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1. Informal presentation of the content of the class

Real analysis consists in studying continuity, differentiability, integrals, limits/series of functions from
I ⊆ R (or Rd; in d = 1, usually an interval) to R (or Rd).

complex analysis: we’ll study similar questions for functions f : U → C from U ⊆ C (usually an open
set) to C.
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1.1. Derivative.

Definition 1.1. f : U → C is said to be complex-differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
exists.

(Identical to the real definition.)
(Stronger than the notion of differentiability of a function f : R2 → R2; more detail later.)

Complex-differentiable functions have very different properties from real differentiable functions, as we
will shortly illustrate here.

Consider two classes of functions

Holomorphic functions

f : U → C s.t. f complex-diff. at each point z0 ∈ U
(real analogue: bigger class than the class of C1 func-
tions.)

Analytic functions

f : U → C s.t. around each point z0 in U there
exists an such that

f(z) =
∑
n

an(z − z0)
n.

(real-analogue: smaller class than the class of C∞
functions.)

Theorem 1.2. holomorphic=analytic

1.2. Integrals. Informally, a real integral
∫ b

a
f(t)dt is the ”sum” of the values of a function between a and

b (think of Riemann sums).
But in the complex world, what does between a and b mean? Along the segment [a; b]? This is one option,

but we can do the integral along any path from a to b.
(Volume integrals also exist, e.g., in Stoke’s theorem, but this is not what were doing here.)
→ we will define path integrals

∫
γ
f(t)dt, for any path γ from a to b.

Theorem 1.3. If f : U → C is holomorphic (=analytic) and U a open set “without holes”, then
∫
γ
f(t)dt

only depends of the endpoints of the path γ.

→ to compute a complex integral, we can choose a ”good” path. Even useful to compute real integrals!

Part A. Preliminaries

2. Complex numbers

(The content of this section should be well-known; here to fix notation and show how to do everything
formally.)

Definition 2.1. C = {(x, y);x, y ∈ R} with addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and multiplication
(x1, y1) · (x2, y2) = (x1 · x2 − y1 · y2, x1 · y2 + x2 · y1).

Lemma 2.2. C is a field.

Notation i := (0, 1). Then (x, y) := x+ iy. We use the injection R → C implicitly x 7→ (x, 0).

Lemma 2.3. i2 = −1.

Definition 2.4. Let z = x+ iy be a complex number, with x, y ∈ R, then
• Re(z) := x
• Im(z) := y

• |z| =
√
x2 + y2
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• z = x− iy

Proposition 2.5. Let z, w ∈ C. Then

• z + w = z + w;
• −z = −z ;
• z · w = z · w ;
• z−1 = (z)−1 (if z ̸= 0);
• z + z = 2Re(z) z − z = 2i Im(z) ;
• z = z ⇔ z ∈ R ;
• z−1 = z

|z|2 (if z ̸= 0);

• |z · w| = |z| · |w|.

Proposition 2.6 (Triangular inequality). Let z, w ∈ C
|z + w| ≤ |z|+ |w|.

Proposition 2.7 (Polar form). Let z ∈ C. Then there exists r > 0 and φ ∈ R such that z ̸= 0 and

(1) z = r(cosφ+ i sinφ).

(This proposition will be proved later, when we define properly exp, cos and sin).
Furthermore,

• r is uniquely determined by (1). In fact r = |z| (modulus of z).
• φ is NOT uniquely determined by (1). If (1) holds, φ is called an argument (arg(z) = φ) of z.
• If φ1 and φ2 are arguments of z then φ1 − φ2 ∈ 2πZ. As a consequence, any non-zero complex
number has a unique argument φ0 ∈]− π, π]. Then φ0 is called the principal value of the argument,
and denoted by Arg(z) = φ0

Proposition 2.8. Let z, w ∈ C \{0}. If φz and φw are arguments of z and w then φz +φw is an argument
of z · w.

Warning! Even if φz and φw are principal values of the argument z and w , φz + φw is not necessarily
the principal value of the argument of z · w.
It is customary to represent complex numbers as points in the complex plane.

(Drawing)

3. Topology on C

Observe that if we set d(z, w) := |z − w| for z, w ∈ C, this defines a distance on C. Indeed, we have
d(z, w) ∈ R+, the separation property d(z, w) = 0 ⇔ z = w and the triangular inequality: for z1, z2, z3 ∈ C,

d(z1, z3) ≤ d(z1, z2) + d(z2, z3).

Hence C is a metric space. We automatically have the notions of convergent sequences, continuous functions,
open/closed sets,...

Notation for balls/disks

D(z0, r) = {z ∈ C, |z − z0| < r}

D(z0, r) = {z ∈ C, |z − z0| ≤ r}
∂D(z0, r) = {z ∈ C, |z − z0| = r}.

3.1. Convergent sequences.

Definition 3.1. (convergent) A sequence (zn)n≥1 of complex numbers converges towards z ∈ C if for any
ϵ > 0 there exists n0 such that

n ≥ n0 ⇒ |zn − z| ≤ ϵ.

Lemma 3.2. zn
n→∞−−−−→ z if and only if

Re(zn)
n→∞−−−−→ Re(z) and Im(zn)

n→∞−−−−→ Im(z).
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(As we shall see, this property enables to deduce many topological properties of C from that of R.)

Proof. Assume zn
n→∞−−−−→ z. Fix ϵ > 0. Then there exists n0 such that n ≥ n0 ⇒ |zn − z| ≤ ϵ. But

|Re(zn)−Re(z)| = |Re(zn − z)| ≤ |zn − z| so that for n ≥ n0 ⇒ |Re(zn)−Re(z)| ≤ ϵ. Similarly for Im(zn).

Conversely, assume Re(zn) −→ Re(z) and Im(zn) −→ Im(z). Let ϵ > 0 then there exists n0 such that

n ≥ n0 ⇒ |Re(zn)− Re(z)| ≤ ϵ and | Im(zn)− Im(z)| ≤ ϵ.

Then

|zn − z| ≤ |Re(zn − z)|+ | Im(zn − z)| = |Re(zn)− Re(z)|+ | Im(zn)− Im(z)| ≤ 2ϵ.

Therefore, zn converges to z. □

Lemma 3.3. (computational rules) If zn
n→∞−−−−→ z, wn

n→∞−−−−→ w then

i) zn + zw
n→∞−−−−→ z + w;

ii) zn · wn
n→∞−−−−→ z · w;

iii) 1
zn

n→∞−−−−→ 1
z (if zn, z ̸= 0).

Warning! zn
n→∞−−−−→ z does NOT imply Arg(zn)

n→∞−−−−→ Arg(z), where Arg denotes the principal value of
the argument.

Definition 3.4. (Cauchy criterion) The sequence (zn)n≥1 ∈ C is called a Cauchy-sequence if for each

ϵ > 0 there exists n0 ∈ N such that n,m ≥ n0 ⇒ |zn − zm| ≤ ϵ.

Theorem 3.5. A sequence (zn)n≥1 ∈ C is convergent (there exists z ∈ C such that zn
n→∞−−−−→ z) if and only

if it is Cauchy. In other terms, C is a complete space.

Proof. (Assuming the statement for real sequences) Assume zn
n→∞−−−−→ z. Let ϵ > 0. Then there exists n0 ∈ N

such that n ≥ n0 ⇒ |zn − z| ≤ ϵ. n,m ≥ n0 ⇒ |zn − zm| ≤ |zn − z|+ |zm − z| ≤ 2ϵ. Thus (zn) is a Cauchy
sequence.
Assume that (zn) is a Cauchy sequence

Claim: (Re(zn))n≥1 and (Im(zn))n≥1 are Cauchy sequences.

Proof of the claim: Let ϵ > 0. Then there exists n0 such that n,m ≥ n0 ⇒ |zn − zm| ≤ ϵ. But

n,m ≥ n0 ⇒ |Re(zn)− Re(zm)| = |Re(zn − zm)| ≤ |zn − zm| ≤ ϵ.

Thus Re(zn) is a Cauchy sequence. Same proof for Im(zn).
But Re(zn) and Im(zn) are real sequences. Therefore Re(zn) and Im(zn) are convergent sequences and
(Analysis I) there exists x and y such that Re(zn) −→ x and Im(zn) −→ y. This implies that zn −→ x+ iy
by Lemma 3.2. □

3.2. Open, closed, compact and connected sets.

Definition 3.6. A subset U of C is an open set if for any z0 ∈ U there exists r > 0 such that

|z − z0| < r ⇒ z ∈ U.

A subset F of C is called a closed set if C \ F is an open set.

Lemma 3.7. F is closed if and only if for every sequence (zn)n≥1 and z ∈ C such that zn ∈ F and

zn
n→∞−−−−→ z then z ∈ F .

Definition 3.8. (compact set) A subset K ⊆ C is compact if one of the following equivalent statements
hold:

i) from every covering of K by open sets one can extract a finite covering. That is K ⊂
∪
i∈I

Ui with Ui

open, then there exists J ⊆ I, J finite such that K ⊆
∪
i∈J

Ui.
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ii) from any sequence (zn)n≥1 ∈ K one can extract a convergent subsequence. That is there exists

(nk)k≥1 increasing and z ∈ K such that znk

k→∞−−−−→ z.

iii) K is closed and bounded.

Note that bounded means that there exists M > 0 such that z ∈ K ⇒ |z| ≤ M .
The equivalence between i) and ii) holds in all metric spaces. ii) ⇒ iii) also but iii) ⇒ ii) is some really
non-trivial property of C.

Proof. iii) ⇒ ii) (assuming the real analogue statement). Let K be a closed and bounded set K ⊆ C. Let
(zn)n≥1 be a sequence in K. Then there exists M such that for all n ≥ 1, |zn| ≤ M . But

|Re(zn)| ≤ |zn| ≤ M ⇒ (Re(zn))n≥1

is bounded (analogue for real sequences) and has a convergent subsequence. I.e. there exists (nk)k≥1

increasing and x ∈ R such that Re(znk
) −→ x but | Im(znk

)| ≤ |znk
| ≤ |M | ⇒ (Im(znk

))k≥1 is bounded and
it has a convergent subsequence. I.e. there exists (kj)j≥1 increasing and y such that

Im(znkj
)

j→∞−−−→ y. (∗)

But (znkj
) is a subsequence of (znk

)k≥1 thus

Re(znkj
)

j→∞−−−→ x. (∗∗)

From (∗) and (∗∗) and from Lemma 3.2, it follows that znkj
→ x+iy. Thus (znkj

) is a convergent subsequence

of (zn) and its limit z = x+ iy is in K because znkj
∈ K and K is closed. □

Fix a subset M ⊆ C.

Definition 3.9. A subset U of M is open in (open relatively to) M if there is an open set U0 ⊆ C such that
U = U0 ∩M (similar definition for closed sets in M).

Definition 3.10. M is connected if the only subsets of M that are at the same time open and closed in M
are ∅ and M itself. A domain U ⊂ C is an open connected subset of C.

(This definition of connectedness is very formal. )

Lemma 3.11. [0, 1] is connected.

Proof. Take a subset A ⊂ [0, 1] and assume that A is non-empty, open and closed in [0, 1]. The goal is to prove
that necessarily, A = [0, 1]. By assumption, there exists some a0 in A. Set b = sup{x ≥ a0 : [a0, x] ⊂ A}.
Since A is closed in [0, 1], and hence close, b is in A. We now use that A is open in [0, 1] to prove b = 1. If
b < 1, there exists ε > 0 s.t. [b, b + ε] ⊂ A, so that [a0, b + ε] ⊂ A, contradicting the maximality of b. We
conclude that necessarily b = 1, i.e. [a0, 1] ⊂ A.

A similar proof shows [0, a0] ⊂ A, so that, necessarily, A = [0, 1]. □
Lemma 3.12. The image of a connected set by a continuous function is connected.

Proof. Let f : U → V be a continuous function on a connected set U . We can assume w.l.o.g. that f is
surjective (otherwise, replace V by f(V )). We want to prove that V is connected.

Let A ⊆ V be closed and open. Then f−1(A) is closed and open. Since U connected, this implies
f−1(A) = ∅ or f−1(A) = U . Using the surjectivity of f , we conclude that A = ∅ or A = V . □
Definition 3.13. (path connected) A set U ⊆ C is path-connected if for any a, b ∈ U, there exists
γ : [0; 1] → U continuous with γ(0) = a and γ(1) = b.

Proposition 3.14. Path connectedness implies connectedness.

Proof. Let A ⊂ U be a non-empty open and closed subset of U . We want to prove that, necessarily, A = U .
By assumption A contains some element a0.

For any b in U , there is a path in γ : [0; 1] → U from a0 to b. The intersection A ∩ Im(γ) is an open and
closed subset of Im(γ). But, combining the two previous lemmas, we know that Im(γ) is connected. We
conclude that A ∩ Im(γ) = Im(γ), i.e. Im(γ) ⊆ A. In particular, b is in A.

Since this holds for an arbitrary b in U , we have A = U as wanted. □
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Example of a non connected set: A = {|ℜ(z)| ≥ 1}.

Intuitively, connected ↔ “in one piece”.

3.3. Continuous functions.

Definition 3.15. Let f : U → C with U ⊆ C.
i) f is continuous in z0 ∈ U if for any ϵ > 0 there exists η > 0 such that

|z − z0| ≤ η ⇒ |f(z)− f(z0)| ≤ ϵ.

or equivalently if for any sequence zn ∈ U we have

zn −→ z0 ⇒ f(zn) −→ f(z0).

ii) f is continuous on U if f is continuous in each point z0 ∈ U , or, equivalently, if for any open set
V ⊆ C, f−1(V ) is open in U .

Proposition 3.16. Let f : U → C. Define

Re(f) : U → R z 7→ Re(f(z))

Im(f) : U → R z 7→ Im(f(z)).

Then f is continuous if and only if Re(f) and Im(f) are continuous.

Proof. Immediate from the sequence characterisation. □

Warning! f : U → C continuous implies that for each x0, y0 ∈ R the functions

fx0 := {y : (x0, y) ∈ U} → C y 7→ f(x0, y)

fy0 := {x : (x, y0) ∈ U} → C x 7→ f(x, y0)

are continuous.

The converse is not true. Being continuous in two variables is not the same as being continuous in each
variable.

Example: z → Re(z), z → Im(z) are continuous but z → Arg(z) is not.

4. More on convergence

4.1. Convergent and absolutely convergent series.

Definition 4.1. Take a sequence (an)n≥1 of complex numbers. The sequence of partial sums associated to

(an) is

sN :=
N∑

n=1

an.

We say that the series
∞∑

n=1
an converges/diverges if (sN )N≥1 converges/diverges.

Terminology: diverges = does not converge.
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Proposition 4.2. (Cauchy criterion of series)
∞∑

n=1
an converges if and only if for every ϵ > 0 there exists

N0 such that for all

N,M ≥ N0 ⇒

∣∣∣∣∣
M∑

n=N+1

an

∣∣∣∣∣ ≤ ϵ.

Proof. Use the Cauchy criterion of (sN )N≥1 and observe that if M > N then sM − sN =
∑M

n=N+1(an). □

Lemma 4.3.
∞∑

n=1
an converges if and only if

∞∑
n=1

Re(an) and

∞∑
n=1

Im(an)

converge.

Proof. Because sN converges ⇔ Re(sN ) and Im(sN ) converge. (Lemma 2.2.) □

Corollary 4.4. If
∞∑

n=1
an converges, then lim

n→∞
an = 0.

Proof. Use the Cauchy criterion with M = N + 1. □

Definition 4.5. (absolutely convergent) A series
∞∑

n=1
an is absolutely convergent if

∞∑
n=1

|an| is convergent.

Proposition 4.6. If
∞∑

n=1
an is absolutely convergent, then

∞∑
n=1

an is convergent.

Proof. Use the Cauchy criterion. Let ϵ > 0 then there exists N0 such that M > N ≥ N0 implies∑M
n=N+1 |an| ≤ ϵ. which is exactly the Cauchy criterion for

∑∞
n=1 |an|. But |

∑M
n=N+1 an| ≤

∑M
n=N+1 |an|

so that for M > N ≥ N0 implies |
∑M

n=N+1 an| ≤ ϵ. Considering the Cauchy criterion for
∑∞

n=1 an we

conclude that
∑∞

n=1 an is convergent. □

Note that the converse is not true. For example take a2n−1 = 1
n and a2n = − 1

n then s2N = 0 and

s2N−1 = s2N−2 + a2N−1 = 1
n thus sN → 0 and

∞∑
n=1

an is convergent. But
2N∑
n=1

|an| =
N∑

n=1

2
n diverges.

Proposition 4.7. (comparison criterion) Let (bn)n≥1 and (cn)n≥1 be sequences of non-negative real

numbers. Assume n ≥ n0 =⇒ bn ≤ cn for some n0. If
∞∑

n=1
cn converges, then

∞∑
n=1

bn converges.

Proof. Use the Cauchy criterion for
∑∞

n=1 cn. Fix ϵ > 0. Then there exists N0 such that M > N ≥ N0

implies
∑M

n=N+1 cn ≤ ϵ but
∑M

n=N+1 bn ≤
∑M

n=N+1 cn if N ≥ n0 so that M > N ≥ max(n0, N0) implies∑M
n=N+1 bn ≤ ϵ. The Cauchy criterion for bn implies that

∑∞
n=1 bn converges. □

Proposition 4.8. Let q > 0 be a positive real number, then
∞∑

n=0
qn converges if and only if q < 1. Let α ∈ R

then
∞∑

n=0

1
nα converges if and only if α > 1.

Proof. classical. □

Corollary 4.9. (quotient criterion) Let (bn)n≥1 be a sequence of positive real numbers.

i) Assume there exists q < 1 such that bn+1

bn
→ q, then

∞∑
n=0

bn converges.

ii) Assume there exists q > 1 such that bn+1

bn
→ q, then

∞∑
n=0

bn diverges.
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4.2. Cauchy product of absolutely convergent numerical series. Let (an)n≥0 and (bn)n≥0 be se-
quences of complex numbers. Define their Cauchy product (cn)n≥0 of complex numbers

cn :=

n∑
k=0

akbn−k.

Proposition 4.10. Assume
∞∑

n=0
an and

∞∑
n=0

bn are both absolutely convergent, then
∞∑

n=0
cn is also absolutely

convergent and
∞∑

n=0

cn =

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
.

Proof. First assume that an, bn ≥ 0 (are non-negative) and then consider
∑N

n=0 cn =
∑N

n=0(
∑n

k=0 akbn−k)

Claim: N/2∑
n=0

an

 ·

N/2∑
n=0

bn


︸ ︷︷ ︸

N/2∑
k=0

N/2∑
j=0

akbj

≤

(
N∑

n=0

cn

)
︸ ︷︷ ︸∑
k,j≥0
k+j≤N

akbj

≤

(
N∑

n=0

an

)
·

(
N∑

n=0

bn

)
︸ ︷︷ ︸

N∑
k=0

N∑
j=0

akbj

But
{
k, j such that 0≤k≤N/2

0≤j≤N/2

}
⊆
{
k, j such that k,j≥0

k+j≤N

}
⊆
{
k, j such that

k,j≥0
k≤N
j≤N

}
this proves the claim.

N/2∑
n=0

an

 ·

N/2∑
n=0

bn

 N→∞−−−−→

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
(

N∑
n=0

an

)
·

(
N∑

n=0

bn

)
N→∞−−−−→

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
thus

N∑
n=0

cn
N→∞−−−−→

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
by sandwich rule.
General case: (

N∑
n=0

an

)
·

(
N∑

n=0

bn

)
−

N∑
n=0

cn =
∑
∗

ajbk

where the summation index * is

{
j, k such that

0≤j≤N
0≤k≤N
j+k>N

}
. So∣∣∣∣∣

(
N∑

n=0

an

)
·

(
N∑

n=0

bn

)
−

N∑
n=0

cn

∣∣∣∣∣ ≤∑
∗

|ak||bj |

∑
∗

|ak||bj | =

(
N∑

n=0

|an|

)(
N∑

n=0

|bn|

)
−

N∑
n=0

γn

where γn =
n∑

k=0

|ak||bk|. From the non-negative case(
N∑

n=0

|an|

)
·

(
N∑

n=0

|bn|

)
−

N∑
n=0

γn
N→∞−−−−→ 0
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so that (
N∑

n=0

an

)
·

(
N∑

n=0

bn

)
−

N∑
n=0

cn
N→∞−−−−→ 0

we get
∞∑

n=0

cn =

( ∞∑
n=0

an

)
·

( ∞∑
n=0

bn

)
.

□

4.3. Sequences of functions. In what follows, U ⊆ C is open, (fn)n≥1 is a sequence of functions and
f : U → C a function.

Definition 4.11. (pointwise convergence) fn
n→∞−−−−→ f pointwise if for all z ∈ U, fn(z)

n→∞−−−−→ f(z) or
equivalently, if, for every ϵ > 0 there exists n0(z) such that

n ≥ n0(z) ⇒ |fn(z)− f(z)| < ϵ.

Definition 4.12. (uniform convergence) If fn
n→∞−−−−→ f uniformly if for every ϵ > 0 there exists n0 such

that
n ≥ n0 ⇒ sup

z∈U
|fn(z)− f(z)| ≤ ϵ.

Lemma 4.13. If fn
n→∞−−−−→ f uniformly then fn

n→∞−−−−→ f pointwise.

Definition 4.14. (Cauchy criterion for uniform convergence) A sequence (fn)n≥1 : U → C is Cauchy
if for every ϵ > 0 there exists n0 such that for all

n,m ≥ n0 ⇒ sup
z∈U

|fn(z)− fm(z)| ≤ ϵ.

Proposition 4.15. A sequence (fn) of functions is uniformly convergent if and only if it is Cauchy.

Proof. ” ⇒ ” Assume that fn
n→∞−−−−→ f uniformly. Let ϵ > 0 then there exists n0 such that

supz∈U |fn(z)− fm(z)| ≤ ϵ. For m,n ≥ n0,

sup
z∈U

|fn(z)− fm(x)| ≤ sup
z∈U

(|fn(z)− f(z)|+ |fm(z)− f(z)|) ≤ sup
z∈U

|fn(z)− f(z)|+ sup
z∈U

|fm(z)− f(z)| ≤ 2ϵ.

” ⇐ ” Assume (fn) is Cauchy. Fix z0 in U . Then (fn(z0)) is Cauchy which implies that fn(z0) converges.

Call f(z0) the limit we just defined a function f : U → C. We know fn
n→∞−−−−→ f pointwise. Does it converge

uniformly? Let ϵ > 0. Then there exists n0 such that n,m ≥ n0 implies supz∈U |fn(z)− fm(z)| ≤ ϵ and by
definition fn is Cauchy. Fix z0 ∈ U then |fn(z0)− f(z0)| = limm→∞ |fn(z0)− fm(z0)| ≤ ϵ which is true for
all z0 ∈ U so that supz∈U |fn(z)− f(z)| ≤ ϵ. □

Proposition 4.16. Let fn
n→∞−−−−→ f uniformly and assume that fn is continuous for all n ≥ 1. Then f is

continuous.

Proof. Let z0 ∈ U . Let ϵ > 0. By uniform convergence there exists n0 such that n ≥ n0 implies
supz∈U |fn(z)− f(z)| ≤ ϵ. But fn0 is continuous in z0 so that there exists η > 0 such that
|z − z0| ≤ η ⇒ |fn0(z)− fn0(z0)| ≤ ϵ. Then

|z − z0| ≤ η ⇒ |f(z)− f(z0)| ≤ |f(z)− fn0(z)|+ |fn0(z)− fn0(z0)|+ |fn0(z0)− f(z0)| ≤ 3ϵ.

□

Note that this is not true for pointwise convergence. For example take U = {z, |z| < 1} and fn(z) =
(1 − |z|)n and let f(z) = 0 if |z| < 1 and f(z) = 1 if z = 1. Then fn is continuous but f is not continuous

and fn
n→∞−−−−→ f pointwise.

Definition 4.17 (locally uniform convergence). fn converges locally uniformly to f if one of the following
equivalent conditions holds:

i) for every z0 ∈ U there exists r > 0 such that fn converges uniformly to f on {z : |z − z0| ≤ r};
ii) for every compact K ⊂ U , the sequence fn converges uniformly to f on K.
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Lemma 4.18.

(1) Uniform convergence ⇒ locally uniform convergence ⇒ pointwise convergence.

(2) fn
n→∞−−−−→ f locally uniformly and fn continuous implies f is continuous.

Proof. i) follows directly from the definition.
ii) Let z0 ∈ U and fn −→ f uniformly on a disk around z0. This implies that f is continuous on this disk
and hence in z0. But this is true for all z0 ∈ U which implies that f is continuous. □

4.4. Series of functions.

Definition 4.19. The series
∞∑

n=1
fn is uniformly/pointwise convergent if the sequence of partial sums sN =

N∑
n=1

fn is uniformly/pointwise convergent.

We can define normal conv for series of functions as the straight-forward analogue of absolutely conv
numerical series, replacing the absolute value by the supremum norm. We’ll however be more interested in
the following local analogue (beware of terminology!).

Definition 4.20. The series
∞∑

n=1
fn is (locally) normally convergent if for every z0 ∈ U there exists r > 0

such that
∞∑

n=1

∥fn∥D(z0,r)

is convergent.

Remark: ∥fn∥M = sup
z∈M

|fn(z)|

Notation: fn |M= “fn restricted to M ”.

Proposition 4.21. If
∞∑

n=0
fn is locally normally convergent, then there exists f such that

∞∑
n=0

fn
n→∞−−−−→ f

locally uniformly.

Proof. Fix z0 ∈ U . Then there exists r > 0 such that if D = {z : |z − z0| < r}, then
∑∞

n=0 ∥fn∥D < ∞. We
will use the Cauchy criterion for

∑∞
n=0∥fn∥D < ∞ : for every ϵ there exists N0 such that M,N > N0 implies∑M

n=N+1∥fn∥D < ϵ. But
∥∥∥∑M

n=N+1 fn

∥∥∥
D

≤
∑M

n=N+1∥fn∥D so that N,M ≥ N0 implies
∥∥∥∑M

n=N+1 fn

∥∥∥
D

≤ ϵ.

By Cauchy criterion for sequences of function the restriction of fn on D denoted as
∑∞

n=0 fn |D is uniformly
convergent. In particular ((fn(z0))n≥1 has a limit that we call f(z0). In other words, fn converges pointwise
to f . We want to show local uniform convergence. For z0 ∈ U we have r > 0 such that fn is uniformly
convergent on the disk {z : |z−z0| < r} (which was proved already). But of course fn|D converges pointwise
to f |D and thus fn|D converges uniformly to f |D. □

Part B. Power series and analytic functions

5. Power series

Definition 5.1. (power series) We call power series a series of functions
∞∑

n=0
fn with fn : C → C where

z 7→ anz
n for some an ∈ C. Shortly a power series is

∞∑
n=0

anz
n.

5.1. Radius of convergence.

Proposition 5.2. (radius of convergence) Let
∞∑

n=0
anz

n be a power series. Define

ρ := sup
{
r ∈ R+ such that (anr

n)n≥0 is bounded
}
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i) The series
∞∑

n=0
anz

n converges (locally) normally on {z : |z| < ρ}.

ii) Fix z ∈ C with |z| > ρ. The numerical series
∞∑

n=0
anz

n does not converge.

Remarks:

• the limit f(z) =
∑
n≥0

anz
n is a continuous function on the disk {z : |z| < ρ}.

• for r = 0, (anr
n) is trivially bounded which implies that ρ is well defined and ρ ≥ 0. But ρ = 0 or

ρ = ∞ are possible.

• We dont know what happens for |z| = ρ. i.e
∞∑

n=0
anz

n may converge or not.

Proof. ii) - Let |r| = z > ρ. Then the sequence (anr
n)n≥1 is not bounded i.e. (|an|rn = |anzn|)n≥1 is not

bounded. So anz
n does not tend to 0. Thus

∑∞
n=0 anz

n does not converge.
i) - We will prove a slightly stronger statement: If r < ρ, then

∞∑
n=0

∥anzn∥{z:|z|≤r} < ∞. (∗)

Why is (∗) stronger than ii)?. Each compact subset of D(0, ρ) is contained in D(0, r) for some r < ρ.

Proof of *: For |z| ≤ r, |anzn| ≤ |an|rn thus ∥anzn∥{z:|z|≤r} ≤ |an|rn. But r < ρ thus there exists r0 > r

such that (anr
n
0 )n≥0 is bounded (otherwise ρ ≤ r by definition). There exists M > 0 such that |an|rn0 ≤ M

for all n ≥ 0. But |an|rn = |an|rn0
(

r
r0

)n
so that |an|rn ≤ M

(
r
r0

)n
. Recall that r < r0 (i.e. r

r0
< 1) implies∑∞

n=0 M
(

r
r0

)n
< ∞. Putting everything together

∑∞
n=0∥anzn∥{z:|z|≤r} converges. □

Corollary 5.3. ρ can be alternatively defined as

ρ = sup

{
r ≥ 0 :

∞∑
n=0

anr
n converges

}
or

ρ = sup

{
r ≥ 0 :

∞∑
n=0

anr
n converges absolutely

}
.

Proof. We have seen that for r > ρ,
∑

anr
n does not converge (hence does not converge absolutely). For

r < ρ,
∑

anr
n converges absolutely (hence converges). □

Proposition 5.4. (quotient criterion) Let (an) be a sequence of non-zero complex numbers. Assume that

lim
n→∞

|an+1|
|an| = l (lmay be 0 or ∞). Then the radius of convergence of

∞∑
n=0

anz
n (corresponding to the power

series) is 1
l .

Convention: 1
0 = ∞ and 1

∞ = 0.

Proof.

• Take r < 1
l . Then limn→∞

|an+1r
n+1|

|anrn| = r · l < 1. This implies (from the quotient criterion we have

seen for numerical series) that
∑∞

n=0 anr
n converges.

• Take r > 1
l then limn→∞

|an+1r
n+1|

|anrn| = r · l > 1. This implies that
∑

n≥0 anr
n does not converge.

□
Example 1: Let κ > 0. Take an = κn then l = 1

κ . Thus the power series
∑∞

n=0 κ
nzn converges for |z| < κ

and the limit is

lim
N→∞

N∑
n=0

κnzn = lim
N→∞

1− κN+1zN+1

1− κz
=

1

1− κz
.

Example 2: an = 1
n! . Then l = 0. Thus

∞∑
n=0

zn

n! converges for any z ∈ C. The limit is by definition exp(z).
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5.2. Sum and product of power series. Let (an)n≥0 and (bn)n≥0 be two sequences of complex numbers.
Define

sn = an + bn pn =
n∑

k=0

akbn−k.

Proposition 5.5. Call ρa and ρb the radiuses of convergence of
∞∑

n=0
anz

n and
∞∑

n=0
bnz

n. Let ρ = min(ρa, ρb).

Then
∞∑

n=0
snz

n and
∞∑

n=0
pnz

n have radius of convergence at least ρ and for |z| < ρ the sum

∞∑
n=0

snz
n =

∞∑
n=0

anz
n +

∞∑
n=0

bnz
n

and the product
∞∑

n=0

pnz
n =

( ∞∑
n=0

anz
n

)
·

( ∞∑
n=0

bnz
n

)
.

Proof. Start with the sum.

Let |z| < ρ then
∑N

n=0 snz
n =

∑N
n=0 anz

n +
∑N

n=0 bnz
n (partial sum). But then

N∑
n=0

anz
n N→∞−−−−→

∞∑
n=0

anz
n

N∑
n=0

bnz
n N→∞−−−−→

∞∑
n=0

bnz
n.

So that
∑∞

n=0 snz
n converges and

∞∑
n=0

snz
n =

∞∑
n=0

anz
n +

∞∑
n=0

bnz
n.

Thus the radius of convergence of
∑∞

n=0 snz
n is at least ρ.

Case of products.
Let |z| < ρ then

∑∞
n=0 anz

n and
∑∞

n=0 bnz
n converges absolutely. Therefore their Cauchy product (πn)n≥0

converges, where

πn =
n∑

k=0

(
akz

k
) (

bn−kz
n−k

)
= pnz

n.

Thus
∑∞

n=0 πn =
∑∞

n=0 pnz
n converges and

∞∑
n=0

pnz
n =

( ∞∑
n=0

anz
n

)
·

( ∞∑
n=0

bnz
n

)
.

This implies also that the radius of convergence of
∑∞

n=0 pnz
n is at least ρ. □

6. Analytic functions

6.1. Definitions.

Definition 6.1. (analytic function) Let U be an open subset of C. A function f : U → C is called analytic
(on U) if for every z0 ∈ U there exists r > 0 and a sequence (an)n≥0 of complex numbers such that

i) the radius of convergence of
∞∑

n=0
anz

n is at least r.

ii) |z − z0| < r implies that z ∈ U and f(z) =
∞∑

n=0
an(z − z0)

n.



14 VALENTIN FÉRAY

Example 1:

Claim: Let p be a polynomial. C → C z 7→ p(z) is an analytic function.

Proof. Fix z0 ∈ C. You may know that ((z − z0)
k)k≥0 is a basis of the vector space C[z] (because there is

a polynomial of each degree). There exist complex numbers (an)n≥1 ∈ C (depending on z0) with an = 0 for

n bigger than some d such that p is a finite linear combination p(z) =
∑d

n=0 an(z − z0)
n. This equality of

polynomials is true for all z ∈ C. Thus p(z) is analytic in z0. One takes r = ∞ and (an)n≥0 as above. As
this is true for all z0 ∈ C, p(z) is analytic. □

Example 2: Let U = C \ {1} and define f : U → C z 7→ 1
1−z .

Claim: f is an analytic function.

Before proving the claim we start by a Lemma.

Lemma 6.2. For |z| < 1, 1
1−z =

∞∑
n=0

zn.

Proof. Take the partial sum
∑N

n=0 z
n = 1−zN+1

1−z which is the sum of the geometric series. As |z| <

1, limN→∞ zN+1 = 0. Thus
∑∞

n=0 z
n converges and

∑∞
n=0 z

n = 1
1−z . □

Proof of the claim. As for |z| < 1, 1
1−z =

∑∞
n=0 z

n, f is analytic in 0. (Take r = 1, an = 1 for all n ≥ 0). We
have to prove that f is analytic in every z0 ∈ U . Fix z0 ∈ U . Write

f(z) =
1

1− z
=

1

1− z0 − (z − z0)
=

1

1− z0
· 1

1− z−z0
1−z0

.

If |z − z0| < |1− z0| by Lemma 6.2,

f(z) =
1

1− z0

∞∑
n=0

(
z − z0
1− z0

)n

=

∞∑
n=0

(
1

1− z0

)n+1

(z − z0)
n.

Take r = |1 − z0| and an =
(

1
z−z0

)n+1

This proves analyticity of f in z0. Since x0 is generic in U , this

proves that f is analytic on U . □
(Note that the coefficients an in Definition 6.1 may depend on z0.)
(To prove that something is analytic, we must prove the existence of an expansion in each z0 in U , not

only in z0 = 0. In particular, it is not clear at this point whether sums of power series are analytic.)

6.2. Algebra of analytic functions in U .

Proposition 6.3. Let f, g : U → C be analytic functions (U open), take λ ∈ C then λf, f + g, f · g are
analytic functions.

Note that the sum and product of functions is pointwise. I.e. (f + g)(z) = f(z) + g(z) and
(f · g)(z) = f(z) · g(z).

Proof. Fix z0 ∈ U . Then there exists r, r′ > 0 and some sequences (an)n≥0 and (bn)n≥0 such that |z−z0| < r
implies z ∈ U and f(z) =

∑∞
n=0 an(z − z0)

n. |z − z0| < r′ implies z ∈ U and g(z) =
∑∞

n=0 bn(z − z0)
n.

• But λ · f(z) =
∑∞

n=0 λ · an(z − z0)
n for |z − z0| < r so that λ · f is analytic in z0.

• Take z with |z−z0| < min(r, r′) then by Proposition 5.5 f(z)+g(z) =
∑∞

n=0 an(z−z0)
n+bn(z−z0)

n

i.e. f(z) + g(z) =
∑∞

n=0(an + bn)(z − z0)
n so that f + g is analytic in z0.

• Take z with |z − z0| < min(r, r′). Then f(z) =
∑

pn(z − z0)
n with pn =

∑∞
k=0 akbn−k by Proposi-

tion 5.5 so that f · g is analytic in z0. □
Note that this is true for z0 ∈ U , so that λ · f, f + g, f · g are analytic on U .

Corollary 6.4. The set of analytic functions from U to C is a subalgebra of the algebra of functions from
U to C. (non-empty because f(z) = 0 for z in U is analytic).

Remark: By complicated sum manipulation, it is possible to prove:

• that the composition of two analytic functions, when defined, is analytic.
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• that the sum of a power series with positive radius of convergence ρ > 0 is analytic on the open disk
{z : |z| < ρ}

For that we will see simpler proofs later (using the equiv. with holomorphic functions mentioned in the intro).

Terminology convention: Let z0 ∈ C. We say that a property (p) holds in a neighbourhood of z0 if there
exists r > 0 such that |z − z0| < r implies that (p) holds for z.

6.3. Isolated zeros and analytic continuation.

Proposition 6.5. Let f(z) =
∑
n≥0

anz
n with positive radius of convergence ρ. If one of the an is non-zero,

then f(z) ̸= 0 for z ̸= 0 in a neighbourhood of 0. In other terms, there exists r > 0 such that |z| < r and
z ̸= 0 implies f(z) ̸= 0.

Proof. Let p be the smallest integer such that ap ̸= 0. Then define

g(z) =
∞∑

m=0

am+pz
m.

For r > 0 and n = m+ p

anr
n = am+pr

m+p = rp(am+pr
m)

so that (anr
n)n≥0 is bounded if and only if (am+pr

m) is bounded. Then g has radius of convergence ρ. For
|z| < ρ change the index of the sum such that

f(z) =
∞∑

n=0

anz
n =

∞∑
n=p

anz
n

as an = 0 for n < p. Now change the sum index m := n− p then

f(z) =
∞∑

m=0

am+pz
m+p = zp

( ∞∑
m=0

am+pz
m

)
= zpg(z).

But g is a continuous function on {z : |z| < ρ} and g(0) = ap ̸= 0 which implies that there exists a
neighbourhood of 0 on which g does not vanish. But f(z) = zpg(z) so that f does not vanish either on this
neighbourhood except possibly in 0 if p > 0. □

(Warning: f(z) =
∑

anz
n can vanish at the origin (in fact f(0) = a0), but not in a neighbourhood of the

origin.)

Corollary 6.6. Let f : U → C be analytic and U open. Fix z0 ∈ U . Then the family of coefficients (an)n≥0

of the power series expansion
∞∑

n=0
an(z − z0)

n of f in z0 is uniquely determined.

(Existence of this expansion is just the definition of analyticity, here we want to prove uniqueness.)

Proof. Assume that f has two expansions around z0 ∈ U .

• There exists r > 0 and (an)n≥0 such that |z−z0| < r implies that z ∈ U and f(z) =
∑∞

n=0 an(z−z0)
n.

• There exists r′ > 0 and (bn)n≥0 such that |z − z0| < r′ implies that z ∈ U and
f(z) =

∑∞
n= bn(z − z0)

n.

For |z−z0| = min(r, r′) then f(z) =
∑∞

n=0 an(z−z0)
n =

∑∞
n=0 bn(z−z0)

n thus
∑∞

n=0(an− bn)(z−z0)
n = 0

for |z − z0| < min(r, r′). From Proposition 6.5. we have that (an − bn) = 0 for all n ≥ 0. So an = bn, which
proves the corollary. □

(Warning: we recall that an may depend on z0. The radius r is also not unique; in fact, if some r fits in
Definition 6.1, each r′ < r also fits.)

Definition 6.7. (limit point) Let S be a subset of C. Then some a ∈ C is called a limit point of S if there
exists a sequence (sn)n≥0 with sn ∈ S, sn ̸= a and lim

n→∞
sn = a.
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Note that a may or may not belong to S.

Example: 0 is a limit point of
{

1
n , n ∈ N∗

}
.

Notation: f ≡ g on U means that f(z) = g(z) for all z ∈ U .

Theorem 6.8. (isolated zeros) Let f : U → C be an analytic function on a domain U . Assume that
f(s) = 0 for every s in a set S which has a limit point in U . Then f ≡ 0.

Before we proceed with the proof of Theorem 6.8. I want to stress that the way it is proven is done by a
standard procedure. Define a set B = {b ∈ U : f(z) = 0 on a neighbourhood of b} ⊆ U.

The outline of the proof will look like this:

i) prove that B ̸= ∅.
ii) prove that B is open in U .
iii) prove that B is closed in U .

If we prove i),ii) and iii) from the definition of connectedness we have that B = U.

Proof. i) - By hypothesis there exists a ∈ U and a sequence (sn)n≥0 in S with limn→∞ sn = a by Defini-
tion 6.7. f is analytic in a, so that f is the sum of a power series

∑∞
n=0 an(z − a)n on a neighbourhood of a

for all n. Assume that some an is non-zero. Proposition 6.5 implies f(z) ̸= 0 for z ̸= a on the neighbourhood
{z : |z − a| < r} of a. But f(sn) = 0 so that |sn − a| ≥ r (recall that sn ̸= a). This is a contradiction with
limn→∞ sn = a. Thus an = 0 for all n ≥ 0 and f(z) = 0 on a neighbourhood of a. i.e. a ∈ B.

ii) - Let b ∈ B. We want to prove that there exists ϵ > 0 such that |z − b| < ϵ implies that z ∈ B.
Since b ∈ B there exists r > 0 such that |w − b| < r implies f(w) = 0 by definition of B. Take z such that
|z − b| < r

2 . For w with |w − z| < r
2 we have |w − b| ≤ |z − b|+ |w − z| ≤ r ⇒ f(w) = 0. Thus z ∈ B.

(Small picture to illustrate w,b, r and the various disks)

iii) - We want to prove that, if bn ∈ B and there exists b ∈ U such that limn→∞ bn = b, then b ∈ B. But
bn ∈ B implies that f(bn) = 0. With the same proof as in i) we get that b ∈ B.

In conclusion B is a non-empty open and closed subset of U . Since U is connected B = U . □

Rephrasement of Theorem 6.8: If f is a non-zero analytic function f : U → C (U connected) then
its set of zeros has no limit points in U .

Remark: The same is not true for real C∞ functions. For instance, let

f(x) =

{
0 for x ≤ 0;

e−
1
x for x > 0,

then f : R → R is C∞(R) (this is not obvious in zero, but it is indeed C∞. Its set of zero is R− = {x : x ≤ 0}.
Each point in R− is a limit point, but the function is not identically zero.

Corollary 6.9. (identity theorem) Let f, g : U → C be analytic functions. Assume U to be a connected
open set. If f ≡ g on a set S with a limit point in U , then f ≡ g on U .

Proof. Apply Theorem 6.8 to h = f − g. □

Definition 6.10. (analytic continuation) Let U ⊆ V be open subsets of C. Consider an analytic function
f : U → C. An analytic continuation of f to V is an analytic function g : V → C such g |U= f .

Corollary 6.11. U non-empty. If V is connected, then, if an analytic continuation of f to V exists, it is
unique.

Proof. Take g1, g2 two analytic continuations g1|U = g2|U = f . But U ̸= ∅ there exists a ∈ U and there
exists r > 0 such that |z−a| ≤ r implies z ∈ U . This implies that a is a limit point of U . Using Corollary 6.9.
we get g1 = g2 on V . □

Note that there is not always an analytic continuation from U to V .
(Warning: the existence of analytic continuations to V1 and V2 does not imply the existence of an analytic

continuation of V1 ∪ V2!)
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6.4. Exponential and π.

Definition 6.12. For z ∈ C, we set

exp(z) =
∞∑

n=0

zn

n!
.

Remarks:

•
1

(n+1)!
1
n!

= 1
n+1

n→∞−−−−→ 0, the power series
∞∑

n=0

zn

n! has radius of convergence ρ = ∞ (quotient criterion),

so that exp(z) is well defined and defines a continuous function on C.

• For real x, you know that exp(x) =
∞∑

n=0

xn

n! (Taylor formula) so that this ”new” definition is coherent.

Lemma 6.13. a, b ∈ C. Then exp(a+ b) = exp(a) · exp(b).
Reminder: Newton binomial formula

(a+ b)n =

∞∑
k=0

(
n

k

)
akbn−k

where
(
n
k

)
= n!

k!(n−k)! .

Proof. exp(a)·exp(b) =
(∑∞

n=0
an

n!

)
·(
∑∞

n=0
bn

n! ). Both series converge absolutely (because
∑∞

n=0
zn

n! converges
normally on C) and we can use Theorem on Cauchy products of absolutely convergent series.( ∞∑

n=0

an

)
·

( ∞∑
n=0

bn

)
=

∞∑
n=0

cn

with cn =
∑n

k=0 akbn−k. Set an = an

n! and bn = bn

n! we get( ∞∑
n=0

an

n!

)
·

( ∞∑
n=0

bn

n!

)
=

∞∑
n=0

(
n∑

k=0

ak

k!

bn−k

(n− k)!

)
but

n∑
k=0

akbn−k

k!(n− k)!
=

1

n!

n∑
k=0

n!akbn−k

k!(n− k)!
=

(a+ b)n

n!
.

Finally ( ∞∑
n=0

an

n!

)
·

( ∞∑
n=0

bn

n!

)
=

∞∑
n=0

(a+ b)n

n!

hence exp(a+ b) = exp(a) · exp(b). □
A few simple properties:

• exp(0) = 1, exp(−z) · exp(z) = 1 thus for all z ∈ C exp(z) ̸= 0 and exp(−z) = 1
exp(z) . Since all

coefficients in Definition 6.12 are real, x real ⇒ exp(x) real. z ∈ C ⇒ exp(z) = exp(z).
• Since all coefficients in Definition 6.12. are positive, the function [0,+∞[→ R x 7→ exp(x) is strictly
increasing. Moreover exp(x) ≥ x so that lim

x→∞
exp(x) = ∞. Recalling that exp(−x) = 1

exp(x) , we

also have that lim
x→−∞

exp(x) = 0 and that x 7→ exp(+x) is increasing on ]−∞, 0].

• If t is a real number exp(−it) = 1
exp(it) but also exp(−it) = exp(it) = exp(it) i.e.

exp(it) · exp(it) = 1 = | exp(it)|2. In conclusion: if t is real then | exp(it)| = 1. As a consequence
z = x+ iy, x, y ∈ R then | exp(z)| = | exp(x)| · | exp(iy)| = exp(x).

Notation: Define e := exp(1). Then for integers p, q ≥ 1,

exp(p) = exp(1)p = ep.

Moreover exp
(

p
q

)q
= exp(p) = ep. But exp

(
p
q

)
is a positive real number so that exp

(
p
q

)
= e

p
q . In

conclusion: exp(x) = ex for rational numbers x.
Convention: Denote ez = exp(z) for all complex numbers.
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Definition 6.14. For z ∈ C, we set

cos(z) =
eiz + e−iz

2
=

∞∑
n=0

(−1)nz2n

(2n)!
; sin(z) =

eiz − e−iz

2i
=

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
.

This is coherent with what you know for real numbers. Observe

• if x is a real number, cos(x) = Re(eix) and sin(x) = Im(eix).
• ez = exeiy = ex(cos(y) + i sin(y)) with z = x+ iy x, y ∈ R but ex is a positive real number and y is
a real number, so that y is an argument of ez, as defined in Proposition 1.7.

(Figure to show how lines parallel to the axis are transformed by the exponential map.)

Lemma 6.15. There exists a real number 0 < c < 2 such that eic = i.

Definition 6.16. π = 2 · c., where c is the minimal value satisfying Lemma 6.15.

Reminder: Let (an)n≥0 be a non-increasing sequence of non-negative real numbers with lim
n→∞

an = 0. Then
∞∑

n=0
(−1)nan converges (not necessarily absolutely) and for all N ≥ 0

2N+1∑
n=0

(−1)nan ≤
∞∑

n=0

(−1)nan ≤
2N∑
n=0

(−1)nan.

Proof. By definition, cos(2) =
∑∞

n=0
(−1)n22n

(2n)! . The sequence
(

22n

(2n)!

)
n≥1

is non-increasing (consider quotients

of successive entries) so that, using the above reminder,

cos(2) =
∞∑

n=0

(−1)n22n

(2n)!
≤ 1− 22

2!
+

24

4!
= −1

3
< 0.

But cos(0) = 1 and t 7→ cos(t) is a continuous function on [0, 2]. The intermediate value Theorem implies
that there exists c such that cos(c) = 0.

Recall that exp(ic) has modulus 1. Its real part cos(c) being equal to 0, we must have sin(c) = +1 or

sin(c) = −1. But sin(c) =
∑∞

n=0
(−1)nc2n+1

(2n+1)! . For c ∈ (0, 2) one can check that
(

c2n+1

(2n+1)!

)
n≥0

is non-increasing,

so that, using the above reminder sin(c) ≥ c− c3

3! . For c ∈ (0, 2), we trivially have that c− c3

3! = c(1− c2

6 ) > 0.

Finally sin(c) = 1 and eic = i. □

Observe that we can choose c to be minimal such that cos(c) = 0 so that for 0 < t < c, cos(t) > 0.

Moreover for t < c, sin(t) ≥ t− t3

6 > 0.

(We will see later, when discussing path and their length, that this π is indeed the semi-length of a circle
of radius 1, as we usually define it in elementary school!)

We finally discuss image sets and fibers of the exponential function.

Proposition 6.17.

i) If w ∈ C and |w| = 1. Then there exists t ∈ R such that eit = w.

ii) If z ∈ C, z ̸= 0 then there exists z′ ∈ C such that ez
′
= z.

Proof. i) Let w ∈ C with |w| = 1. First assume that w = u + iv with u, v ≥ 0. Cosine is a continuous
function with cos(0) = 1 and cos(c) = 0. But u = Re(w) ≤ |w| = 1. So by the intermediate value theorem,
there exists 0 ≤ t ≤ c such that cos(t) = u. But cos2(t) + sin2(t) = 1 = |w|2 = u2 + v2 which implies that
sin2(t) = v2. So sin(t) = v or sin(t) = −v. But we proved that sin(t) ≥ 0 and assumed v ≥ 0. Finally
sin(t) = v and eit = w.
Let’s look at the case where u < 0, v ≥ 0 then −iw = −i(u+ iv) = v − iu has modulus 1 and non-negative
real and imaginary parts. The first case implies that there exists 0 < t < c such that −iw = eit and
w = ieit = ei(t+π/2).
Lets look at the case v < 0. Then −w = −u− iv has modulus 1 and a non-negative imaginary part but then
the first case implies that there exists t such that −w = eit ⇒ w = ei(t+π).
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ii) Let z ̸= 0. As exp:R → R is increasing and has limx→∞ ex = ∞ and limx→−∞ ex = 0, there exists x such
that ex = |z|. Then apply i) to z

|z| , there exists y such that z
|z| = eiy which implies that

z = |z| · eiy = exeiy = ex+iy. □

Proposition 6.18. Let z and z′ be complex numbers, with ez = ez
′
then z−z′

2πi is an integer.

Proof. Observe that ez

ez′
= ez−z′

thus ez = ez
′
implies that ez−z′

= 1. We can assume w.l.o.g. that z′ = 0

i.e. ez = 1. Write z = x + iy with x, y ∈ R. Then |ez| = ex = 1. The only real number x with ex = 1 is
x = 0 since x 7→ ex is strictly increasing.
Consider now y. There exists a unique integer k such that 2πk ≤ y < 2π(k + 1) (k is an integer part of

y/2π). Recall that eiy = 1. But e2πik =
(
e2πi

)k
= 1 so that ei(y−2πk) = 1. Setting y′ = y − 2πk, we have

eiy
′
= 1 with 0 ≤ y′ < 2π. We write e

iy′
4 as u + iv with u, v ∈ R: since y′

4 < π
2 , we have u = cos

(
y′

4

)
> 0

and v = sin
(

y′

4

)
≥ 0. Then

(2) 1 = eiy
′
=
(
e

iy′
4

)4
= (u+ iv)4 = u4 + v4 − 6u2v2 + 4iuv(u2 − v2).

Thus 4iuv(u2 − v2) = 0 which implies that v = 0 or u2 − v2 = 0. But u2 + v2 = 1 so that v = 0 or
u2 = v2 = 1

2 . If u
2 = v2 = 1

2 then u4 + v4 − 6u2v2 = −1, which is in contradiction with (2). In conclusion is
v = 0. Thus u = 1 and y′ = 0. Finally y = 2πk, which is what we wanted to prove. □

Part C. Holomorphic Functions

7. Complex differentiability

7.1. Definition and basic properties. Terminology: “(P) holds on a neighbourhood of z0”=“there exists
an open set U containing z0 such that (P ) holds on U”

Definition 7.1. (complex-differentiable) U open, U ⊆ C, z0 in U and f : U → C a function. We say
that f is complex-differentiable (or holomorphic) in z0 if one of the following equivalent assertions hold:

i) there exists

a = lim
z→z0

f(z)− f(z0)

z − z0
.

ii) there exists b ∈ C and α defined on a neighbourhood of 0 such that

f(z) = f(z0) + b(z − z0) + |z − z0|α(z − z0) (∗)
on a neighbourhood of z0 with lim

h→0
α(h) = 0.

If i) and ii) hold then a = b and is denoted by f ′(z0).

Proof of the equivalence. ii) ⇒ i) easy. i) ⇒ ii) Set

b = lim f(z)−f(z0)
z−z0

and α(h) =
(

f(z0+h)−f(z0)
h − b

)
h
|h| so that (∗) holds. But f(z0+h)−f(z0)

h − b tends to 0

when h tends to 0 and
∣∣∣ h
|h|

∣∣∣ = |h|
|h| = 1. Hence α(h) tends to 0. □

Definition 7.2. (holomorphic) We say that f is holomorphic on U if f is holomorphic (or complex-
differentiable) in every z0 ∈ U and the function f ′ is continuous on U .

Remark: In the literature you may find the same definition without the hypothesis ”f ′ is continuous”. We
will see later, that both definitions are equivalent. In other terms, if f is holomorphic in every z0 ∈ U , then
f ′ is automatically continuous.

Examples:

• z 7→ z2 is holomorphic on C. Fix z0 ∈ C. lim
z→z0

z2−z2
0

z−z0
= lim

z→z0
z + z0 = 2z0.

• z 7→ 1
z is holomorphic of C \ {0}. Fix z0 ∈ C. lim

z→z0

1
z−

1
z0

z−z0
= lim

z→z0
− 1

z2
0
.
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Proposition 7.3.

i) Let f, g : U → C, z0 ∈ U. Assume f and g are holomorphic in z0. Let λ ∈ C. Then f + g,
λ · g, f · g are holomorphic in z0 and (f + g)′(z0) = f ′(z0) + g′(z0), (λ · f)′(z0) = λ · f ′(z0),
(f · g)′(z0) = f ′(z0) · g(z0) + f(z0) · g′(z0).

ii) Let f : U → C and g : V → C. Assume g takes values in U. Let z0 ∈ V . Assume g holomorphic in
z0 and f holomorphic in g(z0), then the composition (f ◦ g)′(z0) = f ′(g(z0)) · g′(z0).

Proof. Similar to the real case. □

Corollary 7.4. All polynomials are holomorphic on C, as well as all rational functions on their domain of
definition. Moreover, their complex-derivative coincides with the real one.

7.2. Cauchy-Riemann equations. Let U ⊆ Rn.

Definition 7.5. A function f : U → Rm is real differentiable in t0 ∈ U if there exists a linear map
ℓ : Rn → Rm and a function α defined on a neighbourhood of 0 ∈ Rn such that
f(t0 + h) = f(t0) + ℓ(h) + ∥h∥α(h) for h in a neighbourhood of 0 and lim

h→0
α(h) = 0.

Particular cases:

• n = 1, f : R → Rm, h ∈ R then ℓ(h) = h · a for some a ∈ Rm. In this case denote (the vector)
a = f ′(t0).

• n = 2, f : R2 → Rm, h = (k, l) ∈ R2 then ℓ(k, l) = k · a+ l · b for some a, b ∈ Rm. Denote a = ∂f
∂x (t0)

and b = ∂f
∂y (t0).

Take U ⊆ C open, f : U → C. We have two notions of differentiability.

• Complex differentiability

f(z0 + h) = f(z0) + bh+ |h|α(h)

• Real differentiability (using the canonical isomorphism C ∼= R2)

f(z0 + h) = f(z0) + ℓ(h) + |h|α(h)

ℓ is an R-linear map C → C.

But it is easy to see that the map

C → C
h 7→ b · h

is an R-linear map with matrix

(
u −v
v u

)
.

Complex-differentiability is therefore stronger than real differentiable. The next statement explains
precisely what should be added to real differentiability to get complex differentiability.

Theorem 7.6. (Cauchy-Riemann equations) Take f : U → C and z0 = x0 + iy0 ∈ U . Denote

P (x, y) := Re(f(x+ iy))

Q(x, y) := Im(f(x+ iy))

so that with identification C ∼= R2, the function f is identified with (P,Q). Then the following are equivalent:

i) f is complex-differentiable in z0
ii) (P,Q) is real-differentiable in (x0, y0) and

∂P

∂x
(x0, y0) =

∂Q

∂y
(x0, y0),

∂P

∂y
(x0, y0) = −∂Q

∂x
(x0, y0)
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Proof. i) ⇒ ii) Assume f is complex differentiable in z0, i.e. there exists b ∈ C and α(h)
h→0−−−→ 0 such that

f(z0 + h) = f(z0) + bh+ |h|α(h) (∗)

but h 7→ bh is an R-linear map of the form (k, l) 7→ (uk − vl, ul+ vk) with u, v ∈ R. Thus f = (P,Q) is real
differentiable in z0 = (x0, y0) and in (x0, y0), we have

∂P

∂x
= u,

∂P

∂y
= −v,

∂Q

∂x
= v,

∂Q

∂y
= u

. Indeed, taking the real part of (∗)

P (x0 + k, y0 + l) = P (x0, y0) + uk − vl + ∥(k, l)∥α(k, l).

Similar for the imaginary part. Thus Cauchy-Riemann equations are satisfied.
ii) ⇒ i) Assume(P,Q) is real-differentiable in (x0, y0) i.e.

P (x0 + k, y0 + l) = P (x0, y0) + k · ∂P
∂x

(x0, y0) + l · ∂P
∂y

(x0, y0) + ∥(k, l)∥α(k, l).

Q(x0 + k, y0 + l) = Q(x0, y0) + k · ∂Q
∂x

(x0, y0) + l · ∂Q
∂y

(x0, y0) + ∥(k, l)∥β(k, l),

With limh→0 α(h) = limh→0 β(h) = 0. Set u = ∂P
∂x (x0, y0) = ∂Q

∂y (x0, y0), v = ∂P
∂y (x0, y0) = −∂Q

∂x (x0, y0).

Then

f(z0 + h) = P (x0 + k, y0 + l) + iQ(x0 + k, y0 + l)

= (P (x0, y0) + iQ(x0, y0)) + (ku+ lv) + i(−kv + lu) + ∥(k, l)∥(α(k, l) + iβ(k, l))

= f(z0) + (u− iv)(k + il) + |h|γ(h)

with γ(h) = α(k, l)+β(k, l) and thus limh→0 γ(h) = 0. This is the definition of complex differentiability with
b = u− iv. □

8. Holomorphy of analytic functions

8.1. Power series.

Proposition 8.1. Let f(z) =
∞∑

n=0
anz

n be the sum of a power series with positive radius of convergence

ρ > 0. Define g(z) =
∞∑

n=1
nanz

n−1. Then g has the same radius of convergence as f and for z0 ∈ C with

|z0| < ρ, f is complex-differentiable in z0 and f ′(z0) = g(z0).

(We already knew that f is continuous on D(0, ρ), we now see that it is holomorphic in each point of this
open disk.)

(In general, differentiating under an integral/sum sign needs extra hypothesis e.g., the derivatives to be
dominated by some integrable function. The above statement says that we can differentiate term by terms
power series without extra asumptions.)

Proof. i) We want to prove that g has the same radius of convergence as f. Call ρg the radius of convergence
of g. Assume that r > 0 such that

(
nanr

n−1
)
n≥1

is bounded. Then anr
n ≤ r(nanr

n−1) for n ≥ 1 so that

(anr
n)n≥1 is bounded. Thus r < ρg implies r ≤ ρ, so that ρg ≤ ρ.

Assume that r > 0 such that (anr
n)n≥0 is bounded. Then for each r0 < r the sequence

(
nanr

n−1
0

)
n≥1

is

bounded. Indeed nanr
n−1
0 = n

r0

(
r0
r

)n
(anr

n). Let r0 < ρ. Then we can find r with r0 < r < ρ. Thus (anr
n)

is bounded and
(
anr

n−1
0

)
n≥1

is also bounded. This is true for any r0 < ρ so that ρ ≤ ρg. In conclusion
ρ = ρg.
ii) We want to prove that f ′(z0) = g(z0).
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Fix z0 ∈ C with |z0| < ρ. Chose r with |z0| < r < ρ. For |h| < r− |z0| we want to show that f(z0+h)−f(z0)
h −

g(z0) tends to zero.

f(z0 + h)− f(z0)

h
− g(z0) =

∞∑
n=1

an

(
(z0 + h)n − zn0

h
− nzn−1

0

)
and

(z0 + h)n − zn0
h

=
(
(z0 + h)n−1 + (z0 + h)n−2z0 + · · ·+ (z0 + h)zn−2

0 + zn−1
0

)
.

Thus

f(z0 + h)− f(z0)

h
− g(z0) =

∞∑
n=0

un(h)

where un(h) = ((z0+h)n−1+ · · ·+ zn−1
0 −nzn−1

0 ) for h = r−|z0|. We have |un(h)| ≤ 2nanr
n−1 using z0 ≤ r

and |z0 + h| ≤ r. But
∑∞

n=0 2nanr
n−1 is convergent on {h : |h| < r − |z0|} so that h 7→

∑∞
n=0 un(h) is a

continuous function. But un(0) = 0 so that
∑∞

n=0 un(0) = 0. Thus limn→∞
∑∞

n=0 un(h) = 0 (because it is

continuous). Ie. limh→∞
f(z0+h)−f(z0)

h = g(z0). □

Corollary 8.2. Sum of power series are infinitely many times complex-differentiable on their disk of con-
vergence.

Proof. By Proposition 8.1, the sum of a power series is complex-differentiable on its disk of convergence and
the derivative is the sum of a power series. Iterating proves the corollary □

Proposition 8.3. Let f(z) =
∞∑

n=0
anz

n be a power series with positive radius of convergence. Then for each

n ≥ 0,

an =
f (n)(0)

n!
.

Proof. Let k ≥ 0. Then the k-th derivative of f is f (k)(z) =
∑∞

n=k n(n − 1) · · · · · (n − k + 1) · anzn−k

(immediate induction). Thus f (k)(0) = k(k − 1) · · · · · 1 · ak (all terms with n > k vanish for z = 0). □

(Reminiscent of Taylor expansion, but here we have an infinite sum, not a finite sum + a remainder.)

8.2. Analytic functions.

Theorem 8.4. Analytic functions are infinitely many times complex-differentiable. In particular, they are
holomorphic.

Proof. Let f : U → C, U open, f analytic. Fix z0 in U . Then f is equal to the sum of a power series on a
neighbourhood of z0 which implies that f is infinitely many times differentiable on a neighbourhood of z0.
This holds for all z0 in U , so that f is infinitely many times differentiable on U . □

Proposition 8.5. If f : U → C analytic and z0 ∈ U then by definition f(z) =
∞∑

n=0
an(z − z0)

n in a

neighbourhood of z0 then an = f(n)(z0)
n! .

Proof. f(z) = g(z − z0) with g(w) =
∑∞

n=0 anw
n from the case of power series an = g(n)(0)

n! . But

f (n)(z) = g(n)(z − z0). □
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8.3. Examples.

• (Power series) Exponential function

exp(z) =
∞∑

n=0

zn

n!

(sum of power series with ρ = ∞). From Proposition 8.1 exp is complex-differentiable in any z0 ∈ C

and exp′(z0) =
∞∑

n=0
n · 1

n!z
n−1
0 =

∞∑
n=0

1
(n−1)!z

n−1
0 =

∞∑
m=0

1
m!z

m
0 = exp(z0). This implies immediately

that exp(n)(z) = exp(z) and in particular exp(n)(0)
n! = 1

n! . This is indeed the n-th coefficient of the
series, as asserted by Proposition 8.3.

• (Analytic function) f(z) = 1
1−z .

We have seen that f is analytic and

f(z) =

∞∑
n=0

1

(1− z0)n+1
(z − z0)

n

for |z − z0| < |1 − z0|. We also know that f is complex-differentiable (composition of z 7→ 1
z and

z 7→ 1− z) with f ′(z) = 1
(1−z)2 .

From Proposition 8.1, we can also infer that, |z − z0| < |1− z0|,

f ′(z) =
∞∑

n=1

n

(1− z0)n+1
(z − z0)

n−1.

Comparing both expressions, we get a power series expansion for 1
(1−z)2 around z0.

Let us consider further derivatives. Since f is a rational function, f is infinitely many times

complex-differentiable on its domain of definition with f (n)(z) = n!
(1−z)n+1 . We see that f(n)(z0)

n! =
1

(1−z0)n+1 is indeed the n-th coefficient in the power series expansion around z0, as asserted by

Proposition 8.5 above.

9. Cauchy formula

9.1. Statement.

Theorem 9.1. (Cauchy formula) Let f : U → C, U ⊆ C open, f holomorphic. Take z0 ∈ U and r > 0
such that |z − z0| ≤ r implies z ∈ U . Then for z ∈ C with |z − z0| < r

f(z) =
1

2π

∫ 2π

0

f
(
z0 + reiθ

)
reiθ

z0 + reiθ − z
dθ.

(schema showing the center z0 and the circle z0 + reiθ; the formula expresses the value of f in any point
z inside the disk in terms of the values on the circle, it is quite surprising that such a formula exists!)

Comment: Cauchy formula is one of the main pieces of complex analysis; there are many different
versions, with various levels of generality and various presentations, we will see a few in this lecture.

9.2. Reminders/Preliminaries.

• The formula (f ◦ g)′(x) = f ′(g(x)) · g(x) also holds for
g : R ⊇ I → C f : U → C holomorphic in g(x). Then f ◦ g : I → C is real-differentiable and
(f ◦ g)′(x) = f ′(g(x)) · g(x).

• Dominated convergence theorem

If fn
n→∞−−−−→ f pointwise, and (fn, f : R ⊇ I → C) and

∫
I
sup
n∈N

|fn| < ∞, then
∫
I
fn

n→∞−−−−→
∫
I
f .
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– special case:
If I := [a, b] is a closed bounded interval and fn uniformly bounded (there exists M such that

∀x ∈ I,∀n ≥ 0 |fn(x)| ≤ M) then
∫
I
fn

n→∞−−−−→
∫
I
f if fn

n→∞−−−−→ f pointwise.
– special case of the special case:

fn continuous and fn
n→∞−−−−→ f uniformly on I then

∫
I
fn

n→∞−−−−→
∫
I
f . In particular if

∞∑
n=0

gn

converges uniformly then
∞∑

n=0

∫
I
gn =

∫
I

∞∑
n=0

gn (use previous statement for fN =
N∑

n=0
gN ).

• Differentiability under an integral sign.
Consider a function f : I × [a, b] → C. Assume that ∂f

∂x exists on I × [a, b]. Assume also f and
∂f
∂x continuous on I × [a; b]. Set g(x) =

∫ b

a
f(x, t)dt. Then g is differentiable on every x ∈ I and

g′(x) =
∫ b

a
∂f
∂x (x, t)dt.

9.3. Proof.

Proof of Theorem 9.1. We can assume w.l.o.g. that z0 = 0. (otherwise set f̃(z) = f(z + z0)). Fix z with
|z| < r. Define

g(λ) =

∫ 2π

0

f
(
(1− λ)z + λreiθ

)
reiθ

reiθ − z
dθ.

We want to differentiate g. Since we assumed f ′ continuous (in Definition 7.2), we can apply the above
recalled result and we get

g′(λ) =

∫ 2π

0

reiθ

reiθ − z
· f ′ ((1− λ)z + λreiθ

)
·
(
−z + reiθ

)
dθ =

∫ 2π

0

reiθf ′ ((1− λ)z + λreiθ
)
dθ.

Consider h(θ) = f
(
(1− λ)z + λreiθ

)
then h′(θ) = f ′ ((1− λ)z + λreiθ

)
· iλreiθ. Thus, for λ ̸= 0, we have

g′(λ) =

∫ 2π

0

1

i λ
h′(θ)dθ =

1

i
(h(2π)− h(0)) = 0.

because h(2π) = h(0) = f((1− λ)z + λr). Thus g is constant and g(0) = g(1). But

g(0) =

∫ 2π

0

f(z)
reiθ

reiθ − z
dθ = f(z) ·

(∫ 2π

0

reiθ

reiθ − z
dθ

)
.

Let us set

J :=

∫ 2π

0

reiθ

reiθ − z
dθ =

∫ 2π

0

1

1− z
reiθ

dθ.

But recall that |z| < r so that
∣∣ z
reiθ

∣∣ < r and we have that 1
1− z

reiθ
=
∑∞

n=0

(
z

reiθ

)n
(because of Lemma 6.2,

for any r0 < 1,
∑∞

n=0 w
n = 1

1−w uniformly on {w : such that |w| ≤ r0}). Call r0 = |z|
r then

∣∣ z
reiθ

∣∣ = r0 so

that the convergence 1
1− z

reiθ
=
∑∞

n=0

(
z

reiθ

)n
is uniform on θ. Using the above recalled result to exchange

infinite sums and integrals, we get that

J =

∞∑
n=0

∫ 2π

0

( z

reiθ

)n
.

If n = 0,
∫ 2π

0
z

reiθ
dθ =

∫ 2π

0
1dθ = 2π. If n ≥ 1∫ 2π

0

( z

reiθ

)n
dθ =

∫ 2π

0

znr−ne−inθdθ = znr−n

∫ 2π

0

e−inθdθ = znr−n

[
− 1

in
e−inθ

]2π
0

= 0.

Finally J = 2π and g(0) = 2πf(z).
On the other hand, by definition

g(1) =

∫ 2π

0

f(reiθ)reiθ

reiθ − z
dθ.
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But, recall that since g′(λ) = 0, we have g(0) = g(1), that is

f(z) =
1

2π

∫ 2π

0

f(reiθ)reiθ

reiθ − z
dθ. □

9.4. Analyticity of holomorphic functions.

Theorem 9.2. Let f : U → C, U open f holomorphic. Fix z0 ∈ U . Call ρ the biggest real such that
|z − z0| < ρ implies z ∈ U (we may have ρ = ∞). Then f is equal to the sum of a power series on
{z : |z − z0| < ρ}.

Combined with Theorem 8.4, we get

Corollary 9.3. A function f : U → C is holomorphic if and only if it is analytic.

Remarks:

• ρ is well defined since {r > 0 : |z − z0| < r ⇒ z ∈ U} is non-empty (since U is open) and closed.
• Definition of analyticity: there exists a disk around z0 on which f is equal to a power series (inner
disk of picture). By Theorem 8.4 f is equal to a power series on the outer disk. This is a priori
stronger than analyticity. Theorem 8.4 implies that it is true for every analytic function, since
analytic implies holomorphic.

(schema with two concentric disks, the exterior one being maximal included in U , to illustrate the second
remark.)

Proof. Fix z0 ∈ U . Define ρ as in Theorem 8.4. Take r < ρ. From Theorem 9.1,

f(z) =
1

2π

∫ 2π

0

f
(
z0 + reiθ

)
· reiθ

z0 + reiθ − z
dθ =

1

2π

∫ 2π

0

f
(
z0 + reiθ

) 1

1− z−z0
reiθ

dθ.

But we know that
∑∞

n=0

(
z−z0
reiθ

)n
= 1

1− z−z0
reiθ

with uniform convergence when θ ∈ [0; 2π]. Since f(z0 + reiθ) is

bounded, the convergence
∞∑

n=0

f
(
z0 + reiθ

)(z − z0
reiθ

)n

=
f
(
z0 + reiθ

)
1− z−z0

reiθ

is also uniform for θ ∈ [0; 2π]. We can therefore exchange sum and integral:

2πf(z) =

∞∑
n=0

∫ 2π

0

f(z0 + reiθ)

rneinθ
(z − z0)

ndθ =

∞∑
n=0

(∫ 2π

0

f(z0 + reiθ)

rneinθ
dθ

)
(z − z0)

n.

We have proved that for |z− z0| < r, f(z) =
∑∞

n=0 an(r)(z− z0)
n with an(r) =

1
2πrn

∫ 2π

0
f(z0+ reiθ)e−inθdθ.

By Corollary 6.6 the power series expansion is unique and the coefficients an(r) do not depend on r. Denote
an = an(r) for any r < ρ so that f(z) =

∑∞
n=0 an(z − z0)

n holds for |z − z0| < ρ. □

A consequence of the above proof is the following.

Corollary 9.4 (Cauchy formula for derivatives). f : U → C holomorphic, z0 ∈ U. Assume r > 0 such that
|z − z0| ≤ r ⇒ z ∈ U. For n ≥ 0,

f (n)(z0)

n!
=

1

2πrn

∫ 2π

0

f
(
z0 + reiθ

)
e−inθdθ.

Proof. Both are the n-th coefficient of the power series expansion of f around z0 which is unique by Corol-
lary 6.6 □

We now get easily two results on analytic functions that were announced in Chapter 6, see Remark p. 14.

Proposition 9.5. The sum of a power series is analytic on its disk of convergence.

Proposition 9.6. The composition of analytic functions is analytic.



26 VALENTIN FÉRAY

Proof of Propositions 9.5 and 9.6. We know them for holomorphic functions, but holomorphic and analytic
are equivalent. □

10. First main theorems on holomorphic functions

10.1. Cauchy’s inequalities.

Proposition 10.1. f : U → C analytic, z0 ∈ U . Choose r such that |z − z0| ≤ r ⇒ z ∈ U . Then∣∣∣f (n)(z0)
∣∣∣ ≤ n! r−n sup

θ∈[0;2π]

∣∣f (z0 + reiθ
)∣∣ .

Note that the bound can be also rewritten as∣∣∣f (n)(z0)
∣∣∣ ≤ n! r−n sup

z∈∂D(z0,r)

|f (z)| .

(Indeed, when θ runs over [0; 2π], the quantity z0 + reiθ runs over the circle ∂D(z0, r).)

Proof. Immediate from Cauchy formula for derivatives. Indeed,∣∣∣∣∫ 2π

0

f
(
z0 + reiθ

)
e−inθdθ

∣∣∣∣ ≤ 2π sup
θ∈[0;2π]

∣∣f (z0 + reiθ
)∣∣ . □

Theorem 10.2. fk, f : U → C holomorphic f function (k ≥ 0). Assume that (fk)k≥1 converges to f locally

uniformly on U . Then, for any n ≥ 1,
(
f
(n)
k

)
k≥1

converges locally uniformly to f (n).

Warning! here n is fixed and k → ∞.

Comment: this is a very surprising statement. In real analysis, one can interchange uniform limits and
integrals but certainly not derivatives!

Proof. Fix z0 ∈ U . There exists r > 0 such that sup|w−z0|<r |fk(w) − f(w)| k→∞−−−−→ 0. Take z such that

|z − z0| < r
2 . Apply Proposition 10.1 with

• holomorphic function fk − f
• point z ∈ U
• radius r

2 ∣∣∣f (n)
k (z)− f (n)(z)

∣∣∣ ≤ n!
(r
2

)−n

sup
θ∈[0;2π]

∣∣∣(fk − f)
(
z +

r

2
eiθ
)∣∣∣

if w = z + r
2e

iθ then |w − z0| < |w − z|︸ ︷︷ ︸
r
2

+ |z − z0|︸ ︷︷ ︸
< r

2

< r. Thus

sup
θ∈[0;2π]

∣∣∣(fk − f)
(
z +

r

2
eiθ
)∣∣∣ ≤ sup

|w−z0|<r

|(fk − f)(w)|.

Then ∣∣∣f (n)
k (z)− f (n)(z)

∣∣∣ ≤ n!
(r
2

)−n

sup
|w−z0|<r

|fk(w)− f(w)|

for z such that |z − z0| < r
2 . The right hand side does not depend on z and tends to 0. Therefore∣∣∣f (n)

k − f (n)(z)
∣∣∣ tends to 0 uniformly on z for |z − z0| < r

2 . □

Remark: We will see in the next chapter that the hypothesis ”f holomorphic” is redundant, i.e. a local
uniform limit of holomorphic functions is always holomorphic.
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10.2. Liouville theorem.

Definition 10.3. (entire function) A holomorphic function f : C → C is called an entire function.

Theorem 10.4. (Liouville) Any bounded entire function is constant.

Proof. Let f be an entire bounded function. Let n ≥ 1. Use Cauchy’s inequality for z0 = 0, r > 0. We can
choose any r because U = C. ∣∣∣f (n)(0)

∣∣∣ ≤ n!

rn
sup

θ∈[0;2π]

∣∣f(reiθ)∣∣ .
But f is bounded which implies that there exists M > 0 for all z ∈ C |f(z)| ≤ M . In particular,
supθ∈[0;2π] |f(reiθ)| ≤ M i.e. |f (n)(0)| ≤ n!

rn · M for any r > 0. Thus |f (n)(0)| = 0 (make r −→ ∞).
The power series expansion around 0 writes for z ∈ C,

f(z) =
∑
n≥0

f (n)(0)

n!
zn = f(0).

Indeed we have seen that analytic functions are equal to their power series expansion on any disk contained
in the domain of definition (here C). □
Corollary 10.5. (fundamental theorem of algebra) Let P a non-constant polynomial (with complex
coefficients). Then there exists z ∈ C such that P (z) = 0.

Proof. (By contradiction.) Assume that for any z ∈ C, p(z) ̸= 0. Consider 1
P . Since C → C, z 7→ P (z) and

C \ {0} → C z 7→ 1
z are both holomorphic, z 7→ 1

P (z) is holomorphic. By hypothesis, P is non-constant, i.e.

P (z) = adz
d +

∑d−1
i=0 aiz

i with ad ̸= 0 (d ≥ 1). Then |p(z)| ≥ |ad||z|d −
∑d−1

i=0 |ai||z|i (triangular inequality).
Because |ad| > 0, the polynomial |ad|xd −

∑d−1
i=0 |ai|xi x→∞−−−−→ ∞. There exists M > 0 such that if x > M

implies |ad|xd −
∑d−1

i=0 |ai|xi > 1. Thus |z| > M implies |P (z)| ≥ 1. Or equivalently 1
|P (z)| ≤ 1. Moreover

1
P is a continuous function and thus bounded by K on the compact set {z : |z| ≤ M}. Finally for any

z ∈ C, 1
|P (z)| ≤ max(1, k). In particular, 1

P is bounded. Theorem 10.4 implies that 1
P is constant which is a

contradiction with the hypothesis “P non-constant”. □
10.3. Open mapping theorem.

Definition 10.6. A function f : U → C is called open if the image of any open set is open.

(Defined more generally when both the domain of definition and the image set are topological spaces.)

Warning: this is different than continuous.

Example of a continuous non-open function: f : R → R, x 7→ x2 is NOT an open function. Indeed
f((−1; 1)) = [0, 1) is not an open set.

Theorem 10.7. (open mapping theorem) A non-constant holomorphic function on a connected open
set is open.

Proof. (By contradiction.) Assume that f : U → C is a holomorphic function that U is open and connected,
and that V ⊆ U is open such that f(V ) is not open. By def, f(V ) not open means that there exists
w ∈ V and a sequence (αn)n≥1 with αn → f(w);αn /∈ f(V ). Choose some radius r > 0 such that
|z − w| ≤ r ⇒ f(z) ̸= f(w) or z = w (Theorem 6.8 applied to h(z) = f(z)− f(w)).

(Draw a picture with w, ∂D(w, r) and their image by f ; f(w) is on the boundary of f(U) and approached
by a sequence αn.)

(Idea: for z ∈ ∂D(w, r), f(z)−αn is far from zero for n big enough.) Indeed, |f(z)−f(w)| has a minimum
ϵ > 0 on the compact set {z : |z − w| = r}. On the other hand, for n big enough, |f(w) − αn| ≤ ε/2. This
implies

inf
z∈∂D(w,r)

|f(z)− αn| ≥ ε/2.

On the opposite we know that |f(w) − αn| tends to 0 so that for n big enough. Therefore, for n big
enough,

|f(w)− αn| < inf
z∈∂D(w,r)

|f(z)− αn|.
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Taking the multiplicative inverse, we get a contradiction with Cauchy’s inequality applied to gn(z) =
1

f(z)−αn
for z ∈ V , which asserts that

1

|f(w)− αn|
≤ sup

z∈∂D(w,r)

1

|f(z)− αn|
.

(Since αn /∈ V , the denominator does not vanish for z ∈ V and gn is indeed a holomorphic function on
V .) □

10.4. Maximum modulus principle. Let f : U → C, U open. We say that z0 ∈ U is a local maximum
(resp. strict local maximum) of |f | if there exists a neighbourhood V of z0 such that |f(z)| ≤ |f(z0)| for z
in V (resp. |f(z)| < |f(z0)| for z in V \ {0}).

Theorem 10.8. (Maximum modulus principle; local version) Let f : U → C holomorphic, U open
and connected. Assume that z0 is a local maximum of |f |. Then f is constant.

Comment: that we can not have a strict local max of |f | is trivial from Cauchy inequality; the above
statement with (non-necessarily strict) local max is more subtle, but is an easy consequence of the open
mapping theorem.)

Proof. There exists a neighbourhood of V of z0 such that for z ∈ V, |f(z)| ≤ |f(z0)|. This means
f(V ) ⊆ {w : |w| ≤ f(z0)}. But for any r > 0, D(f(z0), r) ̸⊆ {w : |w| ≤ f(z0)}. Thus f(V ) is not open. The
open mapping theorem implies that f must be constant. □

For the global version, we need the following reminder.

The closure of a set U ⊆ C is (both definitions are equivalent)

• the minimum closed set containing U ;
• the set of l ∈ C which are limits of a sequence in U .

Theorem 10.9. (Maximum modulus principle; global version) Let U be a connected open bounded
set. Let U be its closure. Assume that f : U → C is a continuous function such that f |U is holomorphic.
Let M = maxz∈U |U f(z). Then, for any z ∈ U, |f(z)| ≤ M . Furthermore, if |f(z0)| = M for some z0 ∈ U ,

then f is constant.

Proof. Call M ′ = maxz∈U |f(z)|. Two cases:

• There exists some z0 ∈ U such that |f(z0)| = M ′. Then z0 is a local maximum of |f | which implies
that f is constant in U . ⇒ f is constant on U and M = M ′. The statement holds trivially.

• There exists no z0 ∈ U with |f(z0)| = M ′. Thus there exists z0 ∈ U \ U with |f(z0)| = M ′ so that
M = M ′ and for all z ∈ U, |f(z)| ≤ M ′ = M (nothing to prove for the second statement). □

Example: Consider f : D(0, 1) → C, z 7→ 1 − z2, the maximum is reached at −i and i for which
f(−i) = f(i) = 2. These points indeed lie on the boundary of D(0, 1).

If we look at its real restriction fR, that is [−1, 1] → R, x 7→ 1−x2, it reaches its maximum in 0 (value:1),
which is in the interior of the interval of definition. (There is no maximum principle in real analysis!)

Part D. Path integrals

11. Basics

11.1. Definition and examples.
Terminology: Piecewise-C1 means that there exists a finite subdivision a = t0 < t1 < · · · < tl = b of [a, b] so

that for 1 ≤ i ≤ l, γ|[ti−1,ti] is C
1.

Definition 11.1. (path) A path γ is a continuous piecewise-C1 function from a real bounded closed interval
[a, b] to C.
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(Note that this definition of path is slightly different from the one used to define “path-connectedness”;
here, we assume more regularity, i.e. the path to be piecewise C1.)

Examples:

• Circle of center z0 and radius r. Abuse of notation: the set ∂D(z0, r) = {z : |z− z0| = r} also stands
for the path γ : [0, 2π] → C
θ 7→ z0 + reiθ

(Draw the path.)

• Segment [A;B] A,B ∈ C. Stands for γ : [0, 1] → C
t 7→ (1− t)A+ tB

(Draw the path.)

• Triangles [A;B;C;A] A,B,C ∈ C. Stands for γ : [0; 3] → C

t 7→


(1− t)A+ tB for 0 ≤ t ≤ 1

(2− t)B + (t− 1)C for 1 ≤ t ≤ 2

(3− t)C + (t− 2)A for 2 ≤ t ≤ 3

(Draw the path.)

Definition 11.2. (path integral) Let f : U → C, U open, f continuous. Let γ be a path with Im(γ) ⊆ U.
Then ∫

γ

f(z)dz =

b∫
a

f(γ(t))γ′(t)dt.

To remember it: think of the change of variable formula and set z = γ(t).

Remark: unrelated to volume integral in Rn.

Is it always well-defined? γ′ may not be defined at the point ti appearing in the definition of being piece-

wise C1 (if the left-derivative at ti is different from the right-derivative). Nevertheless, t 7→ f(γ(t))γ′(t) is
well-defined, continuous and bounded on each interval (ti−1, ti). This implies that the integral is well-defined.
We have ∫ b

a

f(γ(t))γ′(t)dt =
l∑

i=1

∫ ti

ti−1

f(γ(t))γ′(t)dt.

Examples: f holomorphic f : U → C, z0 ∈ U . Choose r > 0 such that {z : |z − z0| ≤ r} ⊆ U. Fix z with
|z − z0| < r ∫

∂D(z0,r)

f(w)

w − z
dw

Definition 11.2
=

∫ 2π

0

f
(
z0 + reiθ

)
z0 + reiθ − z

ireiθdθ
Theorem 9.1

= 2πi f(z).

∫
∂D(z0,r)

f(w)

(w − z0)n+1
dw

Definition 11.2
=

2π∫
0

f
(
z0 + reiθ

)
(z0 + reiθ − z0)n+1

ireiθdθ =

i

rn

2π∫
0

f
(
z0 + reiθ

)
e−inθdθ

Corollary 9.4
= 2πi

f (n)(z0)

n!
.



30 VALENTIN FÉRAY

11.2. Some computation rules.

Proposition 11.3. Let f : U → C continuous with Im(γ) ⊆ U . Let γ be a path and φ : [a′; b′] → [a; b] an
increasing C1-bijection. Then γ ◦ φ is a path and,∫

γ

f(z)dz =

∫
γ◦φ

f(z)dz.

Proof. γ ◦ φ is as a composition of continuous functions continuous and piece-wise C1. Then∫
γ◦φ

f(z)dz =

∫ b′

a′
f(γ(φ(t)))(γ ◦ φ)′(t)dt =

∫ b′

a′
f(γ(φ(t)))γ′(φ(t))φ′(t)dt.

With the change of variables u = φ(t); a = φ(a′); b = φ(b′); du = φ′(t)dt we get∫ b

a

f(γ(u))γ′(u)du =

∫
γ◦φ

f(z)dz =

∫
γ

f(z)dz.

□
Graphical interpretation: Several ”paths” (ie. function from [a; b] → C) may have the same picture. For

example [0; 2π] → C θ 7→ z0 + reiθ and [0; 4π] → C θ 7→ z0 + re
iθ
2 describe the same circle (but not traveled

at the same speed). Proposition 11.3 states that integrals on these two paths are the same.

Comment: γ ◦φ is a “change of parametrization” of γ. When we consider path, we often think implicitly
at paths, up to change of parametrization. Thanks to the above proposition, path integrals are well-defined,
when considering such equivalence classes of path. Moreover, in such an equivalence class, there always
exists a path γ : [0, 1] → C, i.e. with a = 0, b = 1. We will sometimes assume this without loss of generality.

Warning! The integral may depend on the orientation of the path.

Proposition 11.4. Let f : U → C continuous with Im(γ) ⊆ U . Let γ : [a; b] → C.
Define γ∗ : [a; b] → C, t 7→ γ(a+ b− t). Then γ∗ is a path and∫

γ∗
f(z)dz = −

∫
γ

f(z)dz.

Proof. γ∗ is obviously continuous and piecewise C1.∫
γ∗

f(z)dz =

∫ b

a

f(γ(a+ b− t))(γ∗)′(t)dt =

∫ b

a

f(γ(a+ b− t))(−γ′(a+ b− t))dt

with a change of variable u = a+ b− t (t = a ↔ u = b; t = b ↔ u = a; du = −dt) we get∫
γ∗

f(z)dz =

∫ b

a

f(γ(u))γ′(u)(−du) = −
∫ b

a

f(γ(u))γ′(u)du = −
∫
γ

f(z)dz. □

Proposition 11.5. Let f : U → C continuous with Im(γ) ⊆ U .Let γ1 and γ2 be paths such that the end
point of γ1 is the starting point of γ2. W.l.o.g. we can assume γ1 : [0; 1] → C and γ2 : [0; 1] → C. Then our
condition writes γ1(1) = γ2(0). The concatenation γ = γ1 ∗ γ2 of γ1 and γ2 is by definition

γ : [0; 2] → C, t 7→

{
γ1(t) if 0 ≤ t ≤ 1;

γ2(t− 1) if 1 ≤ t ≤ 2.

Then γ is a path and ∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz.

Note that the definition of γ is coherent because γ1(1) = γ2(0). To be perfectly formal, since we assume
that both γ1 and γ2 are defined on [0, 1], we rather define the concatenation of two paths, up to change of
parametrization. The concatenation operation is associative, again up to change of parametrization.

(Picture showing two paths and their concatenation.)
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Example: [A;B;C;A] = [A,B] ∗ [B;C] ∗ [C,A].

Proof. γ is continuous and piece-wise C1 because γ|[0;1] and γ|[1;2] are continuous and piece-wise C1 (γ may
not be differentiable in 1).∫

γ

f(z)dz =

∫ 2

0

f(γ(t))γ′(t)dt =

∫ 1

0

f(γ1(t))γ
′
1(t)dt+

∫ 2

1

f(γ2(t))γ
′
2(t)dt =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz. □

Definition 11.6. Let γ : [a; b] → C be a path. Then its length L(γ) is

L(γ) :=

∫ b

a

|γ′(t)|dt.

Remark: With the same hypothesis as in Proposition 11.3 above, we have L(γ ◦ φ) = L(γ). Indeed,

L(γ ◦ φ) =
∫ b′

a′
|(γ ◦ φ)′(t)|dt =

∫ b′

a′
|γ′(φ(t))|φ′(t)dt =

∫ b

a

|γ′(u)|du = L(γ).

Proposition 11.7. (standard estimate) Let γ : [a; b] → C be a path. Let f : U → C continuous with
Im(γ) ⊆ U . Then ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ sup
z∈Im(γ)

|f(z)| · L(γ)

or equivalently ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ sup
t∈[a;b]

|f(γ(t))| · L(γ).

Proof.
∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt. Set M = supz∈Im(γ) |f(z)| = supt∈[a;b] |f(γ(t))|, then |f(γ(t))γ′(t)| ≤

M · |γ′(t)|. This implies ∣∣∣ ∫
γ

f(z)dz
∣∣∣ ≤ ∫ b

a

M · |γ′(t)| = M ·
∫ b

a

|γ′(t)| = M · L(γ). □

Corollary 11.8. Let fn, f : U → C continuous function (n ≥ 1). Assume that fn
n→∞−−−−→ f locally uniformly.

Let γ : [a; b] → C be a path with Im(γ) ⊆ U . Then

lim
n→∞

∫
γ

fn(z)dz =

∫
γ

f(z)dz.

Proof. ∣∣∣∣∫
γ

fn(z)− f(z)dz

∣∣∣∣ = ∣∣∣∣∫
γ

(fn − f)(z)dz

∣∣∣∣ ≤ sup
z∈Im(γ)

|(fn − f)(z)| · L(γ).

It’s enough to show that supz∈Im(γ) |(fn−f)(z)| n→∞−−−−→ 0. Since Im(γ) is compact, this follows directly from
the local uniform convergence. □

11.3. Anti-derivative and integrals.

Definition 11.9. (anti-derivative) Let f : U → C be continuous, U open. An anti-derivative of f is a
function F : U → C which is complex differentiable in any z0 ∈ U and such that F ′(z0) = f(z0) for all
z0 ∈ U .

Proposition 11.10. Let F : U → C be holomorphic, set F ′ = f . Let γ : [a; b] → C be a path with
Im(γ) ⊆ U . Then ∫

γ

f(z)dz = F (γ(b))− F (γ(a)).

Proof.
∫
γ
f(z)dz =

∫ b

a
f(γ(t))γ′(t)dt =

∫ b

a
(F ◦ γ)′(t)dt = F (γ(b))− F (γ(a)). □

Definition 11.11. (closed path) A path γ : [a; b] → C is called closed if γ(a) = γ(b).
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Corollary 11.12. Let f : U → C be continuous. Assume f has an anti-derivative. Let γ be a closed path
with Im(γ) ⊆ U. Then, ∫

γ

f(z)dz = 0.

Notation When γ is a closed path (or a cycle; see later), the path integral is sometimes denoted
∮
γ
f(w)dw

instead of
∫
γ
f(w)dw.

12. Path integrals and holomorphic functions

12.1. Holomorphy criteria via integrals. To explain the content of this section, we start by two informal
remarks.

i) If f has an anti-derivative then f is holomorphic. Indeed, F is complex-differentiable in any point
and F ′ = f is continuous. Then by definition F is holomorphic which implies that F ′ = f is also
holomorphic.

ii) In real analysis, integrals are used to construct anti-derivative via F (t) :=
∫ t

a
f(u)du.

→ to prove that something is holomorphic, we can try to construct an anti-derivative via a similar formula
as above. For this we need the following assumption on the domain.

Definition 12.1. (star-shaped) An open set U ⊆ C is called star-shaped if there exists a ∈ U such that
for any z ∈ U, [a; z] ⊆ U .

Example: (draw a star-shaped domain U .)

Remark: Convex sets are star-shaped (with any choice of a).

Proposition 12.2. Let U be a star-shaped open set. Assume that for any triangle [A;B;C;A] included in
U ∫

[A;B;C;A]

f(z)dz = 0.

Then f has an anti-derivative, and, hence, is holomorphic.

Proof. Let a ∈ U as in Definition 12.1. Then for z ∈ U , define F (z) =
∫
[a;z]

f(w)dw which is well defined

since [a; z] ⊆ U . Let z0 ∈ U . There exists r > 0 such that |z − z0| implies that z ∈ U . For |z − z0| < r

F (z)− F (z0) =

∫
[a;z]

f(w)dw −
∫
[a;z0]

f(w)dw

by definition. By hypothesis∫
[a;z;z0;a]

f(w)dw =

∫
[a;z]

f(w)dw +

∫
[z;z0]

f(w)dw +

∫
[z0;a]

f(w)dw = 0

(Picture showing the triangle [a; z; z0; a] and the various integration paths.
We therefore have

F (z)− F (z0) =

∫
[z0;z]

f(w)dw =

∫ 1

0

f((1− t)z0 + tz)(z − z0)dt.

F (z)− F (z0)

z − z0
− f(z0) =

∫ 1

0

[f((1− t)z0 + tz)− f(z0)]dt.

We use the continuity of f in z0 : Fix ε > 0 then there exists r′ > 0 such that |z′−z0| < r′ ⇒ |f(z′)−f(z0)| ≤ ε
for |z − z0| < min(r, r′), then for each 0 ≤ t ≤ 1,

|(1− t)z0 + tz − z0| ≤ t|z − z0| < r′

thus
|f((1− t)z0 + tz)− f(z0)| ≤ ε

integrating over t between 0 and 1, ∣∣∣∣F (z)− F (z0)

z − z0
− f(z0)

∣∣∣∣ ≤ ε.
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i.e.

lim
z→z0

F (z)− F (z0)

z − z0
− f(z0) = 0.

This proves that F ′(z0) = f(z0). Since this holds for any z0 in U , we have proved that F is an anti-derivative
of f ; the existence of such an anti-derivative implies that f is holomophic. □

Remarks:

• It is enough to assume that
∫
[a;B;C;a]

f(z)dz = 0 where a is a fixed point of U such that

z ∈ U ⇒ [a; z] ⊆ U.
• There are two natural notions for a triangle included in U .

– [A;B;C;A] ⊆ U (only the sides of any triangle assumed in U).
– We say that a triangle is completely included in U if [A;B;C;A] ⊆ U and its interior is also

included in U . If U is star-shaped, then ∆ included in U if and only if ∆ completely included
in U .

We now drop the “star-shape” hypothesis.

Proposition 12.3. (Morera’s criterion) Let f : U → C continuous, U open. Assume that, for all
triangles [A;B;C;A] that are completely included in U ,∫

[A;B;C;A]

f(z)dz = 0.

Then f is holomorphic.

Proof. Let z0 ∈ U . Then there exists r > 0 such that |z − z0| < r ⇒ z ∈ U . Consider the restriction
f |D(z0,r).

• f |D(z0,r) is a continuous function.
• Defined on D(z0, r) which is a convex open set, in particular it is star-shaped.
• for any triangle [A;B;C;A] included in D(z0, r), [A;B;C;A] is completely included in D(z0, r), thus
in U .

Therefore by hypothesis, ∫
[A;B;C;A]

f(z)dz = 0.

Thus f |D(z0,r) is holomorphic for all z0 ∈ U ⇒ f holomorphic on U . □

(Informally, the proof says that every open set is locally star-shaped. Since being holomorphic is a local
property, we do not need the “star-shape hypothesis”. On the opposite, “having an anti-derivative” is not a
local property; so we cannot conclude here that f has an anti-derivative.)

12.2. Complex derivatives are automatically continuous. The following is a kind of converse to the
results of the previous section. Integrals of holomorphic functions on triangles do vanish.

Proposition 12.4. (Goursat) Let f : U → C, U open, f continuous. Assume f is complex differentiable
in all points of U , but possibly one (say p). Then for any triangle [A;B;C;A] completely included in U , we
have ∫

[A;B;C;A]

f(z)dz = 0.

In particular, f is holomorphic.

Comment: In other terms, if we assume f complex differentiable in all points of an open set U but one,
then f is automatically complex-differentiable in this last point and f ′ is automatically continuous.

Proof. Let ∆ be a triangle completely included in U . We split the proof in four different cases.
First assume p is outside ∆. Consider the midpoint subdivision of ∆ as shown in Fig. 1 below.
Claim: We have

∫
∆
f(z)dz =

∑4
i=1

∫
∆i

f(z)dz.
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∆4

∆3

∆2∆1

A B

C

C’

A’B’

Figure 1. The midpoint subdivision of ∆.

P roof of the claim: Denote C ′ as midpoint of [A;B], A′ as midpoint of [C;B], B′ as midpoint of [A;C],
then ∫

∆1

f(z)dz =

∫
[A;C′]

f(z)dz +

∫
[C′;B′]

f(z)dz +

∫
[B′;A]

f(z)dz.

Similarly for
∫
∆2

f(z)dz,
∫
∆3

f(z)dz,
∫
∆4

f(z)dz. When we sum
∫
[C′;B′]

f(z)dz and
∫
[B′;C′]

f(z)dz cancel each

other (same for [B′;A′] and [A′;C ′]). We get

4∑
i=1

∫
∆i

f(z)dz =

∫
[A;C′]

f(z)dz+

∫
[B′;A]

f(z)dz+

∫
[C′;B]

f(z)dz+

∫
[B;A′]

f(z)dz+

∫
[A′;C]

f(z)dz+

∫
[C;B′]

f(z)dz =

∫
∆

f(z)dz.

The claim is proved.

|
∫
∆
f(z)dz| ≤

∑4
i=1 |

∫
∆i

f(z)dz| implies that there exists 1 ≤ i ≤ 4 such that |
∫
∆i

f(z)dz| ≥ |
∫
∆

f(z)dz|
4 .

Call ∆(1) the triangle ∆i as above. Subdivide ∆(1) as shown in Fig. 2.

∆4

∆3

∆(1) = ∆2

∆1

A B

C

C’

A’B’

Figure 2. The midpoint subdivision of ∆(1).

Then
∫
∆(1) f(z)dz =

∑4
i=1

∫
∆

(1)
i

f(z)dz. There exists 1 ≤ i ≤ 4 such that |
∫
∆

(1)
i

f(z)dz| ≥ 1
4 |
∫
∆(1) f(z)dz|.

Call this triangle ∆(2). Iterating the idea, we construct a sequence ∆(1),∆(2),∆(3), . . . such that∣∣∣∣∫
∆(n)

f(z)dz

∣∣∣∣ ≥ 1

4n

∣∣∣∣∫
∆

f(z)dz

∣∣∣∣ (∗)

L(∆(n)) = 1
2nL(∆). (length of a triangle seen as path = perimeter of a triangle). Call ∆n = triangle ∆(n)

with its interior. By construction ∆1 ⊇ ∆2 ⊇ ∆3 ⊇ · · · ⊇ ∆n ⊇ . . . . The diameter diam(∆n) tends to 0
(for a triangle, diam(∆) ≤ 1

2L(∆))), so that, by a classical theorem of analysis, the intersection
∩

n≥1 ∆
n is

non-empty and reduced to a single point {z0}.
But f is complex differentiable in z0 ∈ U (because we assumed that ∆ ⊆ U and p is outside ∆ ). There

exists r > 0 such that

|z − z0| < r ⇒ f(z) = f(z0) + f ′(z0)(z − z0) + (z − z0)α(z)

with |α(z)| < ε. For n sufficiently large, diam(∆n) ≤ r,∫
∆(n)

f(z)dz =

∫
∆(n)

f(z0)dz +

∫
∆(n)

f ′(z0)(z − z0)dz +

∫
∆(n)

(z − z0)α(z)dz.
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But
∫
∆(n) f(z0)dz = 0 (closed path, z 7→ f(z0) has an anti-derivative z 7→ f(z0) · z)∫

∆(n)

f ′(z0)(z − z0)dz = 0

for the same reason. Recall that for z ∈ ∆(n),

|z − z0| ≤ diam
(
∆(n)

)
≤ 1

2n+1
· L(∆).

Hence we get∣∣∣∣∫
∆(n)

f(z)dz

∣∣∣∣ ≤ ∫
∆(n)

|(z − z0)||α(z)|dz ≤ 1

2n+1
· L(∆) · ε · L

(
∆(n)

)
≤ 1

4n
L(∆)2

2
· ε.

Comparing with (*), we have
1

4n

∣∣∣∣∫
∆

f(z)dz

∣∣∣∣ ≤ 1

4n
L(∆)2

2
· ε,

which is true for any ε > 0, thus
∫
∆
f(z)dz = 0.

Assume now p is a vertex of ∆. We subdivide ∆ as in Fig. 3.

∆3 ∆2

∆1
p ε

ε

Figure 3. Subdivision of ∆ is three triangles, where ∆1 is a triangle of side ε around p.

Claim:
∫
∆
f(z)dz =

∑3
i=1

∫
∆i

f(z)dz

The claimed is proved exactly as the above claim for midpoint subdivision. From the previous case (p is
outside the triangle), we know that

∫
∆2

f(z)dz =
∫
∆3

f(z)dz = 0. Thus∣∣∣∣∫
∆

f(z)dz

∣∣∣∣ = ∣∣∣∣∫
∆1

f(z)dz

∣∣∣∣ ≤ L(∆1) sup
z∈∆1

|f(z)| . (∗∗)

But L(∆1) ≤ 4ε. Since f is a continuous function, supz∈∆1
|f(z)| ≤ M for ε sufficiently small. (∗∗) is true

for any ε > 0, so that
∫
∆
f(z)dz = 0.

Assume now p is on an edge of the triangle ∆. We subdivide ∆ as in Fig. 4.

∆2∆1

p

Figure 4. Subdivision of ∆ into two triangles, such that p is a vertex of ∆1 and ∆2.

Claim (proved as before):
∫
∆
f(z)dz =

∫
∆1

f(z)dz +
∫
∆2

f(z)dz.

From the previous case (where p is a vertex of the triangle),
∫
∆1

f(z)dz =
∫
∆2

f(z)dz = 0, so that∫
∆
f(z)dz = 0, as wanted.

Finally, assume that p is inside the triangle. We subdivide ∆ as in Fig. 5 and apply the previous case. □
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∆2∆1

p

Figure 5. Subdivision of the triangle in two parts such that p is on an edge of the triangles
∆1 and ∆2.

Corollary 12.5. Let fn, f : U → C, U open. Assume fn holomorphic for n ≥ 1. Assume fn
n→∞−−−−→ f

locally uniformly on U . Then f is holomorphic.

Proof. Take a triangle ∆ completely included in U . Then
∫
∆
fn(z)dz = 0 for n ≥ 1 by Proposition 12.4.

But, from Corollary 11.8, we know that
∫
∆
fn(z)dz

n→∞−−−−→
∫
∆
f(z)dz so that

∫
∆
f(z)dz = 0. Proposition 12.3

implies that f is holomorphic. □

Remarks on the proof: In general, Goursat’s theorem and Morera’s criterium are very convenient to prove
that a function defined as a limit, an integral, . . . is holomorphic!

Remarks on the statement:

• Not true in real analysis (a uniform limit of differentiable functions might not be differentiable).

• We saw in the previous chapter that this also implies f
(k)
n

n→∞−−−−→ f (k) for k ≥ 1, locally uniformly.

12.3. Summary on holomorphic functions.

Theorem 12.6. f : U → C, U ⊆ C open set. Then the following are equivalent:

i) f is holomorphic.
ii) f is complex-differentiable on any z ∈ U and f ′ is continuous.
iii) f satisfies Cauchy’s formula

f(z) =

∫
∂D(z0,r)

f(w)

w − z
dw.

iv) For each z0 ∈ U , the function f admits a power series expansion on the biggest open disk centred in
z0 included in U.

v) f is analytic.
vi) f is infinitely many times complex-differentiable.
vii) f is continuous on U and f is complex-differentiable in any point of U (but eventually one).
viii) For any triangle completely included in U∫

[A;B;C;A]

f(z)dz = 0.

ix) If V ⊆ U and V is star-shaped, then f |V has an anti-derivative.
x) If V ⊆ U and V is star-shaped, then ∫

γ

f(z)dz = 0

for any closed path with Im(γ) ⊆ V.

Proof. (i) ⇔ (ii) by definition. (in some textbooks (i) ⇔ (vii) by definition)
(ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) (previous chapter)
(vi) ⇒ (ii) (trivial)
(ii) ⇒ (vii) (trivial)
(vii) ⇒ (viii) ⇒ (ix) ⇒ (ii) (this chapter)
(ix) ⇒ (x) Corollary 11.12
(x) ⇒ (ix) Proposition 12.2 □
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Remark: in (x) ”star-shaped” is crucial: below, we give two examples of non-zero integrals of an holo-
morphic function along a closed path, in non star-shaped domains. We will see later in the lecture that “V
star-shaped” can be replaced by the less restrictive assumption “V simply connected”.

Example 1: U = C \ {0}, f : z 7→ 1
z holomorphic on U and∫
∂D(0,1)

1

z
dz =

∫ 2π

0

ieiθ

eiθ
dθ = 2πi.

Example 2: f : U → C holomorphic. Fix z ∈ U , consider g(w) = f(w)
w−z holomorphic on U \ {z} and∫

∂D(z0,r)

g(w)dw = f(z) by(iii).

f(z) is ”in general” non-zero, ”because” U \ {z} is not star-shaped.

13. Winding numbers

Goal of this section: generalize Cauchy’s formula to other closed paths than circles. This needs the notion
of winding number.

13.1. Definition and properties. Throughout this section, γ : [α;β] → C is a closed path and we define
Ω = C \ Im(γ).

(Draw a closed path, and show what Ω is; insist that it is typically not connected.)

Definition 13.1. (winding number) For z ∈ Ω, define

nγ(z) =
1

2πi

∫
γ

1

w − z
dw.

nγ(z) is called winding number of γ around z.

(Since z ∈ Ω, the denominator in the above integrand does not vanish for w ∈ Im(γ).)
Remark: We will see later that nγ(z) can be interpreted as ”number of times γ is turning (or winding)

around z”.

Proposition 13.2. For any closed path γ, the function nγ is a continuous function on Ω.

Proof. By definition,

2π i nγ(z) =

∫
γ

1

w − z
dw =

∫ β

α

γ′(t)

γ(t)− z
dt =

l−1∑
i=0

∫ ti+1

ti

γ′(t)

γ(t)− z
dt

where γ is C1 on each segment [ti; ti+1] (t0 = α; tl = β). Then, for each i ≤ l−1, the function (t, z) 7→ γ′(t)
γ(t)−z

is continuous and bounded on [ti; ti+1]×K for each compact K ⊆ Ω. Thus

z 7→
∫ ti+1

ti

γ′(t)

γ(t)− z
dt

is continuous on K. We conclude that nγ is continuous on Ω. □

Proposition 13.3. For any closed path γ, the function nγ only takes integer values on Ω.

Remark: here, the fact that γ is closed is crucial. In general, do not write nγ for non-closed paths (even
if the above integral makes sense).

Proof. Assume w.l.o.g. α = 0, β = 1. Introduce

φ(t) = exp

(∫ t

0

γ′(s)

γ(s)− z
ds

)
z fixed.
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• φ(0) = exp(0) = 1

• φ(1) = exp
(∫ 1

0
γ′(s)

γ(s)−zds
)
= exp

(∫
γ

1
w−zdw

)
= exp (2πinγ(z))

• Look at φ′ :. For t in [α, β] \ {t1, · · · , tk−1} (the ti are the points appearing in the subdivision wrt
which γ is piece-wise C1), we have

φ′(t)

φ(t)
=

γ′(t)

γ(t)− z
,

and therefore, (
φ(t)

γ(t)− z

)′

=
φ′(t)(γ(t)− z)− γ′(t)φ(t)

(γ(t)− z)2
= 0.

The function t 7→ φ(t)
γ(t)−z is continuous on [α, β] and has derivative zero, except possibly at finitely

many points. Thus it is constant.

In particular, φ(1)
γ(1)−z = φ(0)

γ(0)−z . But γ is a closed path, i.e. γ(0) = γ(1), implying that φ(0) = φ(1).

Combining the three items, we get exp (2πi nγ(z)) = 1, which proves that nγ(z) is an integer. □

Corollary 13.4. For any connected subset V of Ω, the function nγ is constant on V .

Proof. By Lemma 3.12 and the continuity of nγ , we know that nγ(V ) is connected. Moreover, it is included
in Z.

But, in Z, each singleton {i} ⊆ Z is open ({i} = (i− 1, i+ 1) ∩ Z) and closed ({i} = {i} ∩ Z). Thus the
connected subsets of Z are singletons and ∅.

We conclude that nγ(V ) is either empty (which can only happen if V is empty) or a singleton. I.e. nγ is
constant on V . □

13.2. Cauchy formula with general paths in star-shaped domains. The following proposition justifies
why we introduced the winding number.

Proposition 13.5. U ⊆ C star-shaped open set, f : U → C holomorphic. γ closed path with Ω := Im(γ) ⊆ U
Then, for any fixed z ∈ U \ Ω, we have∫

γ

f(w)

w − z
dw = 2πinγ(z)f(z).

Proof. Define the auxiliary function

g(w) =

{
f(w)−f(z)

w−z for w ∈ U \ {z}
f ′(z) for w = z

Clearly, g is continuous on U and holomorphic on U \ {z}. From the results of the previous chapter, g is
holomorphic on U . Thus

∫
γ
g(w) = 0 because U is star-shaped and∫

γ

f(w)

w − z
dw = f(z)

∫
γ

1

w − z
dw = 2πinγ(z)f(z). □

13.3. Computation of winding number.

Preliminary: decomposition of a set into connected components
Let Ω be a subset of C (what follows is valid more generally in any topological space). We consider the
maximal connected subsets of Ω (maximal for inclusion). Call them (Ωi)i∈I (I might be finite or infinite).
This forms a partition of Ω. I.e.

• they are disjoint (if Ωi ∩ Ωj ̸= ∅, then it is easy to prove that the union Ωi ∪ Ωj is connected,
contradicting the maximality of Ωi).

• and their union is Ω (for each x in Ω, the set {x} is connected, and thus is either strictly contained
in some Ωi, or {x} is maximal connected and is itself one of the Ωi).
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The (Ωi)i∈I are called connected components of Ω.

Back to winding numbers:
Recall that the winding number is constant on the connected subsets of Ω, so in particular on its connected
components. On one of them, its value is trivially determined.

Lemma 13.6. Ω (= C \ Im(γ)) has exactly one unbounded connected component Ω∞ and, for z in Ω∞,
nγ(z) = 0.

Proof. By definition, γ is continuous on a compact set, and therefore bounded. I.e. ∃M > 0 such that

Im(γ) ⊆ D(0,M). Consider D(0,M)
c
:= {z : |z| > M}. We have D(0,M)

c
⊆ Ω.

Claim: D(0,M)
c
is path-connected, and hence connected.

(Proof of the claim by a picture.)

Therefore, D(0,M)
c
is included in one connected component of Ω. Call this connected component Ω∞.

Clearly Ω∞ is unbounded. Take another connected component Ωi. Then Ωi ∩ Ω∞ = ∅. Since Ω∞ contains

D(0,M)
c
, this implies that Ωi ⊆ D(0,M); in particular, Ωi is bounded. We have proved the existence of a

unique unbounded connected component.

From Corollary 13.4, nγ is constant on Ω∞. But nγ(z) =
1

2πi

∫
γ

1
w−zdw. Thus by standard estimate,

|nγ(z)| ≤
1

2πi
· L(γ) · sup

w∈Im(γ)

∣∣∣∣ 1

w − z

∣∣∣∣ .
For |z| > M, w ∈ Im(γ), |w − z| ≥ |z| − |w| ≥ |z| −M. Since |w| ≤ M, supw∈Im(γ)

∣∣∣ 1
w−z

∣∣∣ ≤ 1
|z|−M . Finally

|nγ(z)| ≤
1

2πi
L(γ)

1

|z| −M
.

When |z| −→ ∞ this upper bound tends to 0. But nγ(z) is constant on Ω∞. So nγ(z) = 0 on Ω∞. □

Here is an interesting consequence, that we shall use later.

Corollary 13.7. U star-shaped domain. γ path with Im(γ) ⊆ U . Let b ̸∈ U. Then nγ(b) = 0.

Proof. By definition of star-shaped, we can take a ∈ U such that z ∈ U implies [a; z] ∈ U . Recall that b ̸∈ U .
This implies that for all λ ≥ 0, b+ λ(b− a) ̸∈ U (otherwise b would be in U ; make a picture).

Now, for any M > 0, the points b and b+M(b−a) are connected by a path in C\U and thus in Ω (the path
can be chosen as the line segment between them). They are therefore in the same connected component of
Ω. Since M may be chosen arbitrary large, this must be the unbounded component Ω∞. From the previous
Lemma, nγ(b) = 0. □

Case of circles:
Let z0 ∈ C, r > 0 and γ = ∂D(z0, r). Let Ω = C\∂D(z0, r). Ω has two connected components {z : |z−z0| > r}
(unbounded) and {z : |z − z0| < r} (bounded).
(These two sets are open and closed in Ω, and trivially path-connected, so that they are indeed the connected
components of Ω.)

(Draw a circle and color the two connected components of its complement.)

Proposition 13.8. With the notation above

n∂D(z0,r)(z) =

{
0 if |z − z0| > r

1 if |z − z0| < r.

Proof. {z : |z − z0| > r} is the unbounded connected component of Ω. This implies the first case. For the
second case, we can assume w.l.o.g. that z = z0 (we know n∂D(z0,r) is constant on {z : |z − z0| < r}). Then

2πinγ(z0) =

∫
∂D(z0,r)

1

w − z0
dw =

∫ 2π

0

ireiθ

reiθ
dθ = 2πi.

⇒ nγ(z0) = 1. □
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Remarks:

• Proposition 13.5 for circles writes∫
∂D(z0,r)

f(w)

w − z
dw =

{
2πi f(z) if z is inside the circle

0 if z is outside the circle.

This indeed contains Cauchy formula.
• If we take γ∗ (path γ taken in the other direction γ∗(t) = γ(1− t))), then∫

γ∗

1

w − z
dw = −

∫
γ

1

w − z
dw.

Therefore, nγ∗(z) = −nγ(z). In particular, the winding number of a circle in clockwise direction is
0 or -1.

More general closed paths (the wall crossing theorem)

Theorem 13.9. (wall crossing theorem) We assume that γ : [α;β] → C closed path. and that there
exists u, v with α < u < v < β and a, b ∈ C such that

• γ(u) = a− b;
• γ(v) = a+ b;
• |γ(t)− a| < |b| if and only if u < t < v;
• |γ(t)− a| = b if and only if t = u or t = v.

Then nγ(a+ ib) = nγ(a− ib) + 1.

a

a+ b

a− b

γ

a+ ib

a− ib

Proof. Call γint and γext the parts of the path γ that are inside and outside the disk D(a, |b|) respectively
(red disk on the above picture). We also consider the semi circle C1 (resp. C2) of center a and radius |b|
going from a + b to a − b (resp. from a − b to a + b) in the trigonometric direction. Finally let z+ (resp.
z−) be some point inside the disk D(a, |b|) in the same connected component of Ω as a+ ib (res. a− ib). In
particular,

nγ(z+) = nγ(a+ ib), nγ(z−) = nγ(a− ib).

We use + for path concatenation and ∗ for the path reversing operation. We note that:

• z− is in the unbounded component of the complement of the closed path γint + C1, so that

nγint+C1(z−) = 0.

• z+ is in the unbounded component of the complement of the closed path γint + C∗
2 , so that

nγint+C∗
2
(z+) = 0.

• z+ and z− are inside the circle ∂D(a, |b|) = C1 + C2, so that

nC1+C2(z+) = nC1+C2(z−) = 1.

• z+ and z− are in the same connected component of the closed path γext + C2, so that

nγext+C2(z+) = nγext+C2(z−).
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We conclude as follows

nγ(z+) = nγint+γext(z+) = nγint+C∗
2
(z+) + nγext+C2(z+) = nγext+C2(z−)

= nγext+γint(z−) + nC1+C2(z−)− nγint+C1(z−) = nγ(z−) + 1. □

Remarks:

• Informally, the theorem says ”when we cross a wall, we increase or decrease the winding number by
1, depending on the orientation of the path” → from this and the fact that nγ(z) = 0 on Ω∞ we can
compute winding numbers for ”nice” paths. The winding number of a given z then is, at its name
suggests, the (algebraic) number of times the path γ turns around z in the trigonometric direction.
For example,

−2
−1 0

−1

1

−1

1

−1−2
0

• Jordan’s theorem states that the complement of a simple closed path (i.e. without self-intersections)
has exactly two connected components, one bounded and one unbounded. The value of the winding
number in the bounded region is then ±1 (the sign depends on the orientation of the path), as can
be proved in most cases with wall-crossing theorem. In general, what are these two components is
quite obvious, and we use that the winding number is ±1 inside and 0 outside without formal proof.

14. General Cauchy formula

Goal of the section: give a Cauchy formula that holds also in non star-shaped domains (but as seen before,
we need some hypothesis on the path). It will more convenient to consider formal linear combinations of
paths (called chains and cycles) instead of single paths.

14.1. The statement.

Definition 14.1. (chain) A chain Γ is a finite linear combination of paths with integer coefficients that is

Γ =
d∑

i=1

αiγi αi ∈ Z, γ1, . . . , γd are paths

By convention, if

Γ =
d∑

i=1

αiγi Im(Γ) :=
d∪

i=1

Im(γi)

if f : U → C continuous with Im(Γ) ⊆ U,∫
Γ

f(w)dw =

d∑
i=1

αi

∫
γi

f(w)dw.

We often implicitly consider chains up to replacing a formal combination γ1 + γ2 by their concatenation
(when it’s well defined). This does not change the integral! This allows to assume that each path γi in a
chain is C1 (and not only piecewise C1; indeed each path is a concatenation of finitely many C1 paths).

Definition 14.2. (cycle) A cycle is a chain Γ =
∑

αiγi such that each a ∈ C appears as many times as
starting point of γi as as endpoints of γi (counted with multiplicity αi).

Examples:
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• Γ = [A;B] + [B;C] + [C;A] (formal sum of paths, not the concatenation). A is once a starting point
(of [A;B]) and once and endpoint (of [C;A]). Same for B and C ⇒ Γ is a cycle.

• Γ = 2[A;B] + [B;C] − [A;C] + γ where γ is any path from B to A. A is starting point of [A;B]
(with multiplicity 2) and [A;C] (with multiplicity -1), endpoint of γ. B and C are also as many
times starting points than endpoints. ⇒ Γ is a cycle.

• Every linear combination of closed paths is a cycle.

If Γ is a cycle and z ̸∈ Im(Γ) define

nΓ(z) =
1

2πi

∫
Γ

1

w − z
dw.

Note that nΓ(z) =
d∑

i=1

αinγi(z) if Γ =
d∑

i=1

αiγi(z) with γi closed path (do not write this for non closed paths).

Lemma 14.3. Let Γ be cycle. Then its winding number nΓ is a continuous function on Ω := C \ Im(Γ),
taking integer values. Thus nΓ is constant on connected components of Ω. Moreover nΓ(z) = 0 for z in the
unbounded connected component.

Proof. Same proof that for closed paths. □

Theorem 14.4 (general Cauchy formula). Let U be an open set . Let Γ be a cycle in U, z ∈ U, z ̸∈ Im(Γ).
Assume that, for any α ̸∈ U, nΓ(α) = 0. Then, for f : U → C holomorphic,∫

Γ

f(w)

w − z
dw = 2πinΓ(z)f(z).

Remark: We do not assume U to be star shaped. This hypothesis is somehow replaced by the asumption
“for any α ̸∈ U, nΓ(α) = 0”.

Let us compare these two assumptions. If U star-shaped and γ closed path in U, α ̸∈ U, we have that
nγ(α) = 0 because α is in the unbounded component of C \ Im(γ). This also holds for a cycle Γ instead of
the closed path γ. In conclusion, the assumption of the theorem holds as soon as U is star-shaped. So this
theorem is a generalisation of Cauchy formula for star-shaped sets.

14.2. The proof. Define

g(z, w) =

{
f(w)−f(z)

w−z if w ̸= z

f ′(z) if w = z.

We want to prove that
∫
Γ
g(z, w)dw = 0 for fixed z ∈ U \ Im(Γ). Indeed, if this holds, the same proof as

for star-shaped domains will prove Cauchy’s formula.

Define two auxiliary functions

h1 : U → C z 7→
∫
Γ

g(z, w)dw

h2 : Ω0 → C z 7→
∫
Γ

f(w)

w − z
dw

where Ω0 is the open set {α ∈ C\ Im(Γ) : nΓ(α) = 0}. (By assumption Ω0 contains C\U , i.e. Ω0∪U = C).
If z ∈ U ∩ Ω0, then

h1(z) =

∫
Γ

f(w)− f(z)

w − z
dw =

∫
Γ

f(w)

w − z
dw −

∫
Γ

f(z)

w − z
dw︸ ︷︷ ︸

=2πinΓ(z)f(z)=0

= h2(z).

We can therefore define the following function on U ∪ Ω0 = C.

h(z) =

{
h1(z) for z ∈ U

h2(z) for z ∈ Ω0.

Claim: (proved below) h1 and h2 are holomorphic functions, and hence, h is an entire function (holomor-
phic on C).

We will prove that h is bounded, by considering its behaviour when |z| −→ ∞.
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First note that for |z| large enough, z is in the unbounded connected component of C \ Im(Γ) which
implies nΓ(z) = 0, i.e. z ∈ Ω0. Therefore, for |z| large enough,

|h(z)| = |h2(z)| =
∣∣∣∣∫

Γ

f(w)

w − z

∣∣∣∣ ≤ L(Γ) · sup
w∈Im(Γ)

|f(w)|
|w − z|

.

But Im(Γ) is a compact subset of C. Therefore it is bounded by some M1 and |f(w)|, for w in Im(Γ), is
bounded by some M2. Then for w ∈ Im(Γ), we have

|f(w)|
|w − z|

≤ M2

|z| − |w|
≤ M2

|z| −M1
.

Combining both inequalities, for |z| large enough,

|h(z)| ≤ L(Γ)
M2

|z| −M1
.

This upper bound tends to 0 when |z| −→ ∞, so that lim|z|→∞ h(z) = 0. In particular, h is bounded.
(Indeed there exists M3 > 0 such that if |z| ≥ M3, then |h(z)| ≤ 1. But h is bounded on the compact set

D(0,M3), so that h is bounded on C.)
By Liouville’s theorem (Theorem 10.4), the function h is constant. Since it tends to 0 for |z| → ∞, it must

be identically 0, so that for all z ∈ C, h(z) = 0. Thus h1(z) = 0 for z in U , which is (stronger than) what we
wanted to prove. This ends the proof, up to proving the above claim, that h1 and h2 are holomorphic.

Proof of the claim: We first focus on h1. We shall need the following lemma.

Lemma 14.5. g is a continuous function on U2.

Remark (skipped in class). By definition, g is clearly continuous on a neighbourhood of (z0, w0) with

z0 ̸= w0. We can also see that for all z0, the function w 7→ g(z0, w) is continuous and for all w0, the function
z 7→ g(z, w0) also, but this is not sufficient to prove the continuity as a function of two variables (z, w).

Proof. (skipped in class) Observe that

g(z, w) =

∫ 1

0

f ′[((1− t)z + tw)]dt

for z, w ∈ U. Indeed if z = w, ∫ 1

0

f ′[((1− t)z + tw)]dt =

∫ 1

0

f ′(z)dt = f(z)

if z ̸= w, ∫ 1

0

f ′[((1− t)z + tw)]dt =

[
1

w − z
f((1− t)z + tw)

]1
0

=
1

w − z
(f(w)− f(z)) .

The function (t, z, w) → f ′[(1− tz + tw)] is continuous on [0; 1]× U × U so that∫ 1

0

f ′[((1− t)z + tw)]dt

is continuous in (z, w). □

We first prove that h1 is continuous on U . If Γ =
d∑

i=1

αiγi, then

h1(z) =

∫
Γ

g(z, w)dw =

d∑
i=1

αi

∫
γi

g(z, w)dw =

d∑
i=1

αi

∫ 1

0

g(z, γi(t))γ
′
i(t)dt.

Assume w.l.o.g. γi : [0; 1] → C. γi is C1 (and not only piece-wise C1). Then, for each i, the function
(z, t) 7→ g(z, γi(t))γ

′
i(t) is continuous. Hence, its integral over t in the compact interval [0, 1] is continuous

in z. Finally h1 is continuous in z.
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We now apply Morera’s criterium to prove that h1 is holomorphic on U . Let ∆ be a triangle completely
included in U . We have ∫

∆

h1(z)dz =

∫
∆

(∫
Γ

g(z, w)dz

)
dw.

Second claim: ∫
∆

(∫
Γ

g(z, w)dz

)
dw =

∫
Γ

(∫
∆

g(z, w)dw

)
dz.

Proof of this second claim: We write Γ =
∑

αiγi and ∆ = δ1 + δ2 + δ3, where the γi and the δj are C1

on [0, 1]. Clearly it is enough to prove the claim, replacing Γ and ∆ by γi and δj , respectively. We consider
the two following integrals∫

γi

(∫
δj

g(z, w)dw

)
dz =

∫ 1

0

(∫ 1

0

g(δj(t)γi(u))δj
′(t)γi

′(u)du

)
dt

∫
δj

(∫
γi

g(z, w)dz

)
dw =

∫ 1

0

(∫ 1

0

g(δj(t)γi(u))δj
′(t)γi

′(u)dt

)
du.

But g(δj(t)γi(u))δj
′(t)γi

′(u) is continuous on [0; 1]× [0; 1] and hence bounded. Therefore∫ 1

0

∫ 1

0

∣∣g(δj(t)γi(u))δj ′(t)γi′(u)∣∣ dtdu < +∞

and Fubini’s theorem asserts that both integrals are equal.

Back to the proof that h1 is holomorphic.∫
∆

h1(z)dz =

∫
Γ

(∫
∆

g(z, w)dz

)
dw

but for a fixed w, z 7→ g(z, w) is holomorphic (continuous and complex-differentiable in U \ {w}) hence∫
∆
g(z, w)dz = 0. Thus

∫
∆
h1(z)dz =

∫
Γ
0dw = 0.

The proof that h2 is holomorphic is similar (in fact, slightly simpler, there is no continuity issue of the
integrand). □

Remark: it is important to remember (and be able to re-use) the above strategy. If you want to prove that
an integral with some parameter define a holomorphic function of this parameter, use Morera’s criterium
and exchange the order of integration with Fubini’s theorem. This works easily in many situations, so that
we won’t give a general theorem of this kind in this lecture.

14.3. Some direct corollaries.

Corollary 14.6. U open, Γ cycle in U such that for any α ̸∈ U, nΓ(α) = 0. For all holomorphic g : U → C,∫
Γ

g(w)dw = 0.

Proof. Chose arbitrarily z ∈ U \ Im(Γ). Set f(w) = g(w)(w − z), this is a holomorphic on U . From the
general Cauchy formula (Theorem 14.4), we have that∫

Γ

f(w)

w − z
dw = 2πinΓ(z)f(z).

But f(w)
w−z = g(w) and f(z) = 0, so that the above formula specializes to

∫
Γ
g(w)dw = 0. □

Corollary 14.7. Let U be a domain, Γ1 and Γ2 closed paths (or cycles) in U such that for any α ̸∈
U, nΓ1(α) = nΓ2(α). For all holomorphic g : U → C,∫

Γ1

g(w)dw =

∫
Γ2

g(w)dw.

Proof. Apply Corollary 14.6 to Γ := Γ1 − Γ2. Since nΓ(α) = nΓ1(α)− nΓ2(α) = 0 for all α /∈ U , we have∫
Γ

g(w)dw =

∫
Γ1

g(w)dw −
∫
Γ2

g(w)dw = 0. □
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15. Homotopy and simply connected sets

In this section, we use the following non-standard terminology.

Definition 15.1. (curve) A curve in U ⊆ C is a continuous function γ : [0; 1] → U . A curve is closed if
γ(0) = γ(1).

Remark: With this definition, a path is a piece-wise-C1 curve. (Warning: in some contexts, paths are not
assumed to be piece-wise C1.)

15.1. Homotopy and path integrals.

Definition 15.2. (homotopy) Let U ⊆ C open, γ0, γ1 : [0; 1] → U continuous. Then γ0 and γ1 are said to
be U−homotopic if there exists a function H : [0; 1]2 → U continuous such that

H(s, 0) = γ0(s) ∀s ∈ [0; 1]

H(s, 1) = γ1(s) ∀s ∈ [0; 1]

H(0, t) = H(1, t) ∀t ∈ [0; 1].

We usually denote in this case γt(s) := H(s, t). From the above definition, for all t, we have:

• γt(0) = γt(1);
• γt is continuous (since H is continuous).

In particular γt is a closed curve. H corresponds to a continuous deformation of γ0 into γ1, using only closed
curves.

(Picture)

Theorem 15.3. Let U ⊆ C open. γ0, γ1 : [0; 1] → U paths. Assume that they are U−homotopic. Then, for
all α ̸∈ U,

nγ0(α) = nγ1(α).

We start with a lemma.

Lemma 15.4. Let δ1, δ2 : [0; 1] → C be closed paths. Take α ̸∈ Im(δ1) ∪ Im(δ2). We assume that, for all
0 ≤ s ≤ 1, we have |δ1(s)− δ2(s)| < |α− δ1(s)|. Then

nδ1(α) = nδ2(α).

Proof. Consider the closed path δ(s) = δ2(s)−α
δ1(s)−α . Then we have

|1− δ(s)| =
∣∣∣∣δ1(s)− δ2(s)

δ1(s)− α

∣∣∣∣ < 1,

which implies nδ(0) = 0 (since 0 is in the unbounded component of C \ Im(γ)). But

nδ(0) =
1

2πi

∫ 1

0

δ′(s)

δ(s)
ds =

1

2πi

∫ 1

0

(
δ′2(s)

δ2(s)− α
− δ′1(s)

δ1(s)− α

)
ds = nδ2(α)− nδ1(α).

We conclude that ns2(α) = ns1(α), as wanted. □
Comment. This allows to define the winding number of a curve γ around a point z: take any path γ̃

homotopic to γ in C \ {z} and set nγ(z) := nγ̃(z) (one has to show that such a γ̃ exists and that nγ̃(z) does
not depend on the choice of γ̃).

Proof of Theorem 15.3. Let γ0, γ1 : [0; 1] → U and H : [0; 1]2 → U be a homotopy between γ0 and γ1. Fix
α ∈ U . To simplify, we first assume that γt is a path for all t ∈ [0; 1] (i.e. γt piece-wise C

1). Idea: Construct
a sequence (t0, t1, . . . , tn) with 0 = t0 < t1 < · · · < tn = 1 such that, for all i ≤ n− 1 and all s ∈ [0, 1],

(3)
∣∣γti(s)− γti+1(s)

∣∣ < |α− γti(s)| .
If we can construct such a sequence, by Lemma 15.4, we have nγti

(α) = nγti+1
(α) (the winding numbers are

well-defined because the γti are paths). This implies

nγt0
(α)︸ ︷︷ ︸

nγ0 (α)

= nγt1
(α) = · · · = nγtn

(α)︸ ︷︷ ︸
nγ1 (α)

.
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How to establish (3)? H is continuous on a compact set ([0; 1]2). Thus H([0; 1]2) is compact. Moreover,
it does not contain α (indeed, α ̸∈ U , while H([0; 1]2) ⊆ U). Thus there exists ε > 0 such that for all
0 ≤ s, t ≤ 1,

(4) |H(s, t)− α| ≥ ε.

Besides, since H is continuous on the compact [0; 1]2, it is uniformly continuous. Thus, there exists δ > 0
such that, for all s, , s′, t′ in [0, 1],

∥(s, t)− (s′, t′)∥ ≤ δ ⇒ |H(s, t)−H(s′, t′)| < ε.

Assume w.l.o.g. that δ = 1
n and set ti =

i
n . Then we have ∥(s, ti) − (s, ti+1)∥ = 1

n for all i ≤ n − 1 and all
s ∈ [0, 1]; this implies

|H(s, ti)︸ ︷︷ ︸
γti

(s)

−H(s, ti+1)︸ ︷︷ ︸
γti+1(s)

| < ε.

Comparing with (4), this proves ∣∣γti(s)− γti+1(s)
∣∣ < |α− γti(s)|,

as wanted. □

This proves the theorem, with the additional asumption that, for each t, the curve γt is piecewise C1. To
get rid of this extra hypothesis, we can either define the winding number for curves and extend Lemma 15.4
to curves (as suggested in the above comment) or approximate each γt with a path γ̃t as done below.

Complete proof of Theorem 15.3 (skipped in class). Replace in the previous proof γ i
n
by γ̃ i

n
such that

• γ̃ i
n
( j
n ) = γ i

n
( j
n ) for all 0 ≤ j ≤ n.

• γ̃ i
n
is affine on [ jn ;

j+1
n ] for all 0 ≤ j ≤ n− 1.

There exists ε > 0 such that for all (s, t) ∈ [0; 1]2 |H(s, t) − α| ≥ ε. But H is uniformly continuous. There
exists n such that

sup(|s− s′|, |t− t′|) ≤ 1
n ⇒ |H(s, t)−H(s′, t′)| ≤ ε

4 . (∗)

We want to find a bound such that sup
0≤s≤1

∣∣∣∣γ̃ i
n
− γ̃ i+1

n

∣∣∣∣ for j
n ≤ s ≤ j+1

n j := ⌞s · n⌟ (integral value).∣∣∣∣γ̃ i
n
(s)− γ i

n

(
j
n

)∣∣∣∣ ≤ ∣∣∣∣γ i
n

(
j+1
n

)
− γ i

n

(
j
n

)∣∣∣∣ ≤ ε
4

Similarly, ∣∣∣∣γ̃ i+1
n

(s)− γ i+1
n

(
j
n

)∣∣∣∣ ≤ ε
4 .

But ∣∣∣∣γ i
n

(
j
n

)
− γ i+1

n

(
j
n

)∣∣∣∣ ≤ ε
4 from (∗).

Finally for any 0 ≤ s ≤ 1 ∣∣∣∣γ̃ i
n
(s)− γ̃ i+1

n
(s)

∣∣∣∣ ≤ 3ε
4 .

We would like ∣∣∣∣γ̃ 1
n
(s)− α

∣∣∣∣ > ∣∣∣∣γ̃ i
n
(s)− γ̃ i+1

n
(s)

∣∣∣∣ (∗∗)

in order to conclude that

∣∣∣∣γ̃ i
n
(s)− γ̃ i+1

n
(s)

∣∣∣∣ have the same winding number. But∣∣∣∣γ̃ i
n
(s)− α

∣∣∣∣ ≥ ∣∣∣∣γ i
n

(
j
n

)
− α

∣∣∣∣︸ ︷︷ ︸
>ε

−
∣∣∣∣γ i

n

(
j
n

)
− γ̃ i

n
(s)

∣∣∣∣︸ ︷︷ ︸
≤ ε

4

> 3ε
4 .
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Finally (∗∗) is proved and nγ̃ i
n

= nγ̃ i+1
n

for all 0 ≤ i ≤ n− 1. Thus

nγ̃0(α) = nγ̃ 1
n

(α) = . . . = nγ̃1
(α).

But again

|γ0(s)− γ̃0(s)| ≤
∣∣γ0(s)− γ0

(
j
n

)∣∣+ ∣∣γ0 ( j
n

)
− γ̃0

(
j
n

)∣∣+ ∣∣γ̃0 ( j
n

)
− γ̃0(s)

∣∣ ≤ ε
2 ≤ |α− γ0(s)| .

Thus nγ0(α) = nγ̃0
(α). Similarly nγ1(α) = nγ̃1

(α) ⇒ nγ0(α) = nγ1(α). □

Homotopy gives a sufficient condition so that two paths have the same winding numbers around all points
α not in U , allowing to apply the theorems of the previous section. In particular,

Corollary 15.5. Let γ0, γ1 : [0; 1] → U be closed paths (U open ⊆ C). Assume that γ0 and γ1 are U-
homotopic. For any holomorphic f : U → C,∫

γ0

f(z)dz =

∫
γ1

f(z)dz.

Proof. Combine Corollary 14.7 and Theorem 15.3. □

15.2. Simply connected sets.
A particularly interesting case to apply the above corollary is when γ1 is a constant path, i.e. γ1(t) = z0 for
some fixed z0 in U and all 0 ≤ t ≤ 1. If γ0 is U−homotopic to the constant path γ1, then

∫
γ0

f(z)dz = 0.

Indeed ∫
γ1

f(z)dz =

∫ 1

0

f(γ1(t))γ
′
1(t)dt = 0.

Definition 15.6. (simply connected) An open subset U ⊆ C is called simply connected if it is path-
connected and if any closed curve is homotopic to a constant curve.

(Picture of a simply connected non star-shaped set and a non simply connected one. Explain intuitively
the terminology “simply connected”.)

Proposition 15.7. Every star-shaped set U is simply connected.

Proof. Let U ⊆ C and a ∈ U such that z ∈ U implies [a; z] ⊆ U. (The existence of a is the definition of U
being star-shaped). Let γ : [0; 1] → U be a closed curve. Define

H(s, t) = ta+ (1− t)γ(s)

H(s, 0) = γ(s), H(s, 1) = a, H(0, t) = H(1, t). H is continuous in (s, t). I.e. γ is U−homotopic to the
constant path with value a. We have shown that U is simply connected. □

(The converse is not true: see above picture.)

Theorem 15.8 (Vanishing integrals and Cauchy formula for simply connected sets). Let U be a simply
connected, f : U → C be holomorphic and γ : [0; 1] → U be a closed path. Then we have∫

γ

f(w)dw = 0;

for z /∈ Im(γ),

∫
γ

f(w)

w − z
dw = 2π i nγ(z) f(z)

Proof. Since U is simply connected, γ is U -homotopic to a constant path. Thus
∫
γ
f(w)dw = 0.

For the second part, note that, for any α not in U , since γ is U -homotopic to the constant path γ1,
Theorem 15.3 gives us nγ(α) = nγ1(α) = 0 (α is in the unbounded component of γ1). We conclude with
general Cauchy’s formula (Theorem 14.4). □

Remark: We already knew both formulas for U star-shaped.

Corollary 15.9. A holomorphic function on a simply connected open set has an anti-derivative.
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Proof. Assume U is simply conntected and take f : U → C holomorphic. Fix a ∈ U . For any z ∈ U, there
is a path γz from a to z (U path connected). Then define

F (z) =

∫
γz

f(w)dw.

But is it well defined? (Ie. does F (z) depend on γz or only on z?) Let γz, γ
′
z two paths from a to z. Then

consider γz + γ′∗
z (path concatenation).

(Picture)

Then ∫
γz+γ′∗

z

f(w)dw = 0.

But ∫
γz+γ′∗

z

f(w)dw =

∫
γz

f(w)dw +

∫
γ′∗
z

f(w)dw =

∫
γz

f(w)dw −
∫
γ′
z

f(w)dw.

In conclusion F is well-defined.

We want to prove that for z0 ∈ U, F ′(z0) = f(z0). Take a path γz0 from a to z0 such that

F (z0) =

∫
γz0

f(w)dw.

There exists r > 0 such that |z − z0| < r implies z ∈ U . Let z with |z − z0| < r. Then γz0 + [z0, z] (path
concatenation) is a path from a to z.

F (z) =

∫
γz0+[z0,z]

f(w)dw =

∫
γz0

f(w)dw +

∫
[z0;z]

f(w)dw = F (z0) +

∫
[z0,z]

f(w)dw.

Then the proof is the same as in Proposition 12.2. □

Take home message: To sum up, the hypothesis “U is star-shaped” can be replaced by “U simply con-
nected” in the summary of Section 12.3 and in Proposition 13.5.

Finally, we mention the following result without proof.

Theorem 15.10 (Riemann’s mapping theorem). For every non-empty simply connected open proper subset
U of C, there exists a biholomorphic map f : U → D(0, 1) (i.e. a bijective holomorphic map f , whose inverse
is holomorphic as well).

(Not true for U = C because of Liouville’s theorem.)

Corollary 15.11. Let U be an open subset of C. Then U is simply connected if and only if it is homeomorphic
to D(0, 1).

Proof. Assume U simply connected. Either U = C, in which case it is easy to construct a homeomorphism
to D(0, 1) (but not a holomorphic one!), or U ⊊ C, and we can apply Riemann’s mapping theorem.

Conversely, if U is homeomorphic to D(0, 1) , one can easily show that U is simply connected (and even
contractible; see exercise sheet), since D(0, 1) is. □

15.3. A connection to topology: the fundamental group. (This section is not really about complex
analysis. The goal is to explain how the concept of homotopy is used in algebraic topology. We therefore do
not include all details.)

Fix a domain U ⊆ C. Denote γ1 ∼ γ2 if γ1 and γ2 are U−homotopic.

Lemma 15.12. ∼ is an equivalence relation.

Lemma 15.13. Fix z0 in U . Let γ1, γ2, δ1, δ2 be closed paths in U . starting and ending at z0. If γ1 ∼ γ2
and δ1 ∼ δ2 then γ1 + δ1 ∼ γ2 + δ2.
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As a consequence, the path concatenation operation can be projected to an operation + on equivalence
classes of closed paths.

(Picture illustrating the above lemma.)

Lemma 15.14. Equivalence classes of closed paths ”at z0” with the + operation is a group denoted Πz0
1 (U).

The neutral element is the constant path in z0 (γ1 + ”z0” ∽ γ1). The inverse of γ is the ”reverse path”
γ∗.

Warning! The notation + might be misleading in that this group is not abelian in general. (In topology,
path concatenation is often denoted multiplicatively.)

Lemma 15.15. If z1, z2 ∈ U , then we have a group isomorphism Πz1
1 (U) ≃ Πz2

1 (U).

Definition 15.16. Let U ⊆ C open. The group Πz0
1 (U), for some fixed z0 in U , is denoted Π1(U) and called

fundamental group of U . (It is well-defined, i.e. independent from z0, up to isomorphism)

Remarks:

• By definition, U is simply connected if and only if Π1(U) is the one-element group.
• The definition generalizes to any topological space U (not only subsets of C).

Lemma 15.17. If U and V topological spaces and f : U → V is a homeomorphism (i.e. a continuous
bijection with f−1 continuous), then Π1(U) ≃ Π1(V ).

(In particular, U is simply connected if and only V is.)
Sketch of proof: If γ : [0; 1] → U is a closed path in U , then f ◦ γ : [0; 1] → V is a closed path in V .

The map γ 7→ f ◦ γ is ”compatible” with homotopy, thus defines a map Π1(U) → Π1(V ). Its inverse is
γ 7→ f−1 ◦ γ which maps Π1(V ) to Π1(U). □

An object, such as Π1(U), associated with a topological space U in such a way that it is invariant by
homeomorphisms, is called a “topological invariant”. Topological invariants might be used to distinguish
topological spaces, i.e. show that they are not isomorphic (if Π1(U) ̸≃ Π1(V ) as groups, then U ̸≃ V as
topological spaces). Here is an example of such a result, using the fundamental group.

Proposition 15.18. For m ≥ 3, there does not exist a homeomorphism f : R2 → Rm.

Sketch of proof: (by contradiction) Let m ≥ 3 and f be a homeomorphism R2 → Rm.

Set U := R2 \ {(0, 0)} ⊂ R2 ≃ C and V = Rm \ {f(0, 0)} ⊂ Rm. Then f restricts to a homeomorphism from
U to V and we should have Π1(U) ≃ Π1(V ).

Consider Π1(U). To this end, we recall that∫
∂D(0,1)

dz

z
= 2πi.

Therefore the path ∂D(0, 1) is not homotopic to a constant path in U . Thus Π1(U) is not reduced to a single
element.

On the opposite, we can show that V is simply connected (quite intuitive, a bit technical to show), which
yields a contradiction. □

Comment: It is quite easy to show (see Linear Algebra I) that the existence of a linear bijective map
ℓ : Rn → Rm implies n = m. I.e. the dimension is a well-defined linear invariant.

But what if we only assume the existence of a homeomorphism f : Rn → Rm? Does this imply n = m?
I.e. is the dimension a topological invariant?

If n = 1, it is easy to prove that we must have m = 1. Indeed R \ {0} is not connected so that
f(R \ {0}) = Rm \ {f(0)} should also not be connected, which implies m = 1. If n = 2, the same holds
by replacing “connected” by “simply connected” (see above). For n,m ≥ 3, it is still true that necessarily
n = m, but we need more complicated topological invariants to prove it. To learn about that, you should
attend an algebraic topology class. . .
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16. Complex logarithms and m-th roots

16.1. Logarithms.

Definition 16.1. (logarithm) Let z ∈ C \ {0}. We call a logarithm of z any complex number w such that

exp(w) = z.

Reminder: Exists for any z ∈ C∗ but it is not unique: If exp(w) = exp(w′) = z, then w − w′ ∈ 2πiZ.
More explicitly, if z = ρeiθ, ρ > 0 then the complex logarithms of z are log(ρ) + iθ + 2πik for k ∈ Z.

Definition 16.2. (determination of the logarithm) Let U ⊆ C be open with 0 ̸∈ U . Then a function
f : U → C is called a determination of the logarithm if

i) f is continuous.
ii) for any z ∈ U, exp(f(z)) = z.

Existence and uniqueness:

• It does not always exists. For some U (e.g. U = C \ {0}; see below), there is no determination of
the logarithm U → C.

• If f : U → C is a determination of the logarithm then f + 2πik (k ∈ Z) also is.

• Conversely, if U is connected, f and f̃ are two determinations of logarithm on U , then there exist
k ∈ Z such that f − f̃ ≡ 2πik.
(Indeed, f − f̃ is then a continuous function on a compact set, that takes values in the discrete set
{2πik, k ∈ Z}, hence, it must be constant.)

Here is a first existence result.

Proposition 16.3. Let Uπ = C \ R−. Then define

f : Uπ → C

by

f(x+ iy) = log(
√
x2 + y2) + i



sin−1

(
y√

x2+y2

)
if x ≥ 0;

π − sin−1

(
y√

x2+y2

)
if x ≤ 0, y > 0;

−π − sin−1

(
y√

x2+y2

)
if x ≤ 0, y < 0;

where

sin−1 : [−1; 1] →
[
−π

2
;
π

2

]
.

(Note that f(x+ iy) is not defined for x ≤ 0 and y = 0). Then, if −π < θ < π and ρ > 0,

f(ρeiθ) = log(ρ) + iθ (∗)

and f is a determination of logarithm on Uπ.

This function f is called the principal determination of the logarithm.

only sketched in class. • First prove that f is well-defined.
– If x = 0 and y > 0, then first and second formulas coincide.

sin−1

(
y√

x2 + y2

)
= sin−1(1) =

π

2

and

π − sin−1

(
y√

x2 + y2

)
= π − sin−1(1) =

π

2
.
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– If x = 0 and y < 0, then first and third formulas coincide.

sin−1

(
y√

x2 + y2

)
= sin−1(−1) = −π

2

and

−π − sin−1

(
y√

x2 + y2

)
= −π − sin−1(−1) = −π

2
.

• Second let us prove (∗).
– If −π < θ ≤ −π

2 , let z = ρeiθ = ρ(cos(θ) + i sin(θ)). Let x = ρ cos(θ), y = ρ sin(θ). Then

ρ =
√

x2 + y2. x ≤ 0, y < 0,

f(z) = f(x+ iy) = log(ρ) + i[−π − sin−1 (sin(θ))] = log(ρ) + iθ.

Similar arguments for the cases x ≥ 0 and x ≤ 0, y > 0.
• Finally let us prove that it is a determination of the logarithm. If z ∈ Uπ, then

z = ρeiθ, ρ > 0, −π < θ < π

and
exp(f(z)) = exp(log(ρ) + iθ) = ρeiθ = z.

It is continuous on {x ≥ 0}, {x ≤ 0, y > 0}, {x ≤ 0, y < 0} and it is well-defined on the intersection,
therefore it is continuous on the union Uπ.

□

Proposition 16.4. Let θ0 ∈ R. Let Uθ0 = C \ {ρeiθ, ρ ≥ 0}. Then there is a determination fθ0 of logarithm
on Uθ0 such that if ρ > 0, θ0 < θ < θ0 + 2π, then

fθ0
(
ρeiθ

)
= log(ρ) + iθ.

Proof. The case θ0 = −π corresponds to the previous proposition. Let θ0 ∈ R. Define

fθ0(z) = f−π

(
ze−i(π+θ0)

)
+ i(π + θ0).

If z ∈ Uθ0 , then ze−i(π+θ0) ∈ U−π. Indeed, if z
′ = ze−i(π+θ0) ∈ R− then z = z′ei(π+θ0) = (−z′)eiθ0 ̸∈ Uθ0 .

Thus fθ0 is defined on Uθ0 . Clearly fθ0 is continuous and

exp(fθ0(z)) = exp(f−π(ze
−i(π+θ0))) exp(i(π + θ0)) = z. □

Summary: Don’t write log(z) for z ̸∈ R∗
+ but say “let’s consider the determination ℓ(z) of the logarithm

on Uθ0 (precising θ0).”

We now characterize complex logarithms through their derivative.

Proposition 16.5. Let U ⊆ C be a domain (open connected set) not containing 0. Then the following
assertions are equivalent:

i) f : U → C is a holomorphic determination of the logarithm.
ii) f : U → C is holomorphic, f ′(z) = 1

z and for some z0 in U, exp(f(z0)) = z0.

Proof. (i) ⇒ (ii) We have exp(f(z)) = z for z ∈ U . Taking derivatives, we get f ′(z) exp(f(z)) = z f ′(z) = 1
so that f ′(z) = 1

z .

(ii) ⇒ (i) Define V = {z ∈ U such that exp(f(z)) = z}. Then we have:

• V is non-empty, since it contains z0.
• V is closed, since V = h−1({0}) where h(z) = ef(z) − z is a continuous function on U .
• V is an open set. Define g(z) = z exp(−f(z)) then

g′(z) = exp(−f(z))− zf ′(z) exp(−f(z)) = (1− zf ′(z)) exp(−f(z)) = 0.

for all z ∈ U . We want to show that V is an open set. Let z1 ∈ V. There exists r such that
D(z1, r) ⊆ U. For z ∈ D(z1, r)

g(z)− g(z1) =

∫
[z;z1]

g′(w)dw = 0.
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But g(z1) = 1 since z1 ∈ V ⇒ g(z) = 1 ⇒ z ∈ V.

Since U is connected, we conclude that V = U . □

Corollary 16.6. Let U simply connected 0 ̸∈ U . Then there exists a holomorphic determination of the
logarithm on U .

Proof. Let g be an anti-derivative of z 7→ 1
z on U (exists as U is simply connected). Fix z0 ∈ U and w0 a

logarithm of z0. Define

f(z) = g(z) + w0 − g(z0).

Clearly f ′(z0) = g′(z0) = 1
z , f(z0) = w0 ⇒ exp(f(z0)) = z0. From the previous proposition, f is a

holomorphic determination of logarithm. □

Corollary 16.7. Let U ⊆ C open, not containing 0 (and not necessarily simply connected). All determina-
tions of the logarithm on U (if any) are holomorphic.

Proof. Fix z0 ∈ U . There exists r > 0 such thatD(z0, r) ⊆ U . D(z0, r) is convex, and hence simply connected
(convex⇒ star-shaped⇒ simply connected). Thus, there exists h : D(z0, r) → C a holomorphic determination
of the logarithm. But, if f is a determination of logarithm on U , then f |D(z0,r) is a determination of logarithm
on D(z0, r), and, on D(z0, r), the difference h − f is constant, equal to 2πik for some k ∈ Z. We conclude
that f ≡ h+ 2πik is holomorphic on D(z0, r). This holds for any z0 ∈ U , so that f holomorphic on U . □

In particular, the above defined function fθ0 : Uθ0 → C is holomorphic.

Proposition 16.8. There exists no determination of logarithm on C \ {0}.

Proof. (By contradiction) Let f : C \ {0} → C such a determination of logarithm. Then f is holomor-
phic. Proposition 16.5 implies that f ′(z) = 1

z . But the function 1
z has no anti-derivative on C \ {0} since∫

∂D(0,1)
1
zdz = 2πi ̸= 0. □

Proposition 16.9. Let

f(z) =
∞∑

n=1

(−1)n−1

n
(z − 1)n

for |z − 1| < 1, then f is a determination of logarithm on D(1, 1).

Proof. The power series
∞∑

n=1

(−1)n−1

n
wn

has radius of convergence 1. Thus f is holomorphic on D(1, 1) and the derivative is

f ′(z) =
∞∑

n=1

(−1)n−1(z − 1)n−1 =
∞∑

m=0

(1− z)m =
1

1− (1− z)
=

1

z
.

Moreover, exp(f(1)) = exp(0) = 1. We conclude by Proposition 16.5. □

Warning! Let f : U → C be a determination of logarithm. z, z′ ∈ U. Then, in general,

f(z · z′) ̸= f(z) + f(z′).

Example: Let U = Uπ = C \ R−, f principal determination of logarithm, and z = z′ = e
3π i
4 . Then

f(z) = f(z′) = 3π i
4 .

But

f(z · z′) = −π i
2 (̸=

3π i

2
).
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16.2. Complex powers and m-th roots. a, b ∈ C, a ̸= 0. What is ab? For real numbers
ab := exp(b log(a)).

Natural answer: Choose a logarithm ℓa of a; define ab := exp(bℓa).

• if b ̸∈ Z, exp(bℓa) depends on the logarithm ℓa (not well-defined).
• To use complex powers, we need to specify a logarithm (or a determination of logarithm).

Warning! In general, (aa′)b ̸= ab(a′)b. It is however true that, for any a ∈ C∗, b, b′ ∈ C and any choice of
logarithm of a, one has

ab+b′ = exp
(
[b+ b′]ℓa

)
= exp(bℓa) · exp(b′ℓa) = ab · ab

′
.

Always refer to the exp-log expression to know which computation rules can be used or not!

Particular case: b = 1
m , m ∈ N.

Definition 16.10. (m-th root) Let a ∈ C∗. Then we call a m-th root of a any b ∈ C such that bm = a.

Remarks:

• It does always exist. Take b = exp( 1
mℓa) where ℓa is a logarithm of a.

• It is not unique. Let b and b′ be two m-th roots of a.

bm

b′m
=

(
b

b′

)m

= 1 ⇒ b

b′
= e2πik/m

for some k ∈ {0, . . . ,m− 1} which implies that each non-zero complex number has exactly m m-th
roots.

Definition 16.11. (determination of the m-th root) U ⊆ C with 0 ̸∈ U . We call determination of the
m-th root a continuous function f : U → C such that for all z ∈ U ,

f(z)m = z.

Remarks:

• The existence of determination of logarithm implies the existence of a determination of the m-th
root. Take f(z) = exp( 1

mℓ(z)).
• Uniqueness: Let f1, f2 : U → C be a determination of the m-th root. Then for and z ∈ U ,

f1(z)

f2(z)
= exp

(
2πik(z)

m

)
.

Assume furthermore that U connected. Then the image of U by z 7→ f1(z)
f2(z)

is a connected subset

of {e 2πik
m ; k ∈ {0, . . . ,m − 1}}. Therefore, it is a singleton, i.e. f1(z)

f2(z)
= e

2πik
m for some k ∈

{0, . . . ,m− 1}.

Corollary 16.12.

i) If U simply connected, there exists a holomorphic determination of the m-th root.
ii) Any determination of the m-th root on any open set U (not assumed to be simply connected) is

holomorphic.

Proof. (i) follows from the existence of a holomorphic determination of the logarithm ℓ : U → C. (ii) Same
proof as for the determination of the logarithm. □

16.3. An application: Local normal form and biholomorphic function.

Lemma 16.13. (local normal form) Let f : U → C be a holomorphic function. Fix z0 ∈ U and assume
f non constant around z0. Then there exists m ≥ 1 and g : V → C (where V is a neighbourhood of 0) such
that g(0) ̸= 0 and f(z0 + h) = f(z0) + (h · g(h))m for every h ∈ V with z0 + h ∈ U.

Remark: h · g(h) has a non-zero derivative in zero. Thus, by the local inversion theorem, h 7→ h g(h) is
locally invertible.
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Proof. Consider the power series expansion of f around 0. For h in some neighbourhood W of 0,

f(z) = f(z0 + h) =

∞∑
n=0

anh
n =

∞∑
n=0

an(z − z0)
n.

Recall a0 = f(z0), f(z0 + h) = f(z0) +
∑∞

n=1 anh
n. Let m > 0 be the smallest integer such that am ̸= 0

(which exists since f is not constant). We have

∞∑
n=1

anh
n =

∞∑
n=m

anh
n =

∞∑
p=0

am+ph
m+p = hm ·

( ∞∑
p=0

am+ph
p

)
.

But
(∑∞

p=0 am+ph
p
)
has same radius of convergence that

∑∞
n=0 anh

n (easy), so that
∑∞

p=0 am+ph
p defines

a function g1(h) on a neighbourhood of 0. Note that g1(0) = am ̸= 0. Thus there exists a neighbourhood V
of 0 such that g1(V ) ⊆ D(am, |am|). Since D(am, |am|) is simply connected and does not contain 0, there
exists a determination of the m-th root on D(am, |am|). Call it γm. Finally

f(z0 + h) = f(z0) +
∞∑

n=1

anh
n = f(z0) + hmg1(h)

for h ∈ V , g1(h) ∈ D(am, |am|), g1(h) = γm(g1(h))
m which implies

f(z0 + h) = f(z0) + (h · γm(g1(h)))
m. □

Remark: m is the smallest integer such that am ̸= 0, that is f (m)(z0) ̸= 0. In particular, m > 1 ⇔
f ′(z0) = 0.

Corollary 16.14. f : U → C holomorphic. Assume that there exists z0 ∈ U such that f ′(z0) = 0. Then f
is not injective.

Remark: Analogue in real analysis does not hold. f : R → R x 7→ x3 is bijective, but f ′(0) = 0.

Proof. We write f in local normal form at z0: f(z0 + h) = f(z0) + (hg(h))m for h ∈ V with z0 + h ∈ U .
Moreover, m > 1 (since f ′(z0) = 0). The function h 7→ h · g(h) is holomorphic and non-constant. Its
image W is open, hence it contains a neighbourhood of 0. In particular, for r > 0 small enough, we have

D(0, 2r) ⊂ W , which implies that r and re
2πi
m are in W . Namely, there exists h1, h2 such that h1(g(h1)) = r

and h2g(h2) = re
2πi
m (here h1, h2 ∈ V with z0 + h1 and z0 + h2 in U). As m > 1, r ̸= re

2πi
m ⇒ h1 ̸= h2. But

f(z0 + h1) = f(z0) + rm = f(z0 + h2). Hence f is not injective. □

Theorem 16.15. f : U → V holomorphic and bijective. U, V open ⊆ C. Then f−1 is holomorphic.

Proof. The image of an open set by f is an open set (open mapping theorem). In other words the pre-image
of an open set by f−1 is an open set. I.e. f−1 is continuous.

Let z0 ∈ V . We want to prove that f−1 is complex-differentiable in z0.

f−1(z)− f−1(z0)

z − z0
=

f−1(z)− f−1(z0)

f(f−1(z))− f(f−1(z0))
=

(
f(f−1(z))− f(f−1(z0))

f−1(z)− f−1(z0)

)−1

.

But when z −→ z0, f−1(z) −→ f−1(z0) (since f−1 continuous) so that

f(w)− f(w0)

w − w0
−→ f ′(w0),

where w0 = f−1(z0), w = f−1(z). Finally, using the fact that f ′(w0) ̸= 0 (previous corollary), we have

f−1(z)− f−1(z0)

z − z0
=

(
f(w)− f(w0)

w − w0

)−1

−→ f ′(f−1(z0))
−1.

In particular, f−1 is complex differentiable in z0. This holds for every z0 ∈ V , proving that f−1 holomorphic.
□

Terminology: Such functions f are called biholomorphic.
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Part E. Isolated singularities and the residue theorem

17. Laurent’s expansions

Throughout this section we fix R1 and R2 with 0 ≤ R1 < R2 ≤ ∞.

Definition 17.1. (annulus) The annulus A(R1, R2) is the set {z ∈ C, R1 < |z| < R2} = D(0, R2) \
D(0, R1).

(Picture)

Our goal is to study holomorphic functions on A(R1, R2). Here is a recipe to construct such functions.

• Take (an)n≥0 ∈ C such that
∑∞

n=0 anz
n has a radius of convergence ρa ≥ R2. Then z 7→

∑∞
n=0 anz

n

defines a holomorphic function on D(0, ρa), thus on A(R1, R2).

• Note: |z| > R1 ⇔ | 1z | <
1
R1

. Take (bn)n≥1 ∈ C such that
∑∞

n=1 bnw
n has radius of convergence

ρb ≥ 1
R1

. Then w 7→
∑∞

n=1 bnw
n is holomorphic for |w| < 1

R1
. Setting w = 1

z , we see that

z 7→
∑∞

n=1 bn
(
1
z

)n
is holomorphic for

∣∣ 1
z

∣∣ < 1
R1

i.e. for |z| > R1. In particular, it is holomorphic on

A(R1, R2).

• Let an and bn as above. We can sum the two holomorphic function above: then
∑∞

n=0 anz
n +∑∞

n=1 bn
(
1
z

)n
defines a holomorphic function on A(R1, R2).

Notation: Usually we denote a−n = bn for n ≥ 1 such that (an)n∈Z is a sequence induced by Z; and
∞∑

n=0

anz
n +

∞∑
n=1

bn

(
1

z

)n

=

∞∑
n=0

anz
n +

∞∑
n=1

a−nz
−n =

∑
n∈Z

anz
n.

(You can either think of
∑

n∈Z anz
n as the sum of the Z-indexed summable family (anz

n) or as a notation

for
∑∞

n=0 anz
n +

∑∞
n=1 a−nz

−n.)

Terminology:
∑

n∈Z anz
n is called a Laurent series. (Warning: sometimes, in particular for formal power

series, Laurent series are assumed to have finitely many terms with negative exponent; not in complex
analysis!)

Summary: Let (an)n∈Z ∈ C (sometimes called ”bi-infinte” sequence). Assume
∑∞

n=0 anz
n has a radius

of convergence at least R2 and that
∑∞

n=1 a−nw
n has radius of convergence at least 1

R1
, then

∑
n∈Z anz

n

defines a holomorphic function on A(R1, R2).

We will see a converse.

Theorem 17.2 (Laurent’s expansion theorem). Any holomorphic function on an annulus is equal to the
sum of a Laurent series. More precisely, if f : A(R1, R2) → C holomorphic, then for any z ∈ A(R1, R2),

f(z) =
∑
n∈Z

anz
n,

where

an =
1

2πi

∫
∂D(0,r)

f(w)w−n−1dw

for any R1 < r < R2.

We start with a lemma.

Lemma 17.3. f holomorphic on A(R1, R2). Let R1 < r < R2. Then
∫
∂D(0,r)

f(w)dw does not depend on r.

Proof. Let R1 < r1 < r2 < R2. We want to show that
∫
∂D(0,r1)

f(w)dw =
∫
∂D(0,r2)

f(w)dw. But these two

paths are homotopic in A(R1, R2) via the homotopy

H :
[r1, r2]× [0, 2π] → A(R1, R2);

(r, θ) 7→ reiθ.

Corollary 15.5 concludes the proof. □
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Proof of Laurent’s expansion theorem. (Note: the following proof is reminiscent of the proof of the analyt-
icity of complex-differentiable functions, based on Cauchy formula; see Section 9.4.)

Fix z ∈ A(R1, R2). Choose r1, r2 with R1 < r1 < |z| < r2 < R2. Denote γ1, γ2 as in the previous
proof. Since ∂D(0, r1) and ∂D(0, r2) are homotopic in A(R1, R2), we have n∂D(0,r1)(α) = n∂D(0,r2)(α) for
any α ̸∈ A(R1, R2). Consider the cycle Γ = ∂D(0, r1)− ∂D(0, r2). Then nΓ(α) = 0 for any α ̸∈ A(R1, R2).
and we can apply Theorem 14.4 (general Cauchy formula):

nΓ(z)f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw.

But nΓ(z) = n∂D(0,r1)(z)−n∂D(0,r2)(z) = −1, using the computation of winding numbers for circles (Propo-
sition 13.8; z is outside ∂D(0, r1), but inside ∂D(0, r2)) Therefore

f(z)2πi = −
∫
Γ

f(w)

w − z
dw =

∫
∂D(0,r2)

f(w)

w − z
dw︸ ︷︷ ︸

I2

−
∫
∂D(0,r1)

f(w)

w − z
dw︸ ︷︷ ︸

I1

.

Compute I1 and I2 separately.

I2 =

∫
∂D(0,r2)

f(w)

w(1− z
w )

=

∫
∂D(0,r2)

f(w)

w

∑
n≥0

( z

w

)n dw

because
∣∣ z
w

∣∣ = |z|
r2

< 1. Recall that the convergence
∑

n≥0

(
z
n

)n
= 1

1− z
w

is uniform on ∂D(0, r2) = {w : |w| =
r2}, so that we can exchange sum and integral. We get

I2 =
∑
n≥0

(∫
∂D(0,r2)

f(w)

w

( z

w

)n
dw

)
=
∑
n≥0

(∫
∂D(0,r2)

f(w)w−n−1dw

)
zn.

Consider now I1. We write

I1 =

∫
∂D(0,r1)

−f(w)

z(1− w
z )

dw =

∫
∂D(0,r1)

−f(w)

z

∑
m≥0

(w
z

)m dw

(If w ∈ Im(∂D(0, r1)), i.e. |w| = r1, then
∣∣ z
w

∣∣ = |z|
r1

> 1, so
∑

n≥0

(
z
w

)n
does not converge and we cannot

proceed as for I2.) Again we have uniform convergence, thus we can exchange sum and integral.

− I1 =
∑
m≥0

(∫
∂D(0,r1)

f(w)

z

(w
z

)m
dw

)
=
∑
m≥0

(∫
∂D(0,r1)

f(w)wmdw

)
z−m−1

=

−∞∑
n=−1

(∫
∂D(0,r1)

f(w)w−n−1dw

)
zn.

From Lemma 17.3, ∫
∂D(0,r1)

f(w)w−n−1dw =

∫
∂D(0,r2)

f(w)w−n−1dw.

Thus

f(z) =
1

2πi
(I2 − I1) =

1

2πi

∑
n∈Z

(∫
∂D(0,r2)

f(w)w−n−1dw

)
zn □

Examples:

f(z) = 1
z(1−z) holomorphic on C \ {0, 1}.

• Look at f on A(0, 1) = D(0, 1) \ {0}. Then

f(z) =
1

z
· 1

1− z
=

1

z

( ∞∑
m=0

zm

)
=

∞∑
m=0

zm−1 =
∞∑

n=−1

zn.
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• We now consider the same function f on A(1,∞) = C \D(0, 1).
Warning!

∑∞
m=0 z

m is not convergent on A(1,∞), (|z| > 1) so the previous formula does not hold.
The expansion of f on A(1,∞) is different from the one on A(0, 1).
Namely, we have

f(z) =
1

z
·

1
z

1
z − 1

=
−1

z2
· 1

1− 1
z

= − 1

z2

( ∞∑
m=0

(
1

z

)m
)

=

∞∑
m=0

−zm−2 =

∞∑
n=−2

−zn.

• Consider g(h) = f(1 + h) for h ∈ A(0, 1). i.e. look at f on {0 < |z − 1| < 1}. We have

g(h) =
1

1 + h
· 1

−h
=

−1

h
· 1

1− (−h)
= − 1

h

∞∑
m=0

(−h)m.

(The last sum converges sice |h| < 1.) Rewriting it further,

g(h) =
∞∑

m=0

(−1)m−1hm−1 =
∞∑

n=−1

(−1)nhn.

In terms of f , we have, for any z in D(1, 1),

f(z) =
∞∑

n=−1

(−1)n(z − 1)n.

Conclusion: as power series expansions, Laurent series expansions depend around which point we are studying
the function. But, even around the same point, they depend on which annulus we consider! Here we have
three different Laurent series expansions of the same function: two on different annuli around 0 and one in
an annulus around 1.

In the following, we see a uniqueness result, when the point on which we are working and the annulus are
both fixed.

Corollary 17.4. (Laurent separation theorem) Let f : A(R1, R2) → C be a holomorphic function.
Then there exists a unique pair (fC , fD) such that

i) fC is a holomorphic function on {z : |z| < R2}
ii) fD is a holomorphic function on {z : |z| > R1} and lim

|z|→∞
fD(z) = 0.

iii) f(z) = fC(z) + fD(z) for z ∈ A(R1, R2).

Proof. Existence. We know that f(z) =
∑

n∈Z anz
n on A(R1, R2). Then define

fC(z) =
∑
n≥0

anz
n

and

fD(z) =

∞∑
n=−1

anz
n =

∞∑
m=0

a−m−1z
−m−1 =

1

z

( ∞∑
m=0

a−m−1

(
1

z

)m
)
.

Reminder: By definition
∑

n∈Z anz
n converges on A(R1, R2) means that both

∑
n≥0 anz

n converges on

A(R1, R2) and
∑∞

m=0 am−1

(
1
z

)m
converges on A(R1, R2).

• Let us prove that fC is holomorphic on {z : |z| < R2},
∑

n≥0 anz
n is convergent on A(R1, R2).

Hence radius of convergence of
∑

anz
n is at least R2. This implies that

∑
n≥0 anz

n converges for

|z| < R2.

• Let us prove that fD is convergent on {z : |z| > R1},
∑∞

m=0 am−1

(
1
z

)m
is convergent for

R1 < |z| < R2, so that
∑∞

m=0 a−m−1w
m is convergent for 1

R2
< |w| < 1

R1
Thus the radius of

convergence of
∑∞

m=0 a−m−1w
m is at least 1

R1
. This implies that

∑∞
m=0 a−m−1w

m converges for

|w| < 1
R1

, i.e.
∑∞

m=0 a−m−1

(
1
z

)m
converges for |z| > R1.

• Let us show lim|z|→∞ fD(z) = 0. We have fD(z) = 1
z

(∑∞
m=0 a−m−1

(
1
z

)m)
. Sum of power series

define continuous functions so that limw→0

∑∞
m=0 am−1w

m = a−1, i.e. lim|z|→∞
∑∞

m=0 am−1w
m =

a−1. We conclude that lim|z|→∞ fD(z) = 0, as wanted.
• Obviously f(z) = fD(z) + fC(z).
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Uniqueness. Assume that

f(z) = fC(z) + fD(z) = gC(z) + gD(z)

on A(R1, R2) where fC , fD, gC , gD fulfill the conditions in Corollary 17.4. Note that fC(z) − gC(z) is
holomorphic for {z : |z| < R2}, while gD(z) − fD(z) is holomorphic for |z| > R1. Moreover, both functions
coincide on the intersection A(R1, R2). We can therefore define

h(z) =

{
fC(z)− gC(z) if |z| < R1;

gD(z)− fD(z) if |z| > R2

The function h is entire. Moreover lim|z|→∞ h(z) = lim|z|→∞ gD(z) − fD(z) = 0, which implies that h is
bounded. Theorem 10.4 (Liouville) implies that h is constant and since lim|z|→∞ = 0, we have h ≡ 0.
Therefore, fC(z) = gC(z) and gD(z) = fD(z), proving the uniqueness. □

Corollary 17.5. The coefficients (an)n∈Z in Laurent expansions are unique. In other words if

∞∑
n∈Z

anz
n =

∞∑
n∈Z

bnz
n

on A(R1, R2) then an = bn for any n ∈ Z.

Proof. From Corollary 17.4, we have
∑

n≥0 anz
n =

∑
n≥0 bnz

n for |z| < R2 (both are fC , but fC is unique).

Using uniqueness of power series expansion (Corollary 6.6), we have an = bn for any n ≥ 0. A similar
argument using fD and setting w = 1

z proves that an = bn for any n < 0. □

Summary: A homomorphic function f on the annulus A(R1, R2) has a unique Laurent series expansion∑
n∈Z anz

n. As for power series expansion, the coefficients can be expressed as integrals

an =
1

2π i

∫
∂D(0,r)

f(w)w−n−1dw,

for any r ∈ (R1, R2) (the integral does not depend on r).

The coefficients an however do not correspond to derivatives. Keep also in mind that they depend on the
annulus you are working on!

18. Isolated singularities

Framework of this section: U ⊆ C is an open set, z0 is in U and f is a holomorphic function on U \{z0}.
(Note: since we do not assume f continuous on U , we cannot conclude that f is also holomorphic in z0

as we did several times already in the lecture; in fact, we are now in the context where f might not even be
defined in z0.)

Terminology: z0 is called isolated singularity of f .

Examples:

• f1(z) =
ez−1

z holomorphic on C \ {0}; U = C, z0 = 0.

• f2(z) =
1

z(1−z) holomorphic on C \ {0, 1}; U = C \ {1}, we look at it around z0 = 0.

• f3(z) = exp( 1z ) holomorphic on C \ {0}; U = C, z0 = 0.

We will classify isolated singularities in 3 categories.

Basic tool: Laurent expansion theorem
Consider g : h 7→ f(z0+h). Since U is open, there exists R > 0 with D(z0, R) ⊆ U . Then g is holomorphic

on A(0, R). Laurent’s expansion theorem (Theorem 17.2) tells us that f(z0 + h) =
∑

m∈Z anh
n (an ∈ C).
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18.1. Removable singularity.

Definition 18.1. (removable singularity) Let U ⊆ C be an open set, take z0 ∈ U , and assume that
f : U \{z0} → C is a holomorphic function. Then z0 is called removable singularity if there exists g : U → C
continuous with g |U\{z0}= f.

Remarks:

• Such a g is automatically holomorphic on U (holomorphic on U \ {z0}, continuous on U).
• removable means that we can remove the singularity i.e. define f in z0.
• usually, we also call f the extension g.

Lemma 18.2. Let z0 be an isolated singularity of a holomorphic function f : U \ {z0} → C and consider
the Laurent expansion of f around z0,

f(z0 + h) =
∑
n∈Z

anh
n.

Then z0 is a removable singularity if and only if an = 0 for any n < 0.

Proof. ” ⇐ ” We have f(z0 + h) =
∑

n≥0 anh
n for h in D(0, R) \ {0} for some R > 0. Then f can be

extended on z0 by setting g(z0 + h) =
∑

n≥0 anh
n for h in D(0, R). and g(z) = f(z) for z ∈ U ⊂ D(0, R/2).

(The two formulas coincide on the intersection of the domains.)
” ⇒ ” Consider the power series expansion of g around z0 (g is defined in z0).

g(z0 + h) =
∑
n≥0

bnh
n =

∑
n∈Z

anh
n = f(z0 + h)

for h ∈ A(0, R). Corollary 17.5 (uniqueness of Laurent expansion) implies that, for n ≥ 0, bn = an and for
n < 0, an = 0. □

Lemma 18.3. Let z0 be an isolated singularity of a holomorphic function f : U \ {z0} → C. Then z0 is a
removable singularity if and only if f is bounded on a neighbourhood of z0.

Proof. ” ⇒ ” When z
z ̸=z0−−−→ z0, then f(z) −→ g(z0) (indeed, f(z) = g(z) for z ̸= z0 and g is continuous).

Thus there is a neighbourhood V of z0 such that z ∈ V \{z0} implies |f(z)−g(z0)| ≤ 1 ⇒ |f(z)| ≤ |g(z0)|+1
i.e. f is bounded on V \ {z0}.
” ⇐ ” Assume f is bounded on V \ {z0} where V is an open set containing z0. We set

f̃(z) =

{
f(z)(z − z0) for z ̸= z0;

0 for z = z0

for z ∈ U . Clearly, f̃ is holomorphic on U\{z0} as a product of holomorphic functions. Also, when z
z ̸=z0−−−→ z0,

we have f̃(z) −→ 0 (since f(z) is bounded and z − z0 −→ 0), i.e. f̃ is continuous in z0. Therefore, f̃ is
holomorphic on U (holomorphic on U \{z0}, continuous on U). We look at its power series expansion around

z0: f̃(z0 + h) =
∑

n≥0 bnh
n. Since b0 = f̃(z0) = 0, we can start the sum at n = 1 and write

f̃(z0 + h) =
∑
n≥1

bnh
n =

∑
m=0

bm+1h
m+1 = h

( ∞∑
m=0

bm+1h
m

)
.

But, by definition f̃(z0 + h) = f(z0 + h)h so that, for h in a neighbourhood of 0 with h ̸= 0, we have:

f(z0 + h) =
∞∑

m=0

bm+1h
m.

From the previous lemma, z0 is a removable singularity. □

Comment: The implication ” ⇐ ” is surprising and has no analogue in real analysis. Consider for example
f(z) = sin( 1z ), which is real-analytic on R \ {0} and bounded on a neighbourhood of 0. Clearly, f cannot be
extended in a continuous way in 0.
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Example: f1(z) = ez−1
z holomorphic on C \ {0}. But limz→0 f1(z) = 1. I.e. f1 can be extended as a

holomorphic function on C by setting f1(0) = 1. Its Laurent expansion in 0 is

f1(h) =

( ∞∑
n=0

hn

n! − 1

)
h

=

( ∞∑
n=1

hn

n!

)
h

=
∞∑

n=1

hn−1

n!
=

∞∑
m=0

hm

(m+ 1)!

and indeed does not contain negative powers of h.

18.2. Poles.

Definition 18.4. (pole) Let U ⊆ C be an open set, take z0 ∈ U , and assume that f : U \ {z0} → C is a
holomorphic function. Then z0 is called a pole if it is not a removable singularity, but there exists an integer
m > 0 such that (z − z0)

mf(z) has a removable singularity in z0. The smallest integer m > 0 such that
(z − z0)

mf(z) has a removable singularity in z0 is called the order of the pole.

Terminology:

• single pole = pole of order 1.
• double pole = pole of order 2.
• multiple pole = pole of order > 1.

Lemma 18.5. Let z0 be an isolated singularity of a holomorphic function f : U \ {z0} → C and consider
the Laurent expansion of f around z0:

f(z0 + h) =
∞∑

n∈Z

anh
n.

i) Then z0 is a pole if and only if there is at least one, but finitely many n < 0 with an ̸= 0.
ii) More precisely, z0 is a pole of order m if and only if a−m ̸= 0 and an = 0 for n < −m.

Proof. ii)” ⇐ ” a−m ̸= 0 implies that f does not have a removable singularity in z0. Set g(z) = (z−z0)
mf(z).

g(z0 + h) = hmf(z0 + h) = hm

( ∞∑
n∈Z

anh
m

)
= hm

 ∞∑
n≥−m

anh
m

 =
∞∑

n≥−m

anh
n+m =

∞∑
p=0

ap−mhp.

This expansion does not contain any negative power of h, so that g has a removable singularity in z0.
Let us prove that m is minimal such that (z−z0)

mf(z) has a removable singularity in z0 (as in the definition
of pole). Let m2 < m. Consider g2(z) = (z − z0)

m2f(z),

g2(z0 + h) = hm2

(∑
n∈Z

anh
n

)
=
∑
n∈Z

anh
n+m2 .

The coefficient of h−m+m2 in its expansion is a−m ̸= 0. But −m+m2 < 0 so that the Laurent expansion of
g2(z0 + h) contains negative powers of h, i.e. z0 is not a removable singularity of g2. Thus the pole z0 has
indeed order m as claimed.
ii)” ⇒ ” Assume that f has a pole of order m in z0. We consider the Laurent expansion of f around z0:

f(z0 + h) =
∑
n∈Z

anh
n

Since hmf(z0 + h) has a removable singularity in z = z0, we have hmf(z0 + h) =
∑

p≥0 bph
p (no negative

powers by Lemma 18.2). We compare both expression

f(z0 + h) =
∑
n∈Z

anh
n = h−m

∑
p≥0

bph
p =

∑
p≥0

bph
p−m =

∑
n≥−m

bm+nh
n.

By the uniqueness of the Laurent expansion an = 0 for n < −m and an = bm+n for n ≥ −m.
It remains to prove that a−m ̸= 0. By contradiction assume a−m = 0, that is an = 0 for n < −(m − 1).
Using the proof of ” ⇐ ”, this implies that (z − z0)

m−1f(z) has a removable singularity in z0. This is a
contradiction with the minimality of m.
i)” ⇒ ” Assume z0 is a pole. Call m its order. By ii), a−m ̸= 0 so that there is at least one n < 0 with
an ̸= 0. We also have an = 0 for n < −m, which proves that there are only finitely many n < 0 with an ̸= 0.
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i)” ⇐ ” Call m the biggest integer m > 0 such that a−m ̸= 0 (exists since there is at least one, but finitely
many, such positive integers). By maximality, an = 0 for n < −m. Using ii), this implies that z0 is a pole
of order m. □

Intuition of pole: If f has a pole of order m, then (z−z0)
mf(z) can be extended in a holomorphic function

g(z) defined on U . Thus f can be writen as f(z) = g(z)
(z−z0)m

, for some holomorphic function g.

Warning: if f(z) = g(z)
(z−z0)m

, this does not necessarily mean that f has a pole of order m. This is the case

only if g(z0) ̸= 0. Indeed, assume, for the sake of contradiction, that g(z0) = 0. Then

g(z0 + h) =
∑
n≥1

bnh
n = h

∑
m≥0

bm+1h
m


i.e. g(z0+h)

h = g(z)
z−z0

is holomorphic on U. Thus f(z)(z − z0)
m−1 = g(z)

z−z0
has a removable singularity in z0.

This is a contradiction with minimality of m.

Lemma 18.6. f : U \ {z0} → C holomorphic. Then z0 is a pole if and only if lim
z→z0

|f(z)| = ∞.

Proof. ” ⇒ ” For z ̸= z0, f(z) = g(z)
(z−z0)m

with g(z0) ̸= 0 (see above discussion). When z −→ z0, we have

|g(z)| −→ |g(z0)| and |(z − z0)
m| −→ 0, which entails |f(z)| −→ ∞.

” ⇐ ” Consider f̃(z) = 1
f(z) (defined on a neighbourhood V of z0 since limz→z0 |f(z)| = ∞ and therefore

f does not vanish on a neighbourhood of z0). Since limz→z0 |f(z)| = ∞, we have limz→z0 |f̃(z)| = 0 and f̃

is bounded on a neighbourhood of z0. By Lemma 18.3, z0 is a removable singularity of f̃ . Considering the
Laurent’s expansion, we have f̃(z0 + h) =

∑
n≥0 bnh

n (no negative powers from Lemma 18.2).

For h ̸= 0, f̃(z0+h) ̸= 0, so that at least one bn is non-zero. Call m the smallest integer such that bm ̸= 0.

Note that f̃(z0 + h)
h→0−−−→ 0, so that b0 = 0 and m > 0.

f̃(z0 + h) =
∑
n≥m

bnh
n = hm

(∑
p=0

bm+ph
p

)

hmf(z0 + h) =
hm

f̃(z0 + h)
=

1
∞∑
p=0

bp+mhp

.

But
∞∑
p=0

bp+mhp is holomorphic and does not vanish on a neighbourhood of 0 (it is a convergent power

series with constant term bm ̸= 0). Its inverse hmf(z0 + h) is holomorphic on a neighbourhood of 0, i.e.
(z−z0)

mf(z) has a removable singularity in z0. Since z0 is not a removable singularity of f (f is not bounded
around z0), we conclude that z0 is a pole of f . □

Example: Consider f2(z) =
1

z(1−z) for z ∈ C \ {0, 1}. The singularity in 0 is clearly not removable. The

function zf2(z) =
1

1−z can be extended to a holomorphic on C \ {1}. Thus 0 is a (simple) pole of f2. We

recall that the Laurent expansion on f2 on A(0, 1) is f2(z) = 1
z +

∑
n≥0 z

n (see examples in the previous

chapter). It has exactly one term with a negative power of z; this is consistent with Lemma 18.5. Besides,
we indeed have limz→0 |f2(z)| → +∞, as expected from Lemma 18.6.

Warning! f2 admits another Laurent expansion “with center 0”, namely f2(z) =
∑−∞

n=−2 −zn for |z| > 1.
This expansion has infinitely many terms with negative powers of z, even though 0 is a pole of f2. To
classify isolated singularity with Laurent’s expansion, it is important to consider the Laurent expansion on
an annulus of the kind A(0, R), as done throughout this chapter.

18.3. Essential singularities.

Definition 18.7. (essential singularity) Let z0 be an isolated singularity of a holomorphic function f :
U \ {z0} → C. Then z0 is called an essential singularity if it is neither a removable singularity nor a pole.
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Lemma 18.8. f : U \ {z0} → C holomorphic. Consider its Laurent expansion

f(z0 + h) =
∑
n∈Z

anh
n.

Then z0 is an essential singularity if and only if there are infinitely many n < 0 with an ̸= 0.

Proof. Direct consequence of the analogous lemmas for removable singularities and poles. □

Example: f3(z) = exp
(
1
z

)
. For z ̸= 0 (i.e. z ∈ A(0,∞)), then

exp

(
1

z

)
=
∑
p≥0

(
1
z

)p
p!

=
∑
p≥0

z−p

p!
=

−∞∑
n=0

zn

(−n)!

infinitely many negative powers of z. ⇒ essential singularity.

What about the behaviour of f(z) near z0? From the results on removables singularities and poles, we
know that,

• f is not bounded around z0 (otherwise z0 is a removable singularity);
• |f(z)| ̸−→ ∞ (otherwise z0 is a pole).

We can prove more.

Theorem 18.9 (Cassorati-Weierstrass). Let z0 be an isolated singularity of a holomorphic function f :
U \ {z0} → C. Then z0 is an essential singularity if and only if for any neighbourhood V of z0 with V ⊆ U ,

one has f(V \ {z0}) = C.

Proof. ” ⇐ ” Assume that for any neighbourhood V of z0 with V ⊆ U , one has f(V \ z0) = C.
• Then z0 is not removable since f is not bounded on a neighbourhood of z0 (otherwise f(V \ z0) ⊆
D(0,M)).

• Moreover, z0 is not a pole since |f(z0)| does not tend to +∞ (indeed if |f(z)| z→z0−−−→ ∞, there exists

a neighbourhood V of z0 such that |f(z)| ≥ 1 on V , i.e. f(V \ z0) ⊆ {w : |w| ≥ 1}).
We conclude that z0 is an essential singularity.
” ⇒ ” (by contradiction) Assume a ̸∈ f(V \ z0) for some neighbourhood V of z0. Consider g(z) = 1

f(z)−a

for z ∈ V \ {z0}. Note that, for z in V , we have f(z) − a ̸= 0 since a ̸∈ f(V \ {z0}); g is therefore

holomorphic on V \ {z0}. But a being in the open set C \ f(V \ {z0}) means that there exists δ > 0 such
that D(a, r) ∩ f(V \ {z0}) = ∅. In other words for z ∈ V \ {z0},

f(z) ̸∈ D(a, δ) ⇔ |f(z)− a| ≥ δ.

Thus |g(z)| ≤ 1
δ i.e. g bounded on V \ {z0}. From Lemma 18.3, g has a removable singularity in z0, that

is g can be extended to a holomorphic function V → C, that we will abusively also denote by g. But
f(z) = 1

g(z) + a for z ∈ V \ {z0}. We now distinguish two cases:

• either g(z0) ̸= 0,

f(z)
z→z0−−−→ 1

g(z0)
+ a

i.e. z0 is a removable singularity of f .
• or g(z0) = 0, and then

|f(z)| z→z0−−−→ ∞,

so that z0 is a pole (Lemma 18.6).

In both cases, we have a contradiction.
We conclude that, for any neighbourhood V of z0, we have f(V \ {z0} = C, as claimed. □

Example: Recall f3(z) = exp
(
1
z

)
has an essential singularity in 0. We want to understand f3(V \ {0}).

To simplify the discussion, we first consider f3(C \ {0}).
• Note that 0 ̸∈ f3(C \ {0}).
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• Take w ̸= 0. Is there z ̸= 0 such that exp
(
1
z

)
= w? We know that, if ℓw is a logarithm of w,

exp

(
1

z

)
= w ⇔ 1

z
= ℓw + 2πik ⇔ z =

1

ℓw + 2πik

for some k ∈ Z such that ℓw + 2πik ̸= 0. Hence f3(C \ {0}) = C \ {0}.
But what about f3(V \ {0} in general? Fix w ̸= 0. We have limk→∞

1
ℓw+2πik = 0, so, for k big enough,

1
ℓw+2πik lies in V \ {0}. Thus w ∈ f3(V \ {0}). Since this holds for all w ̸= 0, we have f3(V \ {0}) = C \ {0}.
In particular f3(V \ {0}) = C, as asserted by Cassorati-Weiertstrass theorem.

Finally, we mention the following theorem without proof, which improves Cassorati-Weierstrass theorem.

Theorem 18.10 (Picard). If z0 is an essential singularity of f and V a neighbourhood of z0, then

|C \ f(V \ {z0})| ≤ 1.

Informally, f is almost surjective: it “misses” at most one value. This is optimal as shown by the example
f(z) = exp(1/z) (it “misses” 0).

18.4. Summary of isolated singularities. Here is the picture to keep in mind on isolated singularities.

type of singularity Laurent expansion behaviour around z0
removable no negative powers bounded

pole finitely many neg. powers tends to ∞
essential infinitely many neg. powers image dense in C

In the third column, it is not a priori obvious that all cases are covered. In particular, the results of this
section tell us that it is impossible to have e.g., f(V ) = {ℜ(z) ≥ 0} for all neighbourhood V of z0.

18.5. Meromorphic functions.

Definition 18.11. (meromorphic function) A meromorphic function f on an open set U is a set P and
a holomorphic function f : U \ P → C such that

i) P is a discrete subset of U (i.e. a subset without limit points).
ii) each p ∈ P is a pole of f (since P is discrete; note that each p in P is automatically an isolated

singularity of f).

Warning! We say ”meromorphic function on U”, but f is a function on U \ P.

Remark: If A ⊆ U, A discrete set, U open. f : U \ A → C holomorphic. Assume f has no essential
singularities. Then A = R ⊔ P , where R denotes the set of removable singularities and P the set of poles.
Then we can extend f to a holomorphic function on (U \A)∪R = U \P . This extension fulfills the definition
of meromorphic function, i.e. f can be seen as a meromorphic function on U .

Terminology: We say that f is meromorphic in z0 if either f is holomorphic in z0, or f has a pole in z0.

Examples:

i) holomorphic functions on U are meromorphic on U (P = ∅).
ii) Let U be a connected open set, g : U → C holomorphic with g ̸≡ 0. Then f = 1

g is meromorphic on U

with P = {z ∈ U, g(z) = 0} (discrete because of the isolated zero principle). Indeed, f : U \ P → C
holomorphic and for p ∈ P,

|f(z)| = 1

|g(z)|
z→p−−−→ ∞

implies p is a pole.

The second example in fact generalizes to any fraction of holomorphic functions.

Proposition 18.12. Let U be a connected open set and g1, g2 : U → C be holomorphic functions, non
identically equal to 0. Then f = g1

g2
is a meromorphic function on U whose set P of poles is included in

{z ∈ U : g2(z) = 0}.
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Proof. Let A = {z ∈ U : g2(z) = 0}. A is a discrete set because of isolated zero principle. f holomorphic
on U \ A. We want to prove that each a ∈ A is either a pole or a removable singularity of f . Let a ∈ A.
Consider the power-series expansion of g1 and g2 around a.

g1(a+ h) =
∑
n≥0

bnh
n = hm1

( ∞∑
p=0

bp+m1h
p

)

g2(a+ h) =
∑
n≥0

cnh
n = hm2

( ∞∑
p=0

cp+m2h
p

)
where m1 is the smallest integer with bm1 ̸= 0 and m2 is the smallest integer with cm2 ̸= 0 then

g1(a+ h)

g2(a+ h)
= hm1−m2 ·

(∑∞
p=0 bp+m1h

p
)

(∑∞
p=0 cp+m2h

p
) .

Taking the limit h → 0, we have,

• if m1 < m2,

|f(a+ h)| = |g1(a+ h)|
|g2(a+ h)|

−→ ∞

i.e. a is a pole;
• if m1 ≥ m2,

|f(a+ h)| = |g1(a+ h)|
|g2(a+ h)|

−→

{
0 if m1 > m2
bm1

cm2
if m1 = m2

i.e. a is a removable singularity. □

Corollary 18.13. Any rational function is meromorphic on C.

We have a converse to the above proposition.

Theorem 18.14. Any meromorphic function f on an open set U is the quotient of holomorphic functions
on U . As a consequence, the field of meromorphic functions on a connected open set U is the fraction field
of the field of holomorphic functions on U .

We only prove this for meromorphic functions with a finite set of poles (i.e. |P | < ∞).

Proof (skipped in class). Let P = {p1, ... , pr} be the set of poles of f . Let m1, ... ,mr be the orders of
p1, ... , pr. Consider

g1(z) =

r∏
i=1

(z − pi)
mif(z).

Clearly, g1 is holomorphic on U \ P . Fix pi ∈ P. Then (z − pi)
mif(z) has a removable singularity in pi (by

definition of a pole). But

g1(z) =

 r∏
j=1
j ̸=i

(z − pj)
mj

 · (z − pi)
mif(z)

On this expression, we see that g1(z) has a removable singularity in pi. This is true for any pi ∈ P , so that
g1 is a holomorphic function on U . We conclude that

f(z) =
g1(z)

r∏
i=1

(z − pi)mi

is a quotient of holomorphic functions. □
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19. Residue theorem

19.1. The theorem.

Definition 19.1. (residue) Let z0 ∈ U , U open. Let f : U \ {z0} → C holomorphic. Consider its Laurent
expansion around z0,

f(z0 + h) =
∑
n∈Z

anh
n.

Then we call residue of f in z0 the coefficient a−1.

Notation: Res(f ; z0) := a−1.

The residue can alternatively be obtained by integration.

Lemma 19.2. Let z0 be a point in an open set U and f : U \ {z0} → C be a holomorphic function. Take
r > 0 such that D(z0, r) ⊆ U . Then we have

2πiRes(f ; z0) =

∫
∂D(z0,r)

f(z)dz.

Proof. In the proof of Laurent’s expansion theorem, we proved that, for all n ∈ Z, we have

2πian =

∫
∂D(z0,r)

f(z)z−n−1dz.

□

Theorem 19.3. (residue theorem) Let U be a simply connected open set and A ⊆ U discrete. Take
f : U \A → C holomorphic. Consider a closed path γ with Im(γ) ⊆ U \A. Then

(5)

∫
γ

f(z)dz = 2πi ·
∑
a∈A

Res (f ; a)nγ(a).

Comments:

• If f is meromorphic on U , then it is holomorphic on U \ A for some discrete set A, so that we can
apply the theorem. The theorem is however also applicable with essential singularities.

• It also holds for a cycle Γ. We can also relax the hypothesis that U is simply connected by assuming
α ̸∈ U ⇒ nγ(α) = 0.

• Recall that, for any closed path γ, the set {w ∈ C such that nγ(w) ̸= 0} is bounded (indeed, the
winding number is 0 on the unbounded component). Besides, adding the condition nγ(α) ̸= 0
in the summation index on the right hand side of (5) does not change anything. But A ∩ {w ∈
C such that nγ(w) ̸= 0} is finite. Thus the residue theorem always gives a finite sum.

(But we will sometimes apply the theorem, for each n, to some path γn and take a limit n → ∞,
leading to infinite sums; see later.)

• If a is a removable singularity of f, Res(f ; a) = 0 (no negative terms in the Laurent expansion). We
can forget removable singularity. Any a′ ∈ U \A can be seen as a removable singularity. Hence the
RHS of (5) is sometimes written as∑

a∈A

Res(f ; a)nγ(a) =
∑
a∈U

Res(f ; a)nγ(a),

with the convention Res(f ; a) = 0 if a ̸∈ A.
• Often γ is taken as the “contour” of a bounded set V , in the counterclockwise direction. Then
nγ(w) = 1[w ∈ V ], so that the residue theorem gives∫

γ

f(z)dz = 2πi
∑

a∈A∩V

Res(f ; a).

In this case, to compute
∫
γ
f(z)dz (γ contour of some set V ), the recipe is the following:

i) find isolated singularities;
ii) determine which singularities are in V ;
iii) compute their residue;
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iv) make the sum and don’t forget the factor 2πi.

First proof of the residue theorem. Write A = A0 ⊔A1, where

A0 = {a ∈ A;nγ(a) = 0} A1 = {a ∈ A;nγ(a) ̸= 0}.

As explained above, A1 is finite. For each a ∈ A1, there exists ra > 0 such that D(a, ra) \ {a} ⊆ U \A (since
U open and A is discrete). Consider the cycle Γ defined by

Γ = γ −
∑
a∈A1

nγ1(a)∂D(a; ra).

• Fix a1 ∈ A1. We have

nΓ(a1) = nγ(a1)−
∑
a∈A1

nγ(a)n∂D(a,ra)(a1).

From our choice of ra, for a ̸= a1, we know that a1 ̸∈ D(r, ra) which implies n∂D(a,ra)(a1) = 0.
Therefore

nΓ(a1) = nγ(a1)− nγ(a1)n∂D(a1,ra1 )
(a1) = 0.

• Similarly, for a0 ∈ A0, we have n∂D(a,ra)(a0) = 0 for all a ∈ A1 and

nΓ(a0) = nγ(a0) = 0.

• Finally for any α ̸∈ U , we have nΓ(w) = 0, since U is simply connected.

We conclude that any w not in U \ A satisfies nΓ(w) = 0. Recall that, by assumption, f is holomorphic on
U \A. We can apply Corollary 14.6 and we have

∫
Γ
f(z)dz = 0. But, using the above Lemma,∫

Γ

f(z)dz =

∫
γ

f(z)dz −
∑
a∈A1

nγ(a)

∫
∂D(a,r1)

f(z)dz =

∫
γ

f(z)dz − 2π i

(∑
a∈A1

nγ(a)Res(f ; a)

)
.

This concludes the proof. □

Second proof of the residue theorem (skipped in class). Let A1 = {a1, ... , ap} as in the previous proof (A1 is
finite). For each i ∈ {1, . . . , p}, we consider the Laurent expansion of f around ai:

f(z) =
∑
n∈Z

cn,i(z − ai)
n.

We use the above coefficients cn,i to introduce

g(z) = f(z)−
p∑

i=1

(∑
n<0

cn,i(z − ai)
n

)
.

From Corollary 17.4 (Laurent separation theorem),
∑

n<0 cn,i(z − ai)
n is the principal part of f(z) in some

annulus A(0, r) and therefore is convergent (uniformly on compacts) on |z − ai| > 0, i.e. on C \ {ai}.
Therefore g is holomorphic on U \A. Note that,

• for fixed 1 ≤ i ≤ p, the function

f(z)−
∑
n<0

cn,i(z − ai)
n =

∑
n≥0

cn,i(z − ai)
n

has a removable singularity in ai;
• moreover, for j ̸= i,

∑
n<0 cn,j(z − aj)

n is holomorphic in ai

Therefore g has a removable singularity in ai, which proves that g is holomorphic on U \ A0. For any w
outside U \ A0, we have nγ(w) = 0 (either by definition of A0 for w ∈ A0, or since U is simply connected,
for w /∈ U). We can apply Corollary 14.6 and we get

∫
γ
g(z)dz = 0, i.e.

(6)

∫
γ

f(z)dz =

∫
γ

(
p∑

i=1

(∑
n<0

cn,i(z − ai)
n

))
dz =

p∑
i=1

∑
n<0

(
cn,i

∫
γ

(z − ai)
ndz

)
.

The exchange sum/integrals is justified because the convergence is uniform on compact subsets of C ⊂
A1. For n ̸= −1, the integral

∫
γ
(z − ai)

ndz vanishes since z 7→ (z − ai)
n has an anti-derivative (namely
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1
n+1 (z − ai)

n+1). For n = −1, we have
∫
γ
(z − ai)

−1dz = 2π inγ(ai) by definition of the winding number.

Putting this back in (6) concludes the proof. □

Corollary 19.4 (General Cauchy formula for derivatives). Let U be a simply connected domain, z in U , γ
a closed path with nγ(z) = 1 and f a holomorphic function on U . Then, for any n ≥ 0,

f (n)(z) =
n!

2π i

∫
γ

f(w)

(w − z)n+1
dw.

(As before, we can assume α /∈ U ⇒ nγ(α) = 0 instead of U simply connected and/or take a cycle instead
of a closed path.)

Proof. The function g(w) = f(w)
(w−z)n+1 is holomorphic on U \ {z} and has residue f(n)(z)

n! in z. The formula is

thus an application of the residue theorem. □

How to compute residues?

Lemma 19.5. f : U \ {z0} → C holomorphic, z0 ∈ U.

i) If f has a removable singularity in z0, Res(f ; z0) = 0.
ii) linearity: if g : U \ {z0} → C holomorphic and λ, µ ∈ C then,

Res(λf + µg; z0) = λRes(f ; z0) + µRes(g; z0).

iii) If f has a simple pole in z0,

Res(f ; z0) = lim
z→z0

(z − z0)f(z).

iv) More generally, if f has a pole of order m in z0,

Res(f ; z0) =
g(m−1)(z0)

(m− 1)!

where g(z) = (z − z0)
mf(z).

v) Let f1, f2 : U → C be holomorphic functions on U and take z0 in U . Recall that f = f1
f2

has then a

removable singularity or pole in z0. We assume that f2(z0) = 0, f ′
2(z0) ̸= 0. Then

Res

(
f1
f2

; z0

)
=

f1(z0)

f ′
2(z0)

.

Remark: None of these help when z0 is an essential singularity.

Proof.

i) Already discussed above.

ii) Consider the Laurent expansion of f and g around z0:

f(z0 + h) =
∑
n∈Z

cnh
n, g(z0 + h) =

∑
n∈Z

dnh
n.

The expansion of λf + µg then is

(λf + µg)(z0 + h) =
∑
n∈Z

(λcn + µdn)h
n.

The coefficient of h−1 is indeed λc−1 + µd−1, as claimed.

iii) In case of a simple pole, the smallest exponent appearing in the Laurent expansion is −1, i.e. we
have f(z) =

∑
n≥−1 cn(z − z0)

n. Multiplying by z − z0 gives

(z − z0)f(z) =
∑
n≥−1

cn(z − z0)
n+1 =

∑
p≥0

cp−1(z − z0)
p.

In the limit z → z0, only the term for p = 0 vanishes and we have

lim
z→z0

(z − z0)f(z) = c−1 = Res(f ; z0).
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iv) Again, we consider the Laurent expansion of f around z0, in which, this time, the smallest exponent
is −m: f(z) =

∑
n≥−m cn(z − z0)

n. Multiplying by (z − z0)
m gives

g(z) = (z − z0)
m f(z) =

∑
n≥−m

cn(z − z0)
n+m =

∑
p≥0

cp−m(z − z0)
p.

Note that Res(f ; z0) = c−1 is the coefficient of (z − z0)
m−1 in this power series expansion of the

holomorphic function g(z) in z0. This coefficient is g(m−1)(z0)
(m−1)! , as claimed.

v) If f1(z0) = 0, then
∣∣∣ f1(z)f2(z)

∣∣∣ z→z0−−−→ f ′
1(z0)

f ′
2(z0)

and the singularity in z0 is removable. The residue is therefore

0, coinciding with the given formula.

On the other hand, if f1(z0) ̸= 0, we have
∣∣∣ f1(z)f2(z)

∣∣∣ z→z0−−−→ ∞, so that f(z) = f1(z)
f2(z)

has a pole in z0.

But

(z − z0)
f1(z)

f2(z)
= f1(z)

(
f2(z)− f2(z0)

z − z0

)−1
z→z0−−−→ f1(z0)

f ′
2(z0)

so that (z − z0)
f1(z)
f2(z)

has a removable singularity in z0. We conclude that the pole of f1(z)
f2(z)

in z0 in

simple and we can apply iii):

Res

(
f1
f2

; z0

)
= lim

z→z0
(z − z0)

f1(z)

f2(z)
=

f1(z0)

f ′
2(z0)

. □

19.2. Application to computation of real integrals.

19.2.1. Functions in cos(t) and sin(t). We will present the idea on an example.
Example: Fix a parameter a > 1, ans say we want to compute the integral

I =

∫ 2π

0

1

a+ sin(θ)
dθ.

We’ll write this as a path integral. To this end, observe that, from the definition of path integrals, we have∫
∂D(0,1)

f(z)

iz
dz =

∫ 2π

0

f(eiθ)ieiθ

ieiθ
dθ =

∫ 2π

0

f(eiθ)dθ.

Taking f(z) = 1

a+ 1
2i

(
z− 1

z

) , we have f(eiθ) = 1
a+sin(θ) and

I =

∫
∂D(0,1)

1

iz

1

a+ 1
2i

(
z − 1

z

)dz =

∫
∂D(0,1)

2

2iaz + z2 − 1
dz.

We will compute I through the residue theorem

• First step: find the singularities of the integrand.
We need to solve 2iaz + z2 − 1 = 0: this is a quadratic equation with discriminant

∆ = −4a2 + 4 = (2i
√
a2 − 1)2.

Thus the singularities we are looking for are {z−, z+}, where

z± =
−2ia± 2i

√
a2 − 1

2
= −ia± i

√
a2 − 1.

• Second step: are these singularities inside the integration path?
Note that |a +

√
a2 − 1| > |a| > 1 so that the singularity z− = −i(a +

√
a2 − 1) is not inside of

our integration path. Since z+ · z− = −1, we have on the other hand |z+| = 1
|z−| < 1, so that z− is

inside our integration path.
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• Third step: compute the residue of z+.
It is a simple pole (simple root of the denominator, while the numerator does not vanish) so that

Res

(
2

2iaz + z2 − 1
; z+

)
= lim

z→z+

2(z − z+)

2iaz + z2 − 1

Trick: the denominator is (z − z−)(z − z+) (monic degree 2 polynomial with root z+ and z−), thus

Res

(
2

2iaz + z2 − 1
; z+

)
= lim

z→z+

2

z − z−
=

2

z+ − z−
=

1

i
√
a2 − 1

.

• Conclusion (don’t forget the factor 2π i):

I =
2π√
a2 − 1

.

Remark: The integral of a real-valued/nonnegative function on a real interval is a real-valued/nonnegative
number. If you find, e.g., a purely imaginary number, you’ve done a mistake (maybe forgetting the factor
2π i).

General statement: Let R(x, y) = P (x,y)
Q(x,y) ∈ C(x, y). Assume that x2 + y2 = 1 ⇒ Q(x, y) ̸= 0. Then∫ 2π

0

R(cos(θ), sin(θ))dθ = 2iπ
∑

|z0|<1

Res(R̃; z0)

where

R̃(z) =
i

iz
R

(
1

2

(
z +

1

z

)
;
1

2i

(
z − 1

z

))
Proof. Similar to example. □

19.2.2. Integrals of rational functions over R.

Example: We want to compute

I =

∫ ∞

−∞

1

1 + x6
dx

Note that 1
1+x6 ≤ 1

x2 for |x| sufficiently big, which implies that the integral is indeed convergent. Therefore,

I = limM→∞
∫M

−M
1

1+x6 dx.

Difficulty: Residue theorem gives values of integrals over closed paths. Here we want an integral over an
interval of size tending to infinity.

General strategy: Recall that I = limM→∞
∫M

−M
1

1+x6 dx. We complete [−M ;M ] into a closed path, in
such a way that the integral on the “completion” tends to zero when M tends to +∞.

In the example, we set δM (θ) = Meiθ for θ ∈ [0;π] (i.e., δM is the upper semicircle with center 0 and
radius M). Then γM = [−M ;M ] + δM is a closed path (+ stands for path concatenation).

(Picture)

We have ∫
γM

1

1 + z6
dz =

∫
[−M ;M ]

1

1 + z6
dz +

∫
δM

1

1 + z6
dz

and ∫
δM

1

1 + z6
dz ≤ L(δM ) sup

c∈δM

∣∣∣∣ 1

1 + z6

∣∣∣∣ ≤ Mπ
1

M6 − 1

M→∞−−−−→ 0.

Taking the limit M → ∞, we get

(7)

∫ +∞

−∞

1

1 + z6
dz = lim

M→∞

∫
γM

1

1 + z6
dz.
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The residue theorem gives:∫
γM

1

1 + z6
dz = 2πi

∑
z0 pole of 1

1+z6

nγ(z0)Res

(
1

1 + z6
; z0

)

• The set of poles of 1
1+z6 is {z0 ∈ C; z60 + 1 = 0} = {e(2k+1) iπ

6 : k ∈ {0, 1, ... , 5}}. They are all simple
poles.

• For M > 1, the winding numbers of γ around the poles are given by

nγ(z0) =

{
1 for z0 ∈

{
e

iπ
6 ; e

3iπ
6 ; e

5iπ
6

}
;

0 for z0 ∈
{
e

7iπ
6 ; e

9iπ
6 ; e

11iπ
6

}
.

• We compute the corresponding residues (using, e.g., the formula with the derivative, valid since poles
are simple):

Res

(
1

1 + z6
; z0

)
=

1

6z50
= −z0

6

• Conclusion: the residue theorem implies∫
γM

1

1 + z6
dz =

−2πi

6

(
e

iπ
6 + e

iπ
2 + e

5iπ
6

)
.

But e
iπ
6 + e

5iπ
6 = 2i sin

(
π
6

)
= i. Finally, for M > 1, we have∫

γM

1

1 + z6
dz = −2πi

6
(2i) =

2π

3
.

Back to (7), we see that ∫ +∞

−∞

1

1 + z6
dz =

2π

3
.

General statement: Let f(z) = P (z)
Q(z) be a rational function. Assume Q(x) ̸= 0 for x ∈ R and deg(Q) ≥

deg(P ) + 2. Then ∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑
Im(z0)>0

z0 poles of P/Q

Res

(
P

Q
; z0

)

Sketch of proof. The condition deg(P ) ≤ deg(Q) + 2 ⇒ ensures that for |z| is sufficiently big,
∣∣∣P (z)
Q(z)

∣∣∣ ≤ C
|z|2

(for some constant C) so that the integral is well defined. This upper bound also implies∣∣∣∣∫
δM

P (z)

Q(z)
dz

∣∣∣∣ M→∞−−−−→ 0

where δM is defined as above. The remaining arguments are similar to that used in the above example. □

19.3. Counting zeroes: the argument principle. We start with a definition.

Definition 19.6. Let f be a holomorphic function U ⊆ C and z0 be in U . We say that z0 is a zero of f of
order m (m being a positive integer) if

i) f(z0) = f ′(z0) = ... = f (m−1)(z0) = 0, but f (m)(z0) ̸= 0.
ii) equivalently, f(z) = (z − z0)

mg(z) where g is holomorphic on a neighbourhood of z0 and fulfills
g(z0) ̸= 0.
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Proof of the equivalence in the above definition. (ii) ⇒ (i) By induction, it is easy to show the following: for
k ≤ m, we have f (k)(z) = (z−z0)

m−khk(z) where hk is a holomorphic function on U such that hk(z0) ̸= g(z0).
This implies that f (k)(z0) = 0 if k < m, while f (m)(z0) = g(z0) ̸= 0.
(i) ⇒ (ii) Consider the power-series expansion of f around z0: f(z) =

∑
n≥0 an(z − z0)

n. We know that

ak =
f (k)(z0)

k!

{
= 0 for k < m;

̸= 0 for k = m.

Therefore, we have

f(z) =
∑
n≥m

an(z − z0)
n = (z − z0)

m

∑
p≥0

am+p(z − z0)
p

 .

The map g(z) :=
∑

p≥0 am+p(z − z0)
p is a holomorphic function on a neighbourhood of 0 (sum of power

series with a positive radius of convergence. Its value in 0 is g(0) = am ̸= 0, as wanted. □

We recall that z0 is a pole of order m of f if f(z) = g(z)
(z−z0)m

with g holomorphic around z0 and g(z0) ̸= 0.

Comparing with the second characterization of zero of order m, we get that z0 is a zero of order m of f if
and only if z0 is a pole of order m of 1/f .

Theorem 19.7 (argument principle). Let U be a simply connected open set. Let f be a meromorphic
function on U and γ be a closed path in U such that Im(γ) does not contain any poles or zeros of f . Then

1

2π i

∫
γ

f ′(z)

f(z)
dz =

∑
z0 zero of f

nγ(z0)order(z0)−
∑

z0 pole of f

nγ(z0)order(z0).

Proof. The key point is that orders of poles and zeroes are residues of f ′/f . Indeed, the following holds:

• Assume z0 is neither a pole nor a zero of f , i.e. f is holomorphic in z0 and f(z0) ̸= 0. Then f ′/f
holomorphic in z0 implies Res(f ′/f ; z0) = 0.

• Assume that z0 is a zero of order m of f , i.e. f(z) = (z − z0)
mg(z) with g(z) ̸= 0. Then

f ′(z)

f(z)
=

m

z − z0
+

g′(z)

g(z)
.

We have trivially Res( m
z−z0

; z0) = m, while Res(g′/g; z0) = 0 from the first item. We conclude that

Res(f ′/f ; z0) = m.

• Assume now that z0 is a pole of order m of f , i.e. f(z) = g(z)
(z−z0)m

with g(z0) ̸= 0. Then

f ′(z)

f(z)
=

g′(z)

g(z)
− m

z − z0
.

We conclude as above that Res(f ′/f ; z0) = −m.

The theorem then follows from the residue theorem applied to f ′/f . □

Remarks:

• Both sums are always finite (since {w : nγ(w) ̸= 0} is bounded and the set of zeros/poles of f is
discrete).

• As usual, we can relax the assumption ”U simply connected” by only requiring ”α ̸∈ U ⇒ nγ(a) = 0”.
Similarly, the theorem holds more generally for cycles Γ instead of only closed paths γ.

• The theorem is particularly interesting when γ is the counterclockwise counter of some bounded set
V . In this setting, the theorem gives

∫
γ

f ′(z)

f(z)
dz = 2πi

 ∑
z0 zero of f

z0∈V

order(z0)−
∑

z0 pole of f
z0∈V

order(z0)

 .

The right hand-side is then the number of zeroes counted with multiplicities (the multiplicity being
the order of the zero, interpreting poles as zeroes of negative multiplicities.)
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• The left hand side can be reinterpreted as a winding number. Indeed, by definition of path integral∫
γ

f ′(z)

f(z)
dz =

∫ b

a

f ′(γ(t))γ′(t)

f(γ(t))
dt =

∫ b

a

(f ◦ γ)′(t)
(f ◦ γ)(t)

dt =

∫
f◦γ

1

z
dz = 2πi nf◦γ(0).

Corollary 19.8. (Rouché’s theorem) Let U be a simply connected domain and f and g be meromorphic
functions on U . Let γ be the counterclockwise contour of some bounded set V such that ∂V = Im(γ) does
not contain zeros or poles of f or g. Assume furthermore that z ∈ Im(γ) implies |f(z)− g(z)| ≤ |g(z)|.
Then f and g have the same number of zeros in V (where zeroes are counted with multiplicities, poles being
zeros of negative multiplicities).

Proof. We want to prove

nf◦γ(0) =

∫
γ

f ′(z)

f(z)
dz =

∫
γ

g′(z)

g(z)
dz = ng◦γ(0).

By assumption, for t ∈ [a; b],

|(f ◦ γ)(t)− (g ◦ γ)(t)| ≤ |(g ◦ γ)(t)|.
Lemma 15.4 implies nf◦γ(0) = ng◦f (0). □

(Skipped in class) To illustrate the last statement, we give yet another proof of the fundamental theorem
of algebra, i.e. that a complex polynomial of degree d always have d complex roots (when counted with
multiplicities).

Proof. Let d be a positive integer and p(z) =
∑d

i=0 aiz
i be a polynomial of degree d (ad ̸= 0). We want

to apply Rouch theorem to f(z) = p(z) and its dominant monomial g(z) = adz
d. We have to check the

hypothesis i.e. that ∣∣p(z)− adz
d
∣∣ = ∣∣∣∣∣

d−1∑
i=1

aiz
i

∣∣∣∣∣ ?
≤ |adzd|.

By the triangular inequality,
∣∣∣∑d−1

i=1 aiz
i
∣∣∣ ≤ ∑d−1

i=1 |ai||zi|, while |adzd| = |ad||zd|. The difference |ad||z|d −∑d−1
i=1 |ai||zi| is a polynomial in |z| with positive dominant coefficient, and therefore tends to +∞ when |z|

tends to +∞. Thus there exists R0 such that

|z| ≥ R0 ⇒ |ad||z|d >

d−1∑
i=1

|ai||zi|.

This implies also
∣∣p(z)− adz

d
∣∣ < |adzd|, as wanted.

Take γ = ∂D(0, R0). As justified above, for z ∈ Im(γ), we have |p(z)− adz
d| ≤ |adzd|. We can therefore

apply Rouché’s theorem to γ, f(z) = p(z) and g(z) = adz
d, and conclude that both functions have the same

number of zeros in D(0, R0). But adz
d has one zero of multiplicity d in 0. We conclude that p(z) has d zeros

(when counted with multiplicities) in D(0, R0). It is straightforward to check that p has no root outside
D(0, R0). □

(Note: unlike previous proofs, this proof does not only prove the existence of a root, but directly gives
their number. It is however easy to show that each complex polynomial has d root, when counted with
multiplicity, knowing that all non-constants polynomials have at least one root ρ: write P (z) = (z − ρ)Q(z)
and apply the statement inductively to Q(z).)

Another consequence of the argument principle is Hurwitz theorem.

Theorem 19.9 (Hurwitz). Let fn a sequence of holomorphic functions on a domain U ⊆ C, tending to f
uniformly of compact subsets of U . Assume f is not constant and has a zero of order m ≥ 0 in z0. Then
for r > 0 small enough and n sufficiently large (depending on r), fn has exactly m zeroes (counted with
multiplicity) in the disk D(z0, r).

TODO: ADD A PROOF.
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Corollary 19.10. Let fn a sequence of holomorphic functions on a domain U ⊆ C, tending to f uniformly
of compact subsets of U . We assume that fn does not vanish on U . Then, either f does not vanish on U ,
or it is identically equal to 0.

Corollary 19.11. Let fn a sequence of injective holomorphic functions on a domain U ⊆ C, tending to f
uniformly of compact subsets of U . Then f is either injective or constant.

20. A bit of geometry

20.1. Holomorphic functions and angles. Let γ1, γ2 : [0, 1] → C be two curves with the same starting
point, i.e. γ1(0) = γ2(0) = a. If both are differentiable in 0, then one can define the angle between the two
curves, as being the angles between their tangent lines, i.e. an argument of γ′

2(0)/γ
′
1(0). (We’re considering

here an algebraic angle, i.e. with a sign)

(Picture)

Proposition 20.1. Let γ1, γ2 : [0, 1] → C be as above and f be a holomorphic function on an open set
containing a and assume f ′(a) ̸= 0. Then the angle between f ◦ γ1 and f ◦ γ2 equals the angle between γ1
and γ2.

Informally, holomorphic functions preserve angles (when the derivative does not vanish!!). This is in
fact an “if and only if”. A real-differentiable function C → C that preserves angles is necessarily complex-
differentiable.

20.2. Riemann-sphere.

Definition 20.2. The Riemann-sphere is the set Ĉ := C ∪ {∞} with the following topology: U ⊆ C is open
if and only if

i) U ∩ C is open in C
ii) if ∞ ∈ U , then Ĉ \ U is bounded.

Remarks:

• We should check that it defines a topology (union of open set is open, finite intersection of open sets

is open, ∅ is open, Ĉ is open etc.).

• Ĉ is separated (i.e. if z, w ∈ C we can find U, V open, U ∩ V = ∅, z ∈ U , w ∈ V ).

Proposition 20.3. Ĉ is compact and is homeomorphic to the 2-dimensional sphere (unit sphere in R3)

S2 := {(u, v, w) ∈ R3 : u2 + v2 + w2 = 1}.

Proof (skipped in class). Let us prove first that Ĉ is compact. Assume that Ĉ =
∪

i∈I Ui therefore there

exists i0 such that ∞ ∈ Ui0 ⇒ Ĉ \ Ui0 is bounded. But Ĉ \ Ui0 ⊆ C and closed so that Ĉ \ Ui0 is compact.
Moreover

Ĉ \ Ui0 ⊆
∪
i∈I
i ̸=i0

Ui

By compactness we can extract the finite covering: i.e. there exists J ⊆ I, (|J | < ∞) such that

Ĉ \ Ui0 ⊆
∪
i∈J

Ui ⇒ Ĉ ⊆
∪

i∈J∪{i0}

Ui

this shows that Ĉ is compact.

Let us prove that S2 ∼= Ĉ. We define φ : S2 → Ĉ, (u, v, w) 7→

{
u+iv
1−w if w ̸= 1

∞ if w = 1.

• φ is a bijection. Geometrically

{
φ−1(∞) = N

φ−1(m) = (N,m) ∩ S2
(easy with the formula to prove that φ

is bijective).
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• φ is continuous. From the formula, φ is continuous on S2 \ {(0; 0; 1)}. Continuity in N = (0; 0; 1).
We have to prove that lim

(u;v;w)→(0;0;1)
|φ(u; v;w)| = ∞. But

|φ(u; v;w)|2 =
u2 + v2

(1− w)1
=

1− w2

(1− w)2
=

1 + w

1− w

which tends to ∞ when w −→ 1.
• φ−1 is continuous. Because S2 and Ĉ are compact (if F ⊆ S2 is closed, then F is compact so that
φ(F ) = (φ−1)−1(F ) is also closed. I.e. pre-image of closed sets by φ−1 are closed, which proves the
continuity of φ−1). □

It is natural to consider functions from or to the Riemann sphere. Here is how these notions should be
interpreted.

Functions with values in Ĉ:
Let f be meromorphic on U . By definition, f is a holomorphic function U \ P → C, for a discrete subset

P of U , consisting uniquely of poles of f .

Then we can extend f to a function U → Ĉ by setting f(p) = ∞ for p ∈ P (since limz→p |f(z)| = ∞, this

extension U → Ĉ is a continuous function).

Functions with domain set Ĉ
Let U be a subset of Ĉ, ∞ ∈ U . We want to consider holomorphic and meromorphic on U .

Definition 20.4. Let f : U \ {∞} → C holomorphic. We say that f is holomorphic (or meromorphic) at
∞ if w 7→ f( 1

w ) is holomorphic (or meromorphic) at zero.

Remark: f( 1
w ) has an isolated singularity in 0 (since U is open and contains ∞, it contains the complement

of a bounded set, i.e. {w : 1
w ∈ U} contains a neighbourhood of 0). In particular, the results on isolated

singularity can be applied. Namely,

• The limit ρ = lim |z| → ∞f(z) exits if and only if |f(z)| is bounded outside a compact set.

• Similarly there exists m such that the limit limz→∞
f(z)
zm exists if and only if lim|z|→∞ |f(z)| → ∞.
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