

Formulas we'll use (helpful to write them down or take a screenshot)

$$z_{n+1} - z_n = t_n$$

$$r(n)y(n+1) - y(n) = 1$$

$$r(n) = \frac{a(n)c(n+1)}{b(n)c(n)}$$

$$gcd(a(n), b(n+h)) = 1$$

$$y(n) = \frac{b(n-1)x(n)}{c(n)}$$

$$a(n)x(n+1) - b(n-1)x(n) = c(n)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

1 Introduction

This algorithm allows us to do indefinite hypergeometric sums in simple closed form, or proves the impossibility of it. Let

$$s_n = \sum_{k=0}^{n-1} t_k$$

where t_k is a hypergeometric term not depending on n. Then

$$r(k) = \frac{t_{k+1}}{t_k}$$

is a rational function of k. Goal: express s_n in a closed form.

Note: $s_{n+1} - s_n = t_n$. We want to know if given t_n there exists a hypergeometric term z_n s.t.

$$z_{n+1} - z_n = t_n \tag{1}$$

Note that any such z_n will have the form

$$z_n = z_{n-1} + t_{n-1} = z_{n-2} + t_{n-2} + t_{n-1} = \dots = z_0 + \sum_{k=0}^{n-1} t_k = s_n + c$$

where $c = z_0$ is a constant.

Remark: Given a hypergeometric term t_n , is there a hypergeometric term z_n satisfying $z_{n+1} - z_n = t_n$?

If yes, then s_n can be expressed as a hypergeometric term plus a constant and the algorithm outputs such a term. In that case t_n is called Gosper-summable. If not, then that proves that it has no hypergeometric solution.

2 Hypergeometrics to rationals to polynomials

Let z_n be a hypergeometric term satisfying (1). Then

$$z_n = t_n \cdot \frac{1}{\frac{z_{n+1}}{z_n} - 1}$$

is a rational function of n. Let

$$z_n = y(n)t_n$$

where y(n) is a rational function of n. Substituting this for z_n in (1) shows us that y(n) satisfies

$$r(n)y(n+1) - y(n) = 1 (2)$$

where $r(n) = \frac{t_{n+1}}{t_n}$. We have thus reduced the problem of finding hypergeometric solutions of (1) to finding rational solutions of (2).

Assume that we can rewrite

$$r(n) = \frac{a(n)c(n+1)}{b(n)c(n)} \tag{3}$$

where a(n), b(n), c(n) are polynomials in n and it holds that

$$gcd(a(n), b(n+h)) = 1 (4)$$

for all nonnegative integers h.

We are looking for a nonzero rational solution of (2) in the form

$$y(n) = \frac{b(n-1)x(n)}{c(n)} \tag{5}$$

where x(n) is an unknown rational function of n. As we substitute (3) and (5) into (2) we see that x(n) satisfies

$$a(n)x(n+1) - b(n-1)x(n) = c(n)$$
(6)

Theorem: Let a(n), b(n), c(n) be polynomials satisfying gcd(a(n), b(n+h)) = 1 for all nonnegative integers h. If x(n) is a rational function of n satisfying (6), then x(n) is a polynomial in n.

Proof. Outline of the proof: Proof by contradiction. Let x(n) = f(n)/g(n), f(n) and g(n) relatively prime polynomials in n. Rewrite (6) as

$$a(n)f(n+1)g(n) - b(n-1)f(n)g(n+1) = c(n)g(n)g(n+1)$$

x(n) non-polynomial $\implies g(n)$ non-constant polynomial

Let N be st. gcd(g(n), g(n+N)) a non-constant polynomial, let u(n) be a non-constant irreducible common divisor of g(n) and g(n+N).

Then u(n+1)|b(n+N) and u(n+1)|a(n). $\implies u(n+1)$ is a non-constant factor of both a(n) and b(n+N) \implies contradicts (4) $\implies x(n)$ polynomial in n.

If x(n) is a nonzero polynomial solution of (6), then

$$z_n = \frac{b(n-1)x(n)}{c(n)}t_n$$

is a hypergeometric solution of (1) and vice versa.

Gosper's Algorithm Outline

INPUT: A hypergeometric term t_n

OUTPUT: A hypergeometric term z_n satisfying (1) if one exists; $\sum_{k=0}^{n-1} t_k$ otherwise.

- 1. Form the ration $r(n) = t_{n+1}/t_n$ which is a rational function of n.
- 2. Write $r(n) = \frac{a(n)c(n+1)}{b(n)c(n)}$ where a(n), b(n), c(n) are polynomials satisfying (4).
- 3. Find a nonzero polynomial solution x(n) of (6) if one exists; otherwise return $\sum_{k=0}^{n-1} t_k$ and stop.
- 4. Return $\frac{b(n-1)x(n)}{c(n)}t_n$ and stop.

Example: Let

$$S_m = \sum_{k=0}^m k^2 2^k$$

Let $t_n = n^2 2^n$. Then

$$r(n) = \frac{(n+1)^2 2^{n+1}}{n^2 2^n} = \frac{2(n+1)^2}{n^2}$$

The choices for a(n), b(n), c(n) are obvious, namely $a(n) = 2, b(n) = 1, c(n) = n^2$. It is easy to see that this choice satisfies (3) and (4). Equation (6) thus becomes

$$2x(n+1) - x(n) = n^2$$

Let x(n) = n(n-4) + 6. Hence,

$$z_n = \frac{1 \cdot x(n) \cdot n^2 2^n}{n^2} = 2^n (n(n-4) + 6)$$

which satisfies $z_{n+1} - z_n = t_n$. Finally, $s_m = z_m - z_0 = 2^m (m^2 - 4m + 6) - 6$, so the closed form we are looking for is

$$S_m = S_{m+1} = 2^{m+1}(m^2 - 2m + 3) - 6$$

3 The full algorithm: Step 2

Let r(n) = f(n)/g(n) where f(n) and g(n) are relatively prime polynomials. If gcd(f(n), g(n+h)) = 1 then a(n) = f(n), b(n) = g(n), c(n) = 1 gives the desired factorization.

Otherwise let u(n) be a non-constant common factor of f(n) and g(n+h) for some nonnegative integer h. Let $f(n) = \bar{f}(n)u(n)$ and $g(n) = \bar{g}(n)u(n-h)$. Then

$$r(n) = \frac{f(n)}{g(n)} = \frac{\bar{f}(n)u(n)}{\bar{g}(n)u(n-h)}$$

Defintion: Given a polynomial $p(x) = a_n x^n + ... + a_0$ of degree n and a polynomial $q(x) = b_m x^m + ... + b_0$ of degree m, the resultant is defined as the determinant of their Sylvester Matrix.

Let R(h) denote the resultant of f(n) and g(n+h). Then R(h) is a polynomial in h with the property that $R(\alpha) = 0$ if and only if $gcd(f(n), g(n+\alpha))$ is not a constant polynomial. \Longrightarrow values of h that violate (4) are the nonnegative integer zeros of R(h).

Gosper's Algorithm Step 2

2.1. Let $r(n) = Z\frac{f(n)}{g(n)}$ where f, g are monic relatively prime polynomials and Z is a constant.

```
R(h) := Resultant_n(f(n), g(n+h));
Let S = \{h_1, h_2, ..., h_N\} be the set of nonnegative integer zeros of R(h). (N \ge 0, 0 \le h_1 < h_2 < ... < h_N).
```

```
2.2. p_0(n) := f(n); q_0(n) := g(n); for j = 1, 2, ..., N do s_j(n) := gcd(p_{j-1}(n), q_{j-1}(n + h_j)); p_j(n) := p_{j-1}(n)/s_j(n); q_j(n) := q_{j-1}(n)/s_j(n - h_j). a(n) := Zp_N(n); b(n) := q_N(n); c(n) := \prod_{i=1}^N \prod_{j=1}^{h_i} s_i(n - j).
```

Example: Same example as before, $r(n) = \frac{2(n+1)^2}{n^2}$. Take Z = 2, $f(n) = (n+1)^2$, $g(n) = n^2$ and note that f(n) and g(n) are relatively prime polynomials. Then

$$R(h) = Resultant_n(f(n), g(n+h)) = (h-1)^4$$

Clearly, the only nonnegative integer zero is h = 1. Hence, $s_1(n) = (n+1)^2$, $p_1(n) = 1$, $q_i(n) = 1$ which gives us a(n) = 2, b(n) = 1, $c(n) = n^2$.

Remark: We can compute directly that the three polynomials produced by this algorithm satisfy condition (3). To show that they also satisfy condition (4), we can note that by definition of p_j, q_j , and s_j ,

$$gcd(p_k(n), q_k(n+h_k)) = gcd(\frac{p_{k-1}(n)}{s_k(n)}, \frac{q_{k-1}(n+h_k)}{s_k(n)}) = 1$$

for all k s.t. $1 \le k \le N$.

Gosper's Algorithm Example

```
Load the module "gosper":
(Debug) In[198]:= << "gosper.m"
        N.B.: Besides GosperSum and GosperFunction, this
        package also contains FactorialSimplify (alias FS), and WZ.
Find the ratio r(n):
(Debug) In[199]:= GetRatio[n^2*2^n, n]
(Debug) Out[199]=
        2(1+n)^{2}
Find y(n) = b(n-1)x(n)/c(n):
(Debug) ln[200]:= GosperFunction[2 (1 + n) ^2/n^2, n]
(Debug) Out[200]=
        6 - 4 n + n^2
Multiply this y(n) with t_n to get z_n:
(Debug) ln[201]:= n^2 * 2^n * Gosper Function[2 (1+n)^2/n^2, n]
(Debug) Out[201]=
        2^{n} (6 - 4 n + n^{2})
Find our Sum by setting S_n=s_(n+1)=z_(n+1)-z_0:
(Debug) ln[202] = 2^{n}(n+1)(6-4(n+1)+(n+1)^{2}-2^{0}(6-4*0+0^{2})
(Debug) Out[202]=
        -6 + 2^{1+n} (6 - 4 (1 + n) + (1 + n)^{2})
(Debug) In[203]:= Simplify[%]
(Debug) Out[203]=
        -6 + 2^{1+n} (3 - 2 n + n^2)
Find the Gosper Sum directly:
(Debug) ln[204] := GosperSum[k^2*2^k, \{k, 0, n\}]
(Debug) Out[204]=
        -6 + 2^{1+n} (3 - 2 n + n^2)
```