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1. Implementations of Algorithm Hyper in Mathematica

a) Outline of Algorithm Hyper

* Goal: solve Ly=0

where L= YI_,pim)N* ,p;e€P(F) ,y€eH(K)
K a field extension of I

¢ Algorlthm (for second-order linear recurrence)

consider po(M)y(n+2)+p(M)y(n+1) +py(n)y(n) =0



1. Implementations of Algorithm Hyper in Mathematica

¢ Algorlthm (for second order linear recurence)
consider  p,(n)y(n+2) +p;(n)y(n+1) + po(n)y(n) =0

1. since solutiony € H(K),wesety(n+ 1) = S(n)y(n) for some S € R(K), subsitute in the
equation and cancel y(n):

p2(M)S(n + 1S(M)y(n) + p1(n)S(n)y(n) + po(n)y(n) =0
p,(M)S(n+ 1)S(n) + py(M)S(n) + pe(n) =0
2. write S(n) in the canonical form (Thm 5.3.1.) and substitute in the equation:

M c(n+1)
b(n) c(n)

S(n) =z

z’p,(n)a(n + Dan)c(n + 2) + zp;(m)b(n + Da(n)c(n + 1) + po(n)b(n + 1)b(n)c(n) =0



1. Implementations of Algorithm Hyper in Mathematica

¢ A|gO rithm: (for second order linear recurence)

z’p,()a(n + Da(n)c(n + 2) + zp;(n)b(n + Da(n)c(n + 1) + po(n)b(n + 1)b(n)c(n) = 0

3. a(n) is relatively prime with c(n), b(n)and b(n + 1), hence a(n) | py(n).

Similarly, b(n + 1) | p,(n). So we cancel factors a(n) and b(n + 1) in the p;’s :
? ;Zi—(ri)a(n +1Dem +2) + zp,(m)c(n + 1) + ZO(—:l))b(n)c(n) =0

4. For each choice of a(n) and b(n), equate the leading coefficient in LHS to zero
and solve quadratic equation for z .

5. For each choice of a(n), b(n) and z, solve auxiliary recurrence equation for c(n),
using Algorithm Poly.



1.

Implementations of Algorithm Hyper in Mathematica

Remarks:

generalization to higher order recurrences: Algorithm Poly in step 6 (method of undetermined
coefficients) to a larger SLE.

Maximal complexity if no hypergeometric solution exits (need to check all possible triples
(a(n), b(n), ).

Check triples (a(n), b(n), z) until generating Ker (L) N L(Hy) (Note: Ker(L) may need more
than just hypergeometrlc sequences to be spanned).

Coefficient p;s are in P(F), but hypergeometric solutions y(n) are in H (K), because:
« Splitting field for the p;s
* Spliting fields of the polynomial to solve for the constant z.

Algorithm Hyper in Mathematlca stops after first solution.
—> all solutions in H (K) by tr all triples ( a (n), b(n), z).
- yields a generatmg set of %L N L(Hy), not necessarlly a basis.



1. Implementations of Algorithm Hyper in Mathematica

a) Finding all hypergeometric solutions:
Example 1: yn+2)-2n+2))yn+1)+n+1)(n+2)y(n) =0

* Algorithm Hyper gives a first solution:
In[1]:= Hyper[y[n+2]-2(n+2)y[n+ 1]+ (n+ 1) (n+2)y[n] ==0, y[n]]
-Out[1]={2 + n}

i.e.S(n) = ysz::)l) = n + 2 and a hypergeometric solutionis y(n) = (n + 1)

 Calling all hypergeometric solutions gives:
-In[2]:= Hyper[y[n+2]-2(n+2)y[n+ 1]+ (n+ 1) (n+2)y[n] == 0, y[n], Solutions = All]
Out[2]={1+n,(1+n)*/n,2+n}

* This gives the generating set:
(nh)?

(n!)? . :
| - . I |- r on i i
{Tl. Y =1y (Tl + 1). }contalnlng the basis { n., (n—1)! } (the 3" solution is the sum of the first two).




1. Implementations of Algorithm Hyper in Mathematica

a) Finding all hypergeometric solutions:

Example 2: yn+2)—Cn+Dy(n+1)+ ®n?-3)y(n) =0

* Algorithm Hyper gives a first solution:
-In[1]:= Hyper[y[n +2] - (2n+ 1) y[n+ 1] + (n*2 - 3) y[n] == 0, y[n]
Warning: irreducible factors of degree > 1 in trailing coefficient; some solutions may not be found
-Out[1]={}
i.e. no solution in H(Q)
—> consider splitting field of trailing coefficient py, Q(\/?)

« Calling all hypergeometric solutions in 7 (Q(~/3) gives:
-{In[2]:= Hyper[y[n+2]-2(n+2)y[n+ 1]+ (n+1) (n+ 2) y[n] == 0, y[n], Quadratics = True, Solutions = All]
-Out[2]={- V3+n,V3+ n}

i.e.S(n) = % = 4++/3 + n and hypergeometric solutions is y(n) = (i\/g)n.



2. Finding all hypergeometric solutions and more

* Considering all possible triples (a(n), b(n), z) in Algo Hyper
= all solutions in H (K)
—> actually a generating set for Ker(L) N L(Hy)

* Another method:
* find a first hypergeometric solution
» reduce the order of the recurrence equation (i.e. factorize the recurrence operator)
* look for a hypergeometric solution for the reduced recurrence,
e ... (repeat)

—> factorization of the linear recurrence operator L as a composition of first-order
linear recurrence operators L = Ly Lj_q ... L1.

— solutions from a larger class of sequences, the d’Alembertian sequences,
i.e. sequence of the formy = hy ).(h, 2.(... 2. hy)),
wherey = ) hmeans Ay(n) = y(n+ 1) — y(n) = h(n)



Finding all hypergeometric solutions and more

Outline of reducing order of L

consider a second-order linear recurrence:

p,(M)y(n +2) + py(m)y(n+ 1) + po(m)y(n) =0

Algo Hyper gives a first hypergeometric solution h; € H (K).
Note: L1hy = 0, for some L; of first order (since by definition
pi(M)hi(n+ 1) + py(n)hy(n) = 0, for some p, and p; € P(K).

look for a solution of the form y(n) = h, ) h, , where h, € H (K).
- substituting for y(n) in Ly g% tee ?

—> a first order recurrence equation which admits h, € H (K) as a solution.

We obtained two solutions h; and h; ). h, which span Ker(L) N A(Hy).
(Note that h, ) h, is not necessarily Ilﬁypergeometric.)



2. Finding all hypergeometric solutions and more

Remarks:

e Euclidean division in the ring of linear recurrence operators with coefficients in
R(K) :

* shift operator N distributes and commutes with linear recurrence operators
(rule: Np(n) = p(n+ 1)N),
— define a multiplication and a division with rest of linear recurrence operators.

* Lety € §(K) s.t. Ly = 0, and let M of minimal order such that My = 0.
—> divisionof Lby M: L = QM + R, Q and R linear recurrence operators, ord(R) < ord(M).
Since L and M annihilate y, so does R which is then necessarily the zero operator.
Hence the operator with minimal order annihilating y is a factor of the operator L.
Conversely, if My = 0 then obviously QMy = 0 for any Q.

* solving Ly = 0 is equivalent to factorizing the linear operatoras L = L,L; where
L4 is the annihilating operator of y of minimal order.
When y is hypergeometric the minimal operator L, is of first order.



2. Finding all hypergeometric solutions and more

b)  Solutions in d’Alembertian sequences:
_ _yn Bk) (Sn — 3k)
Example: y(n) k=0 ( I ok

» Zeilberger Algo gives L such that Ly =0 :

L=8(n+2)(2n+3)N2 — 6(36n2 +99n + 70)N + 81(3n + 2)(3n + 4)

 Algo Hyper gives a unique solution in Ker(L) N H (K):
-In[2]:=Hyper[8 (N +2)(2n+3)y[n+2]-6(36Nn*2+99n+70)y[n+1]+81(3n+2)(3n+4)y[n] ==0, y[n], Solutions = All]

-Out[2]={27/4}
27 27

n
i.e.S(n) = % = and the fundamental hypergeometric solution is y(n) = (7) .

* We divide L by the factor L; = 4N — 27 corresponding to the solution above,
> L= L,L;,with L, =2(n+2)(2n+ 3)N —3(3n + 2)(3n + 4).



2. Finding all hypergeometric solutions and more

b)  Solutions in d’Alembertian sequences:

We divide L by the factor L; = 4N — 27 corresponding to the solution above,
> L= L,L;, with L, =2(n+2)2n+ 3)N—-3@Bn+ 2)(3n + 4).

3(3n+2)(3n+4) ( )
2(n+2)(2n+3)

The first order recurrence L,y = 0 writesy(n + 1) =

(2)

3n-1"

- hypergeometric solution y(n) =

* Hence a second fundamental solution for the first recurrence equation is:

n 3k 3
v = (2)" S0t ()

Considering the initial values y(0) = 1 and y(1) = 6 we get the solution:

n k+ _
o =2 (@) (1 - 5y, G 2y

4 3k+2 4




2. Finding all hypergeometric solutions and more

b) Finding all solutions in L(H) : (i.e. all closed form solutions)

Note:
* Ifh € Hx (Lh # 0),then Lh € Hy and is similar to h

(write r = Nh/h, substitute in Lh and factor out h)

e fheHy st.Lh=0andh = Zé‘zl h; for h;’s pairwise dissimilar,
then Lh; = 0 forall i

(if Lh; # 0 write Lh; = 1;h;, substitute in Lh = 0, yields Zi-‘zl h; = 0 then r; = 0 since h; are dissimilar)

« Ifh € L(Hy) st.Lh = 0thenh =YX, h; for hy’s s.t. Lh; = 0 for all i.

sum of similar hypergeometric terms is either hypergeometric or zero,
so write h = };;_; h; with h;’s pairwise dissimilar hypergeometric,
then substitute'in Lh = 0, then follows Lh; = 0 for all i by previous remark.

It follows that all solutions in L(H ;) are spanned by the solutions in H; obtained by
Algorithm Hyper.



Thank you



