grals.

For the last statement, we simply make r′ tends to 0.

Application 1: If fn(z) = O(z2) for z → 0 uniformly in n, then f ′
n(0) = 0

and f ′′
n (z) = O(1). We can use this to simplify the computation p. 9.

Application 2: If fn(z) = o(1) (resp. O(1)) for n → ∞ uniformly in z in
a neighbourhood of 0, then f

(k)
n (z0) = o(1) (resp. O(1)) uniformly on z0 in a

(smaller) neighbourhood of 0 (applying the above proposition to fn(z + z0)).
This is used (only for z0 = 0) in the proof of Theorem 2.3.

B Sources
Various sources have been used for the preparation of this lecture, in particular

• Chapter IX of the wonderful book of Flajolet and Sedgewick Analytic
Combinatorics [FS09] for Section 2;

• Chapters 2, 4 and 7 of the marvellous volume of Alon and Spencer The
Probabilistic Method [AS15] for Sections 3 and 5;

• Chapter 6 of the beautiful opus of Janson, Ĺuczak and Rucinski Random
Graphs [JĹR00] for Section 4 (except the proof of the moment method
which is taken from Billingsley’s classical and always enjoyable textbook
[Bil12, Chapter 20]).
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