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Gosper’s Algorithm (Part 1)

Vanessa Hauri



Formulas we’ll use (helpful to write them down
or take a screenshot)

Zn+l — "n = th (1)
rin)yin+1)—y(n) =1 (2)
| _a(n)e(n+1) ,

rn) = b(n)c(n) (3)

ged(a(n),b(n+h)) =1 (4)
b(n — 1)x(n

ylon) = 2 (5)

a(n)r(n+1) —=b(n—1)x(n) = ¢(n) (6)



1 Introduction

This algorithm allows us to do indefinite hypergeometric sums in simple closed form, or
proves the impossibility of it. Let

n—

=
Sn = L
k=0
where %, is a hypergeometric term not depending on n. Then
fk—i—l
rik)=——
47

is a rational function of k. Goal: express s,, in a closed form.
Note: s,.1 — s, = t,. We want to know if given t,, there exists a hypergeometric term z,
st

“n4l T An = In (1)



Note that any such z,, will have the form
Zp = Zp—1 tﬂ—l = Zp—2 + f‘n—? + 1|L'ﬂ.—l =..=20+ Z fﬁ; = 8p +C

where ¢ = 7 is a constant.

Remark: Given a hypergeometric term %,,, is there a hypergeometric term z,, satisfying
:’ﬂ-l—]. = :Jﬂ — fn‘?

If yes, then s,, can be expressed as a hypergeometric term plus a constant and the algo-
rithm outputs such a term. In that case ¢, is called Gosper-summable. If not, then that
proves that it has no hypergeometric solution.



2 Hypergeometrics to rationals to polynomials

Let z, be a hypergeometric term satisfying (1). Then

1

“n

Zn = fn.. :

is a rational function of n. Let
Zn = y('} ?) tn
where y(n) is a rational function of n. Substituting this for z,, in (1) shows us that y(n)
satisfies
r(n)y(n +1) —y(n) = 1 (2)

-{- T ~ 4 . . .
where r(n) = <. We have thus reduced the problem of finding hypergeometric solutions
T - ’ -

of (1) to finding rational solutions of (2).



Assume that we can rewrite
a(n)c(n + 1)

) = b(n)e(n) 3)

where a(n).b(n),c(n) are polynomials in n and it holds that

ged(a(n),b(n +h)) =1 (4)

for all nonnegative integers h.

We are looking for a nonzero rational solution of (2) in the form

b(n — 1)x(n)
y(n) = (5)
c(n)
where x(n) is an unknown rational function of n. As we substitute (3) and (5) into (2)
we see that x(n) satisfies

(31

a(n)z(n+1) —b(n— 1)z(n) = c(n) (6)



Theorem: Let a(n),b(n).c(n) be polynomials satistying ged(a(n).b(n+ 1)) =1 for all
nonnegative integers h. If x(n) is a rational function of n satisfying (6), then xz(n) is a
polynomial in n.

Proof. Outline of the proof: Proof by contradiction. Let z(n) = f(n)/g(n), f(n) and
g(n) relatively prime polynomials in n. Rewrite (6) as

a(n)f(n+1)g(n) —b(n—1)f(n)g(n+1) =c(n)g(n)g(n+1)



x(n) non-polynomial = g¢(n) non-constant polynomial

Let N be st. ged(g(n), g(n + N)) a non-constant polynomial, let u(n) be a non-constant
irreducible common divisor of g(n) and g(n + N).

Then u(n + 1)[b(n + N) and u(n + 1)|a(n). = wu(n + 1) is a non-constant factor of
both a(n) and b(n + N) = contradicts (4) = x(n) polynomial in n. []



If #(n) is a nonzero polynomial solution of (6), then

~ b(n—1)x(n)

Zn = L
mn c (}'] ) T

is a hypergeometric solution of (1) and vice versa.



Gosper’s Algorithm Outline

INPUT: A hypergeometric term %,
i ! . . . . . i —]_ .
OUTPUT: A hypergeometric term 2, satisfying (1) if one exists; >, —, t, otherwise.
1. Form the ration r(n) =t,,./t,, which is a rational function of n.
n+1/tn
2. Write r(n) = % where a(n), b(n), ¢(n) are polynomials satisfying (4).
3. Find a nonzero polynomial solution z(n) of (6) if one exists; otherwise return
n—1
> o tr and stop.

4. Return WT” and stop.




Example: Let

m

o Z 2ok

=0

Let 15 = n?2®. Then |
(n+ 1)22"* 2(n+ 1)
i (fﬂ,) s r > f)n = : ?

The choices for a(n),b(n),c(n) are obvious, namely a(n) = 2,b(n) = 1,¢(n) = n* It is
casy to see that this choice satisfies (3) and (4). Equation (6) thus becomes

2z(n+ 1) — x(n) = n?



Let x(n) =n(n —4) + 6. Hence,

3

1-z(n) - n22" N
2, = ( )‘) = 2"(n(n —4) + 6)
n*

5 v o . ; 2 ¥ s
which satisfies 2,41 — 2, = t,,. Finally, s,, = 2z, — 20 = 2™ (m~—4m+6) — 6, so the closed
form we are looking for is

S = S = 2™ (m* —9m+3) -6



3 The full algorithm: Step 2

Let r(n) = f(n)/g(n) where f(n) and g(n) are relatively prime polynomials.
If ged(f(n),g(n +h)) = 1 then a(n) = f(n),b(n) = g(n),c(n) = 1 gives the desired
factorization.
Otherwise let u(n) be a non-constant common factor of f(n) and g(n + h) for some
nonnegative integer h. Let f(n) = f(n)u(n) and g(n) = g(n)u(n — k). Then
vy = L) _ (o
g(n)  gn)u(n—nh)




Defintion: Given a polynomial p(x) = a,x" + ... + ap of degree n and a polynomial
q(x) = bpx™ + ... + by of degree m, the resultant is defined as the determinant of their
Sylvester Matrix.

Let R(h) denote the resultant of f(n) and g(n + h). Then R(h) is a polynomial in h
with the property that R(a) = 0 if and only if ged(f(n).g(n + «)) is not a constant
polynomial. = values of h that violate (4) are the nonnegative integer zeros of R(h).



Gosper’s Algorithm Step 2

2.1. Let v(n) = Z JUn W here f.g are monic relatively prime polynomials and Z is a
constant.
R(h) := Resultant,(f(n),g(n+ h));
Let S = {hy, ha,...,hn} be the set of nonnegative integer zeros of R(h). (N >
0,0 < bi <€ hg = o < B )
2.2. po(n) := f(n); qU(n) = gin); for y=1,2,... Ndo
si(n) == ged(p;—1(n), gi—i(n + h;));
pj(n) == pj—1(n)/s;j(n);
qj(n) := gj—1(n)/sj(n— hy).
a(n) := Zpn(n);
b(n) := ql-\-f(’n)'
e(n) = TTiss T si(n = 5).




Example: Same example as before, r(n) = (”H . Take Z = 2, f(n) = (n+1)%,g(n)
n? and note that f(n) and g(n) are relatively p1 ime polynomials. Then

R(h) = Resultant,(f(n),g(n +h)) = (h —1)*

Clearly, the only nonnegative integer zero is h = 1. Hence, si(n) = (n + 1)%, pi(n) =
1,¢;(n) = 1 which gives us a(n) = 2,b(n) = 1,¢(n) = n?.



Remark: We can compute directly that the three polynomials produced by this algo-
rithm satisfy condition (3). To show that they also satisfy condition (4), we can note
that by definition of p;.q;, and s;,

Pr—1(n) qe_1(n + hy)

sp(n) — sp(n) j=4

ged(pi(n), gu(n + hy)) = ged(

forall kst. 1<k<N.



Gosper’s Algorithm Example

Load the module “gosper”:

(Debug) In[198]:= << "gosper.m"

N.B.: Besides GosperSum and GosperFunction, this

package also contains FactorialSimplify (alias FS), and WZ.
Find the ratio r(n):

(Debug) In[199]= GetRatio[n~2x27n, n]

(Debug) Out[199]=
2 (1+n)?

I"I2

Find y(n) = b(n-1)x(n)/c(n):

(Debug) In[2001= GosperFunction[2 (1 +n)~2/n"2, n]
(Debug) Out[200]=
6-4n+n?

I"I2

Multiply this y(n) with t n to get z n:

(Debug) In201]= N*2%2”~nxGosperFunction[2 (1+n)”~2/n"2, n]

(Debug) Out[201]=
2" (6-4n+n?)
Find our Sum by setting S_n=s_(n+l)=z_(n+l)-z_0:

(Debug) In2021= 22 (N +1) (6-4 (N+1) + (N+1)~2) =270 (6-4%0 +0"2)
(Debug) Out[202]=
-6+2" (6-4 (1+n) + (1+n)?)

(Debug) In[2031:= Simplify [%]

(Debug) Out[203]=
-6+ 2" (3-2n+n?)

Find the Gosper Sum directly:

(Debug) In[204]:= GosperSum[k~2x27k, {k, O, n}]

(Debug) Out[204]=
-6+2"" (3-2n+n?)
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