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1. Setting



1. Setting - Basics

Convention: 0 € N.

We consider a sum of the form

for n, k such that the terms F (n, k) are well-defined and hypergeometric.



1. Setting - Hypergeometric terms

Recall the following definition:

Definition
A term F (n, k) is a hypergeometric term in both arguments, if

F(n+1,k) F(n k+1)
F (n, k) and F(n, k)

are both rational functions of n and k.



1. Setting - Goal

Zeilberger's algorithm makes use of the existence of a telescoped
recurrence, therefore we want to prove that

there exists J € N5, polynomials (aj)f:O in C[n], not all zero, and a
term G (n, k) such that

aj(n)F(n+j,k)=G(n k+1)— G(n, k)

.
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1. Setting - Goal

Zeilberger's algorithm makes use of the existence of a telescoped
recurrence, therefore we want to prove that

there exists J € N5, polynomials (aj)jzo in C[n], not all zero, and a
term G (n, k) such that

J
> aj(n)F(n+j,k)=G(nk+1)— G (n k)

j=0
Assuming G has finite support, summing on both sides over k gives
J

> aj(n)f(n+j)=0.

j=0



2. Statement



2. Statement - Precondition

Recall:
Definition
A term F (n, k) is proper hypergeometric if it can be written in the

form
.q:1 (a,-n + bk + C,')! Xk

[Ti=; (uin + vik + w;)!
where x € C, P € C[n, k], aj, bj, uj,v; € Z for all
ied{l,...,r},je{l,...q} and r,q € Z>o.

F(n, k)= P(n, k)

)



2. Statement - Main theorem

Theorem

Let F (n, k) be a proper hypergeometric term. Then there are J € N,
polynomials (aj)jJ:0 in C[n], not all zero, and a function G (n, k) such
that (whenever F (n, k) # 0 and all appearing terms of the form

F (n+j, k) are well-defined)

J
> aj(n)F(n+j,k)=G(nk+1)— G (n k)
j=0

and gg::g is a rational function.




3. Preparation for the proof



3. Preparation for the proof - Fundamental theorem

Recall the first part of the fundamental theorem:

Theorem
Let F (n, k) be a proper hypergeometric term. Then there exist

I,J € Nyg and polynomials aj € C[n] for i =0,....,1,j =0,...,J, not all
zero, such that
g
> > a(n)F(n—j,k—i)=0
i=0 j=0
whenever F (n, k) # 0 and all appearing terms of the form
F(n—j,k—1i) are well-defined and non-zero.



3. Preparation for the proof - Shift operators

Definition
If p(n) (resp. u(k)) is a term dependent on n (resp. k), then define

N(p(n)):=p(n+1) and  K(u(k))=u(k+1).



3. Preparation for the proof - Shift operators

Definition
If p(n) (resp. u(k)) is a term dependent on n (resp. k), then define

N(p(n):=p(n+1) and K(u(k))=u(k+1).

| will use distributive notation, i.e.
(aN"K* + bK'N™ + ¢) (F (n, k)) :=
aN" (K (F (n,k))) + bK' (N (F (n, k))) + cF (n, k)

for a,b,c € C,n, k,I,m e N.



3. Preparation for the Proof - Lemma 1

Lemma 1
Let P € Clu, v, w] be a polynomial. Then there exists a polynomial
Q € Clu, v, w] such that

P(u,v,w)=P(u,v,1)+ (1 —w)Q(u,v,w).
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3. Preparation for the Proof - Lemma 1 - Proof

Proof
Let P € Clu, v, w] be a polynomial. Its Taylor series in w =1 is

i uvl) (w—1)"

=0

a finite sum (since P is a polynomial). Thus there exists a polynomial
Q € Clu, v, w] such that

P(u,v,w)=P(u,v,1)+ (1 —w)Q (u,v,w),

i.e. choose
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3. Preparation for the Proof - Lemma 2

Lemma 2
Let Q € C[x,y, z] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n, K) F (n, k) is a rational multiple of F (n, k).

12



3. Preparation for the Proof - Lemma 2 - Proof

Lemma 2
Let Q € C[x, y, z] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n, K) F (n, k) is a rational multiple of F (n, k).
Proof

Let F (n, k) be a hypergeometric term in both arguments, fulfilling the
conditions above, and Q € C|x, y, z]. Then w can be written
in the form

F(n+ik+j)
a,--(n) N > JJ
(i;A 5 F(n, k)

for some finite A C N2 and a;; € C[n] for all (i,j) € A.
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3. Preparation for the Proof - Lemma 2 - Proof

Let F (n, k) be a hypergeometric term in both arguments and
Q € C[x,y,z]. Then W can be written in the form

F(n+ik+j)
2 @)=
(i,j)eA

for some finite A C N2 and a;; € C[n] for all (i,j) € A.

Note that for each (/,j) € A

. . F(n+ik+)) . ]
F(n+ik+j)= Fnti—1k+
(n+i k)= Foricterpy ("TiIT LK+
and 7Ff,fitftfj) is a rational function.
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3. Preparation for the Proof - Lemma 2 - Proof

Note that for each (/,j) € A

. : F(n+ik+j) . )
F k+j) = F — 1,k
(n+,7 +J) F(n+l_1,k+j) (n+l I’ +J)
and % is a rational function.
Thus (by iterating this procedure) there is some rational function R (n, k)
such that

F(n+ik+j)=R(nk)F(n k+j).
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3. Preparation for the Proof - Lemma 2 - Proof

Thus (by iterating this procedure) there is some rational function R (n, k)
such that

F(n+ik+j)=R(nk)F(n k+j).

With the same argument as before, we find also a rational function
S (n, k) such that

F(n k+j)=S(nk)F(n k).
Thus

F(n+ik+])

Fin &) =R (n,k)S(n, k).
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4. Proof




4. Proof - Strategy

A Take the provided 2-variable recurrence from the fundamental
theorem.

B Reorder the terms such that we get a recurrence in the desired form
which is independent of k.

C Show (from this form) that the provided function G (n, k) is a
rational multiple of F (n, k).

D Prove by contradiction that the found recurrence is nontrivial.

17



4. Proof - Step A

Let F (n, k) be a proper hypergeometric term. Then, using the first part
of the fundamental theorem, there exist /, J € Nyg and polynomials
ajj € C[n] for i € {0, ..., 1},j € {0, ..., J}, not all zero, such that

! J
> aj(n)F(n+jk+i)=0
i=0 j=0

whenever F (n, k) # 0 and all of the values F (n+j, k + i) are
well-defined.
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4. Proof - Step A

Let F (n, k) be a proper hypergeometric term. Then, using the first part
of the fundamental theorem, there exist /, J € N+g and polynomials
ajj € C[n] for i € {0, ..., 1},j € {0, ..., J}, not all zero, such that

i J
> aj(n)F(n+jk+i)=0 (1)
i=0 j=0

whenever F (n, k) # 0 and all of the values F (n+j, k + i) are
well-defined.

Using the notion of shift operators, (1) can be written in the form
P(N,n,K)(F(nk))=0 (2)

for some polynomial P € Clu, v, w|.
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4. Proof - Step B

It's possible to find a polynomial Q € C[u, v, w] such that

P(u,v,w)=P(u,v,1)+ (1 —w)Q(u,v,w). (3)
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4. Proof - Step B

It's possible to find a polynomial Q € C[u, v, w] such that
P(u,v,w)=P(u,v,1)+ (1 —w)Q(u,v,w).
Plugging this into (2) yields
P(N,n,1)(F(n k))+(1—K)(Q(N,n K)(F(nk))=0
which is equivalent to

P (N, n,1)(F (n, k) = (K= 1) (Q(N,n,K) (F (n, k). (4)
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4. Proof - Step B

P(N,n,1) (F(n, k) = (K = 1) (Q(N, n, K) (F (n, k)))

Define
G (n,k):=Q(N,n,K)(F(n, k)),

then

P(N,n1)(F(nk))=(K—-1)G(n,k)=G(n,k+1)— G(n k). (5)
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4. Proof - Step C

We have

Lemma 2
Let Q € C[x, y, z] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n, K) F (n, k) is a rational multiple of F (n, k).

and

G (n,k):= Q(N,n,K)(F (n, k)).
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4. Proof - Step D

Note that
P(N,n,K)#0.
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4. Proof - Step D

Note that
P(N,n,K) #0.

Choose P (N, n, K) with least possible degree in K such that it fulfills
this property and

P(N,n,K)(F (n,k))=0.
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4. Proof - Step D

Note that
P(N,n,K) # 0.

Choose P (N, n, K) such that it fulfills this property and

P(N,n,K)(F (n,k))=0.

Again, write

P(N,n,K)=P(N,n1)+(1—K)Q(N,n K).
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4. Proof - Step D

Again, write

P(N,n,K)=P(N,n1)+(1—K)Q(N,nK).

Assume that

Il
o

P(N,n,1)
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4. Proof - Step D

Again, write

P(N,n,K)=P(N,n1)+ (1 —K)Q(N,n,K).

Assume that

P(N,n,1)

Il
o

and recall that

P(N,n,K)F (n,k)=0
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4. Proof - Step D

Again, write

P(N,n,K)=P(N,n1)+(1—K)Q(N,n K).

Assume that

P(N,n,1)=0

and recall that

P(N,n,K)F (n k) =0.

Thus

G (nk+1)— G(n k)= (K —1)(Q(N,n,K)(F (nk))) = 0.
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4. Proof - Step D

Thus
G(nk+1)—G(nk)=(K—-1)(Q(N,n,K)(F(n k)))=0.
Therefore we find a rational function

_ G(n+1,k)
g(n):= AT

30



4. Proof - Step D

Thus
G(nk+1)—G(nk)=(K-=1)(Q(N,n,K)(F(n,k)))=0.

Therefore we find a rational function

G(n+1,k)

g(n) = G (mK)

Rearranging,
(N —g(n)(G(n k)= 0.

Using, that g is rational, we find a, b € C[n] such that

and
(b(n)N—a(n))G(nk)=0
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4. Proof - Step D

What we have:

G (n,k):=Q(N,n, K)(F (n,k))
P(N,n,K)=P(N,n 1)+ (1 - K)Q(N,n,K)

P (N, n, K) # 0 has minimal degree in K such that
P(N,n,K)(F (n,k)) =0

P(N,n,1)=0

(b(n) N — a(n)) G (n, k) =0
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4. Proof - Step D

Case l: Q=0
Immediately from our assumptions

P(N,n,K)=P(N,n,1)
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4. Proof - Step D

Casel: Q=0
Immediately from our assumptions

P(N,n,K)=P(N,n,1),
but P(N,n,K) #0 and P(N,n,1) =0.
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4. Proof - Step D

Case ll: Q #0
As we found,

(b(n) N —a(n)(Q(N;n,K)(F(n k))) =0

is a nontrivial recurrence for F (n, k).
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4. Proof - Step D

Case ll: Q #0

As we found,
(b(n) N —a(n))(Q(N,n,K)(F(n,k)))=0
is a nontrivial recurrence for F (n, k). Recalling
P(N,n,K)=P(N,n1)+(1—K)Q(N,n,K)

we get a contradiction to the minimality of the degree in K of
P(N,n,K).
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4. Proof - Conclusion

We can conclude that

P(N,n,1)(F (n,k)) = (K —1) G (n, k) is a nontrivial telescoped
recurrence for F (n, k).
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