Student seminar on Automatic proofs of binomial identities (UZH-FS2020)

Algorithm Hyper (Part II)

Presentation of Chapters 8.5. to 8.10 in A=B, by M. Petkovsek, H. Wilf, D. Zeilberger

Zouhair Ouaggag, UZH, 28.5.2020

Content:

1. Implementations of Algorithm Hyper in Mathematica:

- a) Outline of Algorithm Hyper
- b) Finding hypergeometric solutions:
 - Example 1: all solutions in $\mathcal{H}(F)$
 - Example 2: all solutions in $\mathcal{H}(K)$

2. Finding all hypergeometric solutions and more

- a) Reducing the order of recurrence, factorization of linear recurrence operators
- b) Solutions in d'Alembertian sequences
 - Example 3: all solutions in $\mathcal{L}(H)$
- c) Finding all solutions in $\mathcal{L}(H)$

1. Implementations of Algorithm Hyper in Mathematica

a) Outline of Algorithm Hyper

• Goal: solve Ly = 0

where
$$L = \sum_{i=0}^{r} p_i(n) N^i$$
 , $p_i \in \mathcal{P}(F)$, $y \in \mathcal{H}(K)$
 K a field extension of F

• Algorithm: (for second-order linear recurrence)

consider
$$p_2(n)y(n+2) + p_1(n)y(n+1) + p_0(n)y(n) = 0$$

- 1. Implementations of Algorithm Hyper in Mathematica
 - Algorithm: (for second order linear recurence)

consider
$$p_2(n)y(n+2) + p_1(n)y(n+1) + p_0(n)y(n) = 0$$

1. since solution $y \in \mathcal{H}(K)$, we set y(n+1) = S(n)y(n) for some $S \in \mathcal{R}(K)$, substitute in the equation and cancel y(n):

$$p_2(n)S(n+1)S(n)y(n) + p_1(n)S(n)y(n) + p_0(n)y(n) = 0$$

$$p_2(n)S(n+1)S(n) + p_1(n)S(n) + p_0(n) = 0$$

2. write S(n) in the canonical form (Thm 5.3.1.) and substitute in the equation:

$$S(n) = z \frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)}$$

$$z^{2}p_{2}(n)a(n+1)a(n)c(n+2) + zp_{1}(n)b(n+1)a(n)c(n+1) + p_{0}(n)b(n+1)b(n)c(n) = 0$$

- 1. Implementations of Algorithm Hyper in Mathematica
 - Algorithm: (for second order linear recurence)

$$z^2p_2(n)a(n+1)a(n)c(n+2) + zp_1(n)b(n+1)a(n)c(n+1) + p_0(n)b(n+1)b(n)c(n) = 0$$

- 3. a(n) is relatively prime with c(n), b(n) and b(n+1), hence $a(n) \mid p_0(n)$. Similarly, $b(n+1) \mid p_2(n)$. So we cancel factors a(n) and b(n+1) in the p_i 's : $z^2 \frac{p_2(n)}{b(n+1)} a(n+1) c(n+2) + z p_1(n) c(n+1) + \frac{p_0(n)}{a(n)} b(n) c(n) = 0$
- 4. For each choice of a(n) and b(n), equate the leading coefficient in LHS to zero and solve quadratic equation for z.
- 5. For each choice of a(n), b(n) and z, solve auxiliary recurrence equation for c(n), using Algorithm Poly.

Implementations of Algorithm Hyper in Mathematica

Remarks:

- generalization to higher order recurrences: Algorithm Poly in step 6 (method of undetermined coefficients) to a larger SLE.
- Maximal complexity if no hypergeometric solution exits (need to check all possible triples (a(n),b(n),z').
- Check triples (a(n), b(n), z) until generating $Ker(L) \cap \mathcal{L}(\mathcal{H}_K)$ (Note: Ker(L) may need more than just hypergeometric sequences to be spanned).
- Coefficient $p_i's$ are in $\mathcal{P}(F)$, but hypergeometric solutions y(n) are in $\mathcal{H}(K)$, because:
 - Splitting field for the $p_i's$
 - Spliting fields of the polynomial to solve for the constant z.
- Algorithm Hyper in Mathematica stops after first solution. \rightarrow all solutions in $\mathcal{H}(K)$ by trying all triples (a(n),b(n),z). \rightarrow yields a generating set of $Ker(L) \cap \mathcal{L}(\mathcal{H}_K)$, not necessarily a basis.

- 1. Implementations of Algorithm Hyper in Mathematica
- a) Finding all hypergeometric solutions:

Example 1:
$$y(n+2) - 2(n+2)y(n+1) + (n+1)(n+2)y(n) = 0$$

Algorithm Hyper gives a first solution:

-In[1]:= Hyper[y[n + 2] - 2 (n + 2) y[n + 1] + (n + 1) (n + 2) y[n] == 0, y[n]]
-Out[1]=
$$\{2 + n\}$$

i.e. $S(n) = \frac{y(n+1)}{y(n)} = n + 2$ and a hypergeometric solution is $y(n) = (n + 1)!$.

• Calling all hypergeometric solutions gives:

-In[2]:= Hyper[y[n + 2] - 2 (n + 2) y[n + 1] + (n + 1) (n + 2) y[n] == 0, y[n], Solutions
$$\rightarrow$$
 All] -Out[2]= $\{1 + n, (1 + n)^2/n, 2 + n\}$

• This gives the generating set:

$$\{n!; \frac{(n!)^2}{(n-1)!}; (n+1)!\}$$
 containing the basis $\{n!; \frac{(n!)^2}{(n-1)!}\}$. (the 3rd solution is the sum of the first two).

- 1. Implementations of Algorithm Hyper in Mathematica
- a) Finding all hypergeometric solutions:

Example 2:
$$y(n+2) - (2n+1)y(n+1) + (n^2-3)y(n) = 0$$

• Algorithm Hyper gives a first solution:

```
-In[1]:= Hyper[y[n + 2] - (2 n + 1) y[n + 1] + (n^2 - 3) y[n] == 0, y[n] Warning: irreducible factors of degree > 1 in trailing coefficient; some solutions may not be found -Out[1]= {} i.e. no solution in \mathcal{H}(\mathbb{Q}) \rightarrow consider splitting field of trailing coefficient p_0, \mathbb{Q}(\sqrt{3})
```

• Calling all hypergeometric solutions in $\mathcal{H}(\mathbb{Q}(\sqrt{3}))$ gives:

-In[2]:= Hyper[y[n + 2] - 2 (n + 2) y[n + 1] + (n + 1) (n + 2) y[n] == 0, y[n], Quadratics
$$\rightarrow$$
 True, Solutions \rightarrow All]
-Out[2]= $\{-\sqrt{3} + n, \sqrt{3} + n\}$

i.e.
$$S(n) = \frac{y(n+1)}{y(n)} = \pm \sqrt{3} + n$$
 and hypergeometric solutions is $y(n) = (\pm \sqrt{3})_n$.

- 2. Finding all hypergeometric solutions and more
- Considering all possible triples (a(n), b(n), z) in Algo Hyper
 - \rightarrow all solutions in $\mathcal{H}(K)$
 - \rightarrow actually a generating set for $Ker(L) \cap \mathcal{L}(\mathcal{H}_K)$
- Another method:
 - find a first hypergeometric solution
 - reduce the order of the recurrence equation (i.e. factorize the recurrence operator)
 - look for a hypergeometric solution for the reduced recurrence,
 - ... (repeat)
 - \rightarrow factorization of the linear recurrence operator L as a composition of first-order linear recurrence operators $L=L_kL_{k-1}\dots L_1$.
 - \rightarrow solutions from a larger class of sequences, the d'Alembertian sequences, i.e. sequence of the form $y=h_1\sum(h_2\sum(...\sum h_k))$, where $y=\sum h$ means $\Delta y(n)=y(n+1)-y(n)=h(n)$

- 2. Finding all hypergeometric solutions and more
- a) Outline of reducing order of L

consider a second-order linear recurrence:

$$p_2(n)y(n+2) + p_1(n)y(n+1) + p_0(n)y(n) = 0$$

- 1. Algo Hyper gives a first hypergeometric solution $h_1 \in \mathcal{H}(K)$. Note: $L_1h_1=0$, for some L_1 of first order (since by definition $p_1(n)h_1(n+1)+p_0(n)h_1(n)=0$, for some p_0 and $p_1 \in \mathcal{P}(K)$.
- 2. look for a solution of the form $y(n) = h_1 \sum h_2$, where $h_2 \in \mathcal{H}(K)$. \rightarrow substituting for y(n) in Ly = 0 \rightarrow a first order recurrence equation which admits $h_2 \in \mathcal{H}(K)$ as a solution.
- 3. We obtained two solutions h_1 and $h_1 \sum h_2$ which span $Ker(L) \cap \mathcal{A}(\mathcal{H}_K)$. (Note that $h_1 \sum h_2$ is not necessarily hypergeometric.)

2. Finding all hypergeometric solutions and more

Remarks:

- Euclidean division in the ring of linear recurrence operators with coefficients in $\mathcal{R}(K)$:
 - shift operator N distributes and commutes with linear recurrence operators (rule: Np(n) = p(n+1)N), \rightarrow define a multiplication and a division with rest of linear recurrence operators.
 - Let $y \in S(K)$ s.t. Ly = 0, and let M of minimal order such that My = 0. \Rightarrow division of L by M: L = QM + R, Q and R linear recurrence operators, $\operatorname{ord}(R) < \operatorname{ord}(M)$. Since L and M annihilate y, so does R which is then necessarily the zero operator. Hence the operator with minimal order annihilating y is a factor of the operator L. Conversely, if My = 0 then obviously QMy = 0 for any Q.
- solving Ly=0 is equivalent to factorizing the linear operator as $L=L_2L_1$ where L_1 is the annihilating operator of y of minimal order. When y is hypergeometric the minimal operator L_1 is of first order.

- 2. Finding all hypergeometric solutions and more
- b) <u>Solutions in d'Alembertian sequences:</u>

Example:
$$y(n) = \sum_{k=0}^{n} {3k \choose k} {3n - 3k \choose n - k}$$

• Zeilberger Algo gives L such that Ly = 0:

$$L = 8(n+2)(2n+3)N^2 - 6(36n^2 + 99n + 70)N + 81(3n+2)(3n+4)$$

• Algo Hyper gives a unique solution in $Ker(L) \cap \mathcal{H}(K)$:

-In[2]:= Hyper[8 (n + 2) (2 n + 3) y[n + 2] - 6 (36 n^2 + 99 n + 70) y[n + 1] + 81 (3 n + 2) (3 n + 4) y[n] == 0, y[n], Solutions \rightarrow All] -Out[2]= {27/4}

i.e.
$$S(n) = \frac{y(n+1)}{y(n)} = \frac{27}{4}$$
 and the fundamental hypergeometric solution is $y(n) = \left(\frac{27}{4}\right)^n$.

• We divide L by the factor $L_1 = 4N - 27$ corresponding to the solution above,

$$\rightarrow L = L_2L_1$$
, with $L_2 = 2(n+2)(2n+3)N - 3(3n+2)(3n+4)$.

2. Finding all hypergeometric solutions and more

b) Solutions in d'Alembertian sequences:

• We divide L by the factor $L_1=4N-27$ corresponding to the solution above,

$$\rightarrow$$
 $L = L_2L_1$, with $L_2 = 2(n+2)(2n+3)N - 3(3n+2)(3n+4)$.

• The first order recurrence $L_2y = 0$ writes $y(n+1) = \frac{3(3n+2)(3n+4)}{2(n+2)(2n+3)}y(n)$

$$\Rightarrow$$
 hypergeometric solution $y(n) = \frac{\binom{3n}{n}}{3n-1}$.

• Hence a second fundamental solution for the first recurrence equation is:

$$y(n) = \left(\frac{27}{4}\right)^n \sum_{k=0}^n \frac{\binom{3k}{k}}{3k-1} \left(\frac{27}{4}\right)^{-k}$$

• Considering the initial values y(0) = 1 and y(1) = 6 we get the solution:

$$y(n) = \frac{1}{2} \left(\frac{27}{4}\right)^n \left(1 - \sum_{k=0}^n \frac{\binom{3k+3}{k+1}}{3k+2} \left(\frac{27}{4}\right)^{-k}\right)$$

- 2. Finding all hypergeometric solutions and more
- b) Finding all solutions in $\mathcal{L}(\mathcal{H}_K)$: (i.e. all closed form solutions)

Note:

- If $h \in \mathcal{H}_K$ ($Lh \neq 0$), then $Lh \in \mathcal{H}_K$ and is similar to h (write r = Nh/h, substitute in Lh and factor out h)
- If $h \in \mathcal{H}_K$ s.t. Lh = 0 and $h = \sum_{i=1}^k h_i$ for h_i 's pairwise dissimilar, then $Lh_i = 0$ for all i (if $Lh_i \neq 0$ write $Lh_i = r_ih_i$, substitute in Lh = 0, yields $\sum_{i=1}^k h_i = 0$ then $r_i = 0$ since h_i are dissimilar)
- If $h \in \mathcal{L}(\mathcal{H}_K)$ s.t. Lh = 0 then $h = \sum_{i=1}^k h_i$ for h_i 's s.t. $Lh_i = 0$ for all i. sum of similar hypergeometric terms is either hypergeometric or zero, so write $h = \sum_{i=1}^k h_i$ with h_i 's pairwise dissimilar hypergeometric, then substitute in Lh = 0, then follows $Lh_i = 0$ for all i by previous remark.

It follows that all solutions in $\mathcal{L}(\mathcal{H}_K)$ are spanned by the solutions in \mathcal{H}_K obtained by Algorithm Hyper.

Thank you