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1 Introduction
This algorithm allows us to do indefinite hypergeometric sums in simple closed form, or if
it cannot be done in a given case, it proves the impossibility of it. Furthermore, it is vital
in the execution of the WZ algorithm (Chapter 7) and in the operation of the creative
telescoping algorithm.
More precisely, we are looking at a sum

sn =
n−1∑
k=0

tk

where tk is a hypergeometric term not depending on n. We then have that

r(k) =
tk+1

tk

is a rational function of k. Our goal is to express sn in a closed form, i.e. without the
summation sign.
Note that sn+1−sn = tn. Thus, we want to know if given tn there exists a hypergeometric
term zn s.t.

zn+1 − zn = tn (1)

If we can find such a zn then we will have expressed the sum in the simple form of a
single hypergeometric term plus a constant.
Note that any such zn will have the form

zn = zn+1 + tn+1 = zn−2 + tn−2 + tn−1 = ... = z0 +
n−1∑
k=0

tk = sn + c

where c = z0 is a constant.

Remark: Gosper’s algorithm boils down to the following question: Given a hyperge-
ometric term tn, is there a hypergeometric term zn satisfying zn+1 − zn = tn? If the
answer is yes, then sn can be expressed as a hypergeometric term plus a constant and the
algorithm outputs such a term. In that case tn is called Gosper-summable. If Gosper’s
algorithm returns a negative answer, that proves that it has no hypergeometric solution.

Remark: In the following, all our arithmetic operations will take place in some field K
of characteristic 0.

2 Hypergeometrics to rationals to polynomials
Let zn be a hypergeometric term satisfying (1). Then we have

zn = tn ·
1

zn+1

zn
− 1

which is a rational function of n. Let now

zn = y(n)tn
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where y(n) is a rational function of n. Substituting this for zn in (1) shows us that y(n)
satisfies

r(n)y(n+ 1)− y(n) = 1 (2)

where r(n) = tn+1

tn
. We have thus reduced the problem of finding hypergeometric solutions

of (1) to finding rational solutions of (2).
To reduce the problem further to that of finding polynomial solutions, assume that we
can rewrite

r(n) =
a(n)c(n+ 1)

b(n)c(n)
(3)

where a(n), b(n), c(n) are polynomials in n and it holds that

gcd(a(n), b(n+ h)) = 1 (4)

for all nonnegative integers h.

Remark: We will see later that a factorization of this type exists for every rational
function, for now let’s just assume it is true.

We are looking for a nonzero rational solution of (2) in the form

y(n) =
b(n− 1)x(n)

c(n)
(5)

where x(n) is an unknown rational function of n. As we substitute (3) and (5) into (2)
we see that x(n) satisfies

a(n)x(n+ 1)− b(n− 1)x(n) = c(n) (6)

Theorem: Let a(n), b(n), c(n) be polynomials satisfying gcd(a(n), b(n+ h)) = 1 for all
nonnegative integers h. If x(n) is a rational function of n satisfying (6), then x(n) is a
polynomial in n.

Proof. Outline of the proof: We will prove this by contradiction. Let x(n) = f(n)/g(n)
where f(n) and g(n) are relatively prime polynomials in n. Then we can rewrite (6) as

a(n)f(n+ 1)g(n)− b(n− 1)f(n)g(n+ 1) = c(n)g(n)g(n+ 1)

Let us now suppose that the conclusion of the theroem is false. If x(n) is not a polynomial,
this means that g(n) is a non-constant polynomial. Let now N be the largest nonnegative
integer st. gcd(g(n), g(n + N)) is a non-constant polynomial and let u(n) be a non-
constant irreducible common divisor of g(n) and g(n + N). We can then show that
u(n+ 1)|b(n+N) and that u(n+ 1)|a(n). However, this would mean that u(n+ 1) is a
non-constant factor of both a(n) and b(n+N) which contradicts (4). Hence, g(n) has to
be constant, and so x(n) is a polynomial in n.

Therefore we have reduced the problem of finding hypergeometric solutions of (1) to
finding polynomial solutions of (6). If x(n) is a nonzero polynomial solution of (6), then

zn =
b(n− 1)x(n)

c(n)
tn

is a hypergeometric solution of (1) and vice versa.
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Remark: Let us quickly take a look at the general outline of the Gosper’s algorithm
that we have learned so far.

Gosper’s Algorithm Outline

INPUT: A hypergeometric term tn
OUTPUT: A hypergeometric term zn satisfying (1) if one exists;

∑n−1
k=0 tk otherwise.

1. Form the ration r(n) = tn+1/tn which is a rational function of n.
2. Write r(n) = a(n)c(n+1)

b(n)c(n)
where a(n), b(n), c(n) are polynomials satisfying (4).

3. Find a nonzero polynomial solution x(n) of (6) if one exists; otherwise return∑n−1
k=0 tk and stop.

4. Return b(n−1)x(n)
c(n)

tn and stop.

Remark: The sum we are looking for is sn = zn− zk0 where k0 is the lower summation
bound.

Example: Let

Sm =
m∑
k=0

k22k

Can this sum be expressed in closed form? Let’s work through the algorithm together.
We see immediately that tn = n22n. Thus we have that

r(n) =
(n+ 1)22n+1

n22n
=

2(n+ 1)2

n2

Here, the choices for a(n), b(n), c(n) are obvious, namely a(n) = 2, b(n) = 1, c(n) = n2.
It is easy to see that this choice satisfies (3) and (4). Equation (6) thus becomes

2x(n+ 1)− x(n) = n2

The polynomial x(n) satisfying this equation is not easy to be found. We will cover how
to do this next week in the chapter on Step 3. For now, let’s just assume we have already
found the correct x(n): x(n) = n(n− 4) + 6. One can easily check that this x(n) satisfies
our equation above. Hence,

zn =
1 · x(n) · n22n

n2
= 2n(n(n− 4) + 6)

which satisfies zn+1−zn = tn. Finally, sm = zm−z0 = 2m(m2−4m+6)−6, so the closed
form we are looking for is

Sm = sm+1 = 2m+1(m2 − 2m+ 3)− 6

3 The full algorithm: Step 2
We will now take a closer look at how to obtain the factorization (3) of a given rational
function r(n). Let r(n) = f(n)/g(n) where f(n) and g(n) are relatively prime polyno-
mials. If gcd(f(n), g(n + h)) = 1 then we can take a(n) = f(n), b(n) = g(n), c(n) = 1
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and we have the desired factorization. Otherwise let u(n) be a non-constant common
factor of f(n) and g(n + h) for some nonnegative integer h. Let f(n) = f̄(n)u(n) and
g(n) = ḡ(n)u(n− h). Then

r(n) =
f(n)

g(n)
=

f̄(n)u(n)

ḡ(n)u(n− h)

Defintion: Given a polynomial p(x) = anx
n + ... + a0 of degree n with roots ai for

i ∈ [1, n] and a polynomial q(x) = bmx
m + ...+ b0 of degree m with roots bj for j ∈ [1,m]

the resultant is defined by

R(p, q) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj)

Alternative Definition: Note that a more useful method when working with comput-
ers is defining the resultant as the determinant of the Sylvester Matrix of two polynomials.
Let p(x) and q(x) be as above. The Sylvester Matrix is a square matrix of dimension
n + m, formed by filling the matrix (beginning with the upper left corner) with the co-
efficients of p(x), then shifting down one row and one column to the right and filling in
the coefficients starting there until they hit the right side. The process is then repeated
for the coefficients of q(x).

a0 a1 a2 ... an 0 ... 0
0 a0 a1 ... an−1 an ... 0
... ... ... ... ... ... ... ...
0 0 0 a0 ... ... an−1 an
b0 b1 b2 ... bm 0 ... 0
0 b0 b1 ... bm−1 bm ... 0
... ... ... ... ... ... ... ...
0 0 0 b0 ... ... bm−1 bm


How do we know when (4) is satisfied or how do we find the values of h that violate
it otherwise? Let R(h) denote the resultant of f(n) and g(n + h). Then R(h) is a
polynomial in h with the property that R(α) = 0 if and only if gcd(f(n), g(n + α)) is
not a constant polynomial. Therefore the values of h that violate (4) are precisely the
nonnegative integer zeros of R(h).

Remark: Let us now take a closer look at step 2 of Gosper’s Algorithm.
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Gosper’s Algorithm Step 2

2.1. Let r(n) = Z f(n)
g(n)

where f, g are monic relatively prime polynomials and Z is a
constant.

R(h) := Resultantn(f(n), g(n+ h));
Let S = {h1, h2, ..., hN} be the set of nonnegative integer zeros of R(h). (N ≥
0, 0 ≤ h1 < h2 < ... < hN).

2.2. p0(n) := f(n); q0(n) := g(n); for j = 1, 2, ..., N do
sj(n) := gcd(pj−1(n), qj−1(n+ hj));
pj(n) := pj−1(n)/sj(n);
qj(n) := qj−1(n)/sj(n− hj).
a(n) := ZpN(n);
b(n) := qN(n);
c(n) :=

∏N
i=1

∏hi

j=1 si(n− j).

Example: Let us take the same example as before, where r(n) = 2(n+1)2

n2 . We then take
Z = 2, f(n) = (n + 1)2, g(n) = n2 and we see that f(n) and g(n) are relatively prime
polynomials. Then

R(h) = Resultantn(f(n), g(n+ h)) = (h− 1)4

Clearly, the only nonnegative integer zero is h = 1. Hence, following the algorithm step
by step we get that s1(n) = (n+ 1)2, p1(n) = 1, qi(n) = 1 which gives us a(n) = 2, b(n) =
1, c(n) = n2, and this is, as we have seen before, exactly what we wanted.

Remark: We can compute directly that the three polynomials produced by this algo-
rithm satisfy condition (3). To show that they also satisfy condition (4), we can note
that by definition of pj, qj, and sj,

gcd(pk(n), qk(n+ hk)) = gcd(
pk−1(n)

sk(n)
,
qk−1(n+ hk)

sk(n)
) = 1

for all k s.t. 1 ≤ k ≤ N .
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