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1. Setting



1. Setting - Basics

Convention: 0 ∈ N.

We consider a sum of the form

f (n) =
∑
k

F (n, k) ,

for n, k such that the terms F (n, k) are well-defined and hypergeometric.

1



1. Setting - Hypergeometric terms

Recall the following definition:

Definition
A term F (n, k) is a hypergeometric term in both arguments, if

F (n + 1, k)

F (n, k)
and

F (n, k + 1)

F (n, k)

are both rational functions of n and k .
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1. Setting - Goal

Zeilberger’s algorithm makes use of the existence of a telescoped

recurrence, therefore we want to prove that

there exists J ∈ N>0, polynomials (aj)
J
j=0 in C[n], not all zero, and a

term G (n, k) such that

J∑
j=0

aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)
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1. Setting - Goal

Zeilberger’s algorithm makes use of the existence of a telescoped

recurrence, therefore we want to prove that

there exists J ∈ N>0, polynomials (aj)
J
j=0 in C[n], not all zero, and a

term G (n, k) such that

J∑
j=0

aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)

Assuming G has finite support, summing on both sides over k gives

J∑
j=0

aj (n) f (n + j) = 0.
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2. Statement



2. Statement - Precondition

Recall:

Definition
A term F (n, k) is proper hypergeometric if it can be written in the

form

F (n, k) = P (n, k)

∏q
i=1 (ain + bik + ci )!∏r
j=1 (uin + vik + wi )!

xk ,

where x ∈ C, P ∈ C[n, k], ai , bi , uj , vj ∈ Z for all

i ∈ {1, ..., r}, j ∈ {1, ..., q} and r , q ∈ Z≥0.
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2. Statement - Main theorem

Theorem
Let F (n, k) be a proper hypergeometric term. Then there are J ∈ N>0,

polynomials (aj)
J
j=0 in C[n], not all zero, and a function G (n, k) such

that (whenever F (n, k) 6= 0 and all appearing terms of the form

F (n + j , k) are well-defined)

J∑
j=0

aj (n)F (n + j , k) = G (n, k + 1)− G (n, k)

and G(n,k)
F (n,k) is a rational function.
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3. Preparation for the proof



3. Preparation for the proof - Fundamental theorem

Recall the first part of the fundamental theorem:

Theorem
Let F (n, k) be a proper hypergeometric term. Then there exist

I , J ∈ N>0 and polynomials aij ∈ C[n] for i = 0, ..., I , j = 0, ..., J, not all

zero, such that
I∑

i=0

J∑
j=0

aij (n)F (n − j , k − i) = 0

whenever F (n, k) 6= 0 and all appearing terms of the form

F (n − j , k − i) are well-defined and non-zero.
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3. Preparation for the proof - Shift operators

Definition
If p (n) (resp. u (k)) is a term dependent on n (resp. k), then define

N (p (n)) := p (n + 1) and K (u (k)) := u (k + 1) .
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3. Preparation for the proof - Shift operators

Definition
If p (n) (resp. u (k)) is a term dependent on n (resp. k), then define

N (p (n)) := p (n + 1) and K (u (k)) := u (k + 1) .

I will use distributive notation, i.e.(
aNnK k + bK lNm + c

)
(F (n, k)) :=

aNn
(
K k (F (n, k))

)
+ bK l (Nm (F (n, k))) + cF (n, k)

for a, b, c ∈ C, n, k , l ,m ∈ N.
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3. Preparation for the Proof - Lemma 1

Lemma 1
Let P ∈ C[u, v ,w ] be a polynomial. Then there exists a polynomial

Q ∈ C[u, v ,w ] such that

P (u, v ,w) = P (u, v , 1) + (1− w)Q (u, v ,w) .
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3. Preparation for the Proof - Lemma 1 - Proof

Proof
Let P ∈ C[u, v ,w ] be a polynomial. Its Taylor series in w = 1 is

∞∑
n=0

∂nP
∂wn (u, v , 1)

n!
(w − 1)n ,

a finite sum (since P is a polynomial). Thus there exists a polynomial

Q ∈ C[u, v ,w ] such that

P (u, v ,w) = P (u, v , 1) + (1− w)Q (u, v ,w) ,

i.e. choose

Q (u, v ,w) := −

( ∞∑
n=1

∂nP
∂wn (u, v , 1)

n!
(w − 1)n−1

)
.

�
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3. Preparation for the Proof - Lemma 2

Lemma 2
Let Q ∈ C[x , y , z ] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n,K )F (n, k) is a rational multiple of F (n, k).
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3. Preparation for the Proof - Lemma 2 - Proof

Lemma 2
Let Q ∈ C[x , y , z ] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n,K )F (n, k) is a rational multiple of F (n, k).

Proof
Let F (n, k) be a hypergeometric term in both arguments, fulfilling the

conditions above, and Q ∈ C[x , y , z ]. Then Q(N,n,K)F (n,k)
F (n,k) can be written

in the form ∑
(i,j)∈A

aij (n)
F (n + i , k + j)

F (n, k)

for some finite A ⊂ N2 and aij ∈ C[n] for all (i , j) ∈ A.
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3. Preparation for the Proof - Lemma 2 - Proof

Let F (n, k) be a hypergeometric term in both arguments and

Q ∈ C[x , y , z ]. Then Q(N,n,K)F (n,k)
F (n,k) can be written in the form

∑
(i,j)∈A

aij (n)
F (n + i , k + j)

F (n, k)

for some finite A ⊂ N2 and aij ∈ C[n] for all (i , j) ∈ A.

Note that for each (i , j) ∈ A

F (n + i , k + j) =
F (n + i , k + j)

F (n + i − 1, k + j)
F (n + i − 1, k + j)

and F (n+i,k+j)
F (n+i−1,k+j) is a rational function.
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3. Preparation for the Proof - Lemma 2 - Proof

Note that for each (i , j) ∈ A

F (n + i , k + j) =
F (n + i , k + j)

F (n + i − 1, k + j)
F (n + i − 1, k + j)

and F (n+i,k+j)
F (n+i−1,k+j) is a rational function.

Thus (by iterating this procedure) there is some rational function R (n, k)

such that

F (n + i , k + j) = R (n, k)F (n, k + j) .
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3. Preparation for the Proof - Lemma 2 - Proof

Thus (by iterating this procedure) there is some rational function R (n, k)

such that

F (n + i , k + j) = R (n, k)F (n, k + j) .

With the same argument as before, we find also a rational function

S (n, k) such that

F (n, k + j) = S (n, k)F (n, k) .

Thus
F (n + i , k + j)

F (n, k)
= R (n, k)S (n, k) .

�
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4. Proof



4. Proof - Strategy

A Take the provided 2-variable recurrence from the fundamental

theorem.

B Reorder the terms such that we get a recurrence in the desired form

which is independent of k .

C Show (from this form) that the provided function G (n, k) is a

rational multiple of F (n, k).

D Prove by contradiction that the found recurrence is nontrivial.
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4. Proof - Step A

Let F (n, k) be a proper hypergeometric term. Then, using the first part

of the fundamental theorem, there exist I , J ∈ N>0 and polynomials

aij ∈ C[n] for i ∈ {0, ..., I}, j ∈ {0, ..., J}, not all zero, such that

I∑
i=0

J∑
j=0

aij (n)F (n + j , k + i) = 0

whenever F (n, k) 6= 0 and all of the values F (n + j , k + i) are

well-defined.
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4. Proof - Step A

Let F (n, k) be a proper hypergeometric term. Then, using the first part

of the fundamental theorem, there exist I , J ∈ N>0 and polynomials

aij ∈ C[n] for i ∈ {0, ..., I}, j ∈ {0, ..., J}, not all zero, such that

I∑
i=0

J∑
j=0

aij (n)F (n + j , k + i) = 0 (1)

whenever F (n, k) 6= 0 and all of the values F (n + j , k + i) are

well-defined.

Using the notion of shift operators, (1) can be written in the form

P (N, n,K ) (F (n, k)) = 0 (2)

for some polynomial P ∈ C[u, v ,w |.
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4. Proof - Step B

It’s possible to find a polynomial Q ∈ C[u, v ,w ] such that

P (u, v ,w) = P (u, v , 1) + (1− w)Q (u, v ,w) . (3)
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4. Proof - Step B

It’s possible to find a polynomial Q ∈ C[u, v ,w ] such that

P (u, v ,w) = P (u, v , 1) + (1− w)Q (u, v ,w) .

Plugging this into (2) yields

P (N, n, 1) (F (n, k)) + (1− K ) (Q (N, n,K ) (F (n, k))) = 0

which is equivalent to

P (N, n, 1) (F (n, k)) = (K − 1) (Q (N, n,K ) (F (n, k))) . (4)
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4. Proof - Step B

P (N, n, 1) (F (n, k)) = (K − 1) (Q (N, n,K ) (F (n, k)))

Define

G (n, k) := Q (N, n,K ) (F (n, k)) ,

then

P (N, n, 1) (F (n, k)) = (K − 1)G (n, k) = G (n, k + 1)− G (n, k) . (5)
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4. Proof - Step C

We have

Lemma 2
Let Q ∈ C[x , y , z ] and F (n, k) be a hypergeometric term in both

arguments. Then Q (N, n,K )F (n, k) is a rational multiple of F (n, k).

and

G (n, k) := Q (N, n,K ) (F (n, k)) .
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4. Proof - Step D

Note that

P (N, n,K ) 6≡ 0.
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4. Proof - Step D

Note that

P (N, n,K ) 6≡ 0.

Choose P (N, n,K ) with least possible degree in K such that it fulfills

this property and

P (N, n,K ) (F (n, k)) = 0.
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4. Proof - Step D

Note that

P (N, n,K ) 6≡ 0.

Choose P (N, n,K ) such that it fulfills this property and

P (N, n,K ) (F (n, k)) = 0.

Again, write

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K ) .
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4. Proof - Step D

Again, write

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K ) .

Assume that

P (N, n, 1) ≡ 0

.
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4. Proof - Step D

Again, write

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K ) .

Assume that

P (N, n, 1) ≡ 0

and recall that

P (N, n,K )F (n, k) = 0

.
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4. Proof - Step D

Again, write

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K ) .

Assume that

P (N, n, 1) ≡ 0

and recall that

P (N, n,K )F (n, k) = 0.

Thus

G (n, k + 1)− G (n, k) = (K − 1) (Q (N, n,K ) (F (n, k))) = 0.
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4. Proof - Step D

Thus

G (n, k + 1)− G (n, k) = (K − 1) (Q (N, n,K ) (F (n, k))) = 0.

Therefore we find a rational function

g (n) :=
G (n + 1, k)

G (n, k)
.
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4. Proof - Step D

Thus

G (n, k + 1)− G (n, k) = (K − 1) (Q (N, n,K ) (F (n, k))) = 0.

Therefore we find a rational function

g (n) :=
G (n + 1, k)

G (n, k)
.

Rearranging,

(N − g (n)) (G (n, k)) = 0.

Using, that g is rational, we find a, b ∈ C[n] such that

g (n) =
a (n)

b (n)

and

(b (n)N − a (n))G (n, k) = 0
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4. Proof - Step D

What we have:

G (n, k) := Q (N, n,K ) (F (n, k))

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K )

P (N, n,K ) 6≡ 0 has minimal degree in K such that

P (N, n,K ) (F (n, k)) = 0

P (N, n, 1) ≡ 0

(b (n)N − a (n))G (n, k) = 0
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4. Proof - Step D

Case I: Q ≡ 0
Immediately from our assumptions

P (N, n,K ) ≡ P (N, n, 1)
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4. Proof - Step D

Case I: Q ≡ 0
Immediately from our assumptions

P (N, n,K ) ≡ P (N, n, 1) ,

but P (N, n,K ) 6≡ 0 and P (N, n, 1) ≡ 0.
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4. Proof - Step D

Case II: Q 6≡ 0
As we found,

(b (n)N − a (n)) (Q (N, n,K ) (F (n, k))) = 0

is a nontrivial recurrence for F (n, k).
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4. Proof - Step D

Case II: Q 6≡ 0
As we found,

(b (n)N − a (n)) (Q (N, n,K ) (F (n, k))) = 0

is a nontrivial recurrence for F (n, k). Recalling

P (N, n,K ) = P (N, n, 1) + (1− K )Q (N, n,K )

we get a contradiction to the minimality of the degree in K of

P (N, n,K ).
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4. Proof - Conclusion

We can conclude that

P (N, n, 1) (F (n, k)) = (K − 1)G (n, k) is a nontrivial telescoped

recurrence for F (n, k).
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