A combinatorial approach of representations of symmetric groups : application to Kerov's polynomials

> Valentin Féray PHD student of Philippe Biane Laboratoire d'Informatique Gaspard Monge Paris Est Marne-La-Vallée

> > September 18th, 2007 Fields Institute, Toronto

Valentin Féray Combinatorial interpretation of Kerov's polynomials

1 Introduction

- Free cumulants and Kerov's polynomials
- Combinatorial formula for characters

Plan

Introduction

- Free cumulants and Kerov's polynomials
- Combinatorial formula for characters

2 Combinatorics of Kerov's polynomials

- Decomposition of maps in forests
- Intervals and cumulants

Free cumulants

Young diagram $\lambda \rightarrow$ Transition measure \rightarrow Free cumulants $(R_i(\lambda))_{i\geq 2}$

Proposition (Biane)

Homogeneous
$$R_i(x \cdot \lambda) = x^i R_i(\lambda)$$

Asymptotics $\chi^{x \cdot \lambda}(1 \dots k) \sim_{x \to \infty} R_{k+1}(\lambda) |x \cdot \lambda|^{-k/2}$

《口》 《聞》 《臣》 《臣》

3

Kerov's polynomials

If
$$\mu \in S(k) \subset S(n)$$
 and $\lambda \vdash n$, let

$$\Sigma^{\lambda}_{\mu} = n(n-1)\dots(n-k+1)rac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(Id_n)}$$

where χ^{λ} is the character of the irreducible representation indexed by $\lambda.$

(日) (同) (三) (三)

Kerov's polynomials

If
$$\mu \in S(k) \subset S(n)$$
 and $\lambda \vdash n$, let

$$\Sigma^{\lambda}_{\mu} = n(n-1)\dots(n-k+1)rac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(Id_n)}$$

where χ^{λ} is the character of the irreducible representation indexed by $\lambda.$

Theorem (Existence of Kerov's polynomials, Kerov, Biane)

Let $k \ge 1$, there exists a **universal** polynomial K_k such that :

$$\Sigma_{(1...k)}^{\lambda} = K_k(R_2(\lambda), \ldots, R_{k+1}(\lambda))$$

It does not depend on the diagram λ !

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Description of the coefficients

Asymptotics property of free cumulants implies :

Proposition

 $K_k = R_{k+1} + \ \textit{lower degree terms}$

Moreover :

• It has integer coefficients.

(1日) (1日) (1日)

Description of the coefficients

Asymptotics property of free cumulants implies :

Proposition

 $K_k = R_{k+1} + \ \textit{lower degree terms}$

Moreover :

- It has integer coefficients.
- We will sketch the proof of their positivity thanks to a combinatorial description using permutations in S(k).

イロト イポト イヨト イヨト

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Irreducible representations of symmetric groups

They are indexed by partitions λ ⊢ n, or equivalently by Young diagrams.

Example

•
$$\lambda_1 = 3; \lambda_2 = \lambda_3 = 2;$$

 $\lambda_4 = 1; \lambda_5 = \dots = 0,$

Irreducible representations of symmetric groups

- They are indexed by partitions λ ⊢ n, or equivalently by Young diagrams.
- Other notation : $\lambda = \mathbf{p} \times \mathbf{q}$.

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

Example

$$au = (14)(325), \overline{ au} = (13)(254)$$

A (1) > A (1) > A

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

white vertices \leftrightarrow cycles of τ black vertices \leftrightarrow cycles of $\overline{\tau}$

3

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

The edge labeled 1 links the two vertices corresponding to cycles containing 1.

・ロト ・ 同ト ・ ヨト ・ ヨト

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

Same thing for the integers between 2 and k. The cyclic order at each vertex is given by the corresponding cycle.

イロト イポト イヨト イヨト

Free cumulants and Kerov's polynomials Combinatorial formula for characters

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

We can recover the pair of permutations from the map.

· · · · · · ·

Introduction Free cumulants and Kerov's polynom
Combinatorics of Kerov's polynomials
Combinatorial formula for characters

Power series associated to a bicolored map

A colouring of the white vertices of M is :

 $\varphi:V_w(M)\to \mathbb{N}^\star$

(日) (同) (日) (日)

Power series associated to a bicolored map

A colouring of the white vertices of M is :

 $\varphi:V_w(M)\to \mathbb{N}^\star$

We associate the following colouring of the black vertices :

$$\psi: \begin{array}{ccc} V_b(M) & \to & \mathbb{N}^{\star} \\ \psi: & b & \mapsto & \max_{w \text{ neighbour of } b} \varphi(w) \end{array}$$

▶ < ∃ ▶ < ∃</p>

Power series associated to a bicolored map

A colouring of the white vertices of M is :

 $\varphi:V_w(M)\to\mathbb{N}^\star$

We associate the following colouring of the black vertices :

$$\psi: \begin{array}{ccc} V_b(M) & \to & \mathbb{N}^* \\ \psi: & b & \mapsto & \max_{w \text{ neighbour of } b} \varphi(w) \end{array}$$

Let define the power series in indeterminates ${\boldsymbol{p}}$ and ${\boldsymbol{q}}$:

$$N(M) = \sum_{\substack{\varphi \text{ colouring of} \\ \text{the white vertices}}} \left(\prod_{w \in V_w(M)} p_{\varphi(w)} \prod_{b \in V_b(M)} q_{\psi(b)} \right)$$

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Śniady)

With these notations, the character values is given by :

$$\Sigma^{\mathbf{p}\times\mathbf{q}}_{\mu} = \sum_{\substack{\tau,\overline{\tau}\in\mathcal{S}(k)\\\tau:\overline{\tau}=\mu}} (-1)^{|C(\overline{\tau})|} N(M^{\tau,\overline{\tau}})(\mathbf{p},\mathbf{q})$$

→ < ∃ → < ∃</p>

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Śniady)

With these notations, the character values is given by :

$$\Sigma^{\mathbf{p}\times\mathbf{q}}_{\mu} = \sum_{\substack{\tau,\overline{\tau}\in\mathcal{S}(k)\\\tau\cdot\overline{\tau}=\mu}} (-1)^{|C(\overline{\tau})|} N(M^{\tau,\overline{\tau}})(\mathbf{p},\mathbf{q})$$

From asymptotic property of cumulants, we have :

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = (1...k) \\ |C(\tau)| + |C(\overline{\tau})| = k+1}} (-1)^{|C(\overline{\tau})|} N(M^{\tau, \overline{\tau}})(\mathbf{p}, \mathbf{q})$$

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Śniady)

With these notations, the character values is given by :

$$\Sigma^{\mathbf{p}\times\mathbf{q}}_{\mu} = \sum_{\substack{\tau,\overline{\tau}\in S(k)\\\tau\cdot\overline{\tau}=\mu}} (-1)^{|C(\overline{\tau})|} N(M^{\tau,\overline{\tau}})(\mathbf{p},\mathbf{q})$$

From asymptotic property of cumulants, we have :

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = (1...k) \\ |C(\tau)| + |C(\overline{\tau})| = k+1}} (-1)^{|C(\overline{\tau})|} N(M^{\tau,\overline{\tau}})(\mathbf{p},\mathbf{q})$$

The factorisation appearing in the second equation are in bijection with NC(k) (non-crossing partitions of [k]). They are exactly the pair of permutations whose map is a planar tree.

Recall that, as power series in ${\boldsymbol{p}}$ and ${\boldsymbol{q}}$:

$$\Sigma_k = K_k(R_2, \ldots, R_{k+1})$$

Replace R_i by their combinatoric expression and expand, we obtain something of the kind:

$$\Sigma_k = \sum \pm$$
 series associated to forests

• • = • • =

Recall that, as power series in ${\boldsymbol{p}}$ and ${\boldsymbol{q}}$:

$$\Sigma_k = K_k(R_2, \ldots, R_{k+1})$$

Replace R_i by their combinatoric expression and expand, we obtain something of the kind:

$$\Sigma_k = \sum \pm$$
 series associated to forests

But
$$\Sigma_k = \sum \pm N^{ au, \overline{ au}}$$

• • = • • =

Recall that, as power series in ${\boldsymbol{p}}$ and ${\boldsymbol{q}}$:

$$\Sigma_k = K_k(R_2, \ldots, R_{k+1})$$

Replace R_i by their combinatoric expression and expand, we obtain something of the kind:

$${\sf \Sigma}_k = \sum \pm$$
 series associated to forests

But
$$\Sigma_k = \sum \pm N^{ au, \overline{ au}}$$

We will write each summand under the form :

$$\mathit{N}^{ au,\overline{ au}} = \sum \pm$$
 series associated to forests

• • • • • • • • •

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Description on our favorite example

Valentin Féray Combinatorial interpretation of Kerov's polynomials

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

We choose a loop (here dotted)

-

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Call erasable one edge over two of this loop

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Proposition

$$N(T_{\vec{L}}(M)) = N(M)$$

Valentin Féray Combinatorial interpretation of Kerov's polynomials

< 口 > < 同

→ Ξ →

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Proposition

$$N(T_{\vec{L}}(M)) = N(M)$$

Some choices of \longrightarrow Some way to write loops and erasable edges \longrightarrow N(M) as $\sum N(\text{forest})$

(日) (同) (日) (日) (日)

Decomposition of maps in forests Intervals and cumulants

Elementary transformation

Proposition

$$N(T_{\vec{L}}(M)) = N(M)$$

Different choices of loops and erasable edges

Maybe different ways to write N(M) as $\sum N(\text{forest})$

→ 3→ < 3</p>

To obtain a particular decomposition, we will specify some choices :

(日) (同) (三) (三)

To obtain a particular decomposition, we will specify some choices :

Add an external half-edge of black extremity to connected components which do not have one (after the edge of smallest label) and draw it on top on the map.

To obtain a particular decomposition, we will specify some choices :

- Add an external half-edge to connected components which do not have one.
- In any connected component, choose an admissible oriented loop : a loop going through * oriented from left to right if there is some.

To obtain a particular decomposition, we will specify some choices :

- Add an external half-edge to connected components which do not have one.
- In any connected component, choose an admissible oriented loop.
- Select the edges which are oriented from their white extremity to their black extremity in *L*.

To obtain a particular decomposition, we will specify some choices :

- Add an external half-edge to connected components which do not have one.
- In any connected component, choose an admissible oriented loop : if there is no loop going through *, take an admissible oriented loop of one of the M_i.

Select the edges which are oriented from white to black in \vec{L} .

To obtain a particular decomposition, we will specify some choices :

- Add an external half-edge to connected components which do not have one.
- In any connected component, choose an admissible oriented loop.
- Select the edges which are oriented from white to black in *L*.

If we iterate transformations with such choices of erasable edges, we obtain an algebraic sum of forests, whose associated polynomial is equal to N(M).

Invariance of the result

There is still some choices to do, but :

Proposition

If we follow the rules above, we always obtain the same sum of forests which we will denote D(M).

• • = • • = •

Invariance of the result

There is still some choices to do, but :

Proposition

If we follow the rules above, we always obtain the same sum of forests which we will denote D(M).

Example

< 17 ▶

★ ∃ → < ∃ →</p>

Properties of our decomposition

As we iterate N-invariant transformations :

Proposition

N(D(M)) = N(M)

Valentin Féray Combinatorial interpretation of Kerov's polynomials

(1日) (1日) (1日)

Properties of our decomposition

As we iterate N-invariant transformations :

Proposition

N(D(M)) = N(M)

Thanks to our choice of loops, one has :

Proposition

The sign of the coefficient of
$$M'$$
 in $(-1)^{\# c.c. of M} D(M)$ is $(-1)^{\# c.c. of M'}$

(日) (同) (日) (日) (日)

Decomposition of maps in forests Intervals and cumulants

Back to Kerov's polynomials

Recall :

$$\Sigma_{k} = \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = (1...k)}} (-1)^{|C(\overline{\tau})|} N(M^{\tau, \overline{\tau}})$$

(日) (同) (日) (日) (日)

3

Back to Kerov's polynomials

Recall :

$$\Sigma_{k} = \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = (1...k)}} (-1)^{|C(\overline{\tau})|} N(M^{\tau, \overline{\tau}})$$

Replace each term N(M) by N(D(M)), we have something like :

$$\Sigma_k = \sum \pm N(\textit{forests})$$

(日) (同) (日) (日)

Back to Kerov's polynomials

Recall :

$$\Sigma_{k} = \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = (1...k)}} (-1)^{|C(\overline{\tau})|} N(M^{\tau, \overline{\tau}})$$

Replace each term N(M) by N(D(M)), we have something like :

$$\Sigma_k = \sum \pm N(\textit{forests})$$

To understand Kerov's polynomial we have to put terms together and make appear free cumulants.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Decomposition of maps in forests Intervals and cumulants

Order on the symmetric group

Definition

$$|\sigma| \stackrel{\text{def}}{:=} \min \left\{ h \text{ s.t. } \exists \text{ transpositions } \tau_1, \dots, \tau_h \\ \text{with } \sigma = \tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_h \right\}$$

(日) (同) (三) (三)

3

Decomposition of maps in forests Intervals and cumulants

Order on the symmetric group

Definition

$$\begin{aligned} |\sigma| \stackrel{\text{def}}{:=} \min \left\{ h \text{ s.t. } \exists \text{ transpositions } \tau_1, \dots, \tau_h \\ & \text{with } \sigma = \tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_h \right\} \\ \sigma \leq \sigma' \stackrel{\text{def}}{\Leftrightarrow} |\sigma'| = |\sigma| + |\sigma'^{-1}\sigma| \end{aligned}$$

(日) (四) (三) (三) (三)

3

Order on the symmetric group

Definition

$$|\sigma| \stackrel{\text{def}}{:=} \min \left\{ h \text{ s.t. } \exists \text{ transpositions } \tau_1, \dots, \tau_h \\ \text{with } \sigma = \tau_1 \cdot \tau_2 \cdot \dots \cdot \tau_h \right\}$$

$$\sigma \leq \sigma' \stackrel{\mathrm{def}}{\Leftrightarrow} |\sigma'| = |\sigma| + |\sigma'^{-1}\sigma|$$

Proposition

If $\sigma \leq \sigma'$ and $\sigma^{-1}\sigma' = c_1 \cdot \ldots \cdot c_t$ (decomposition in cycles of disjoint supports),

$$[\sigma; \sigma'] \simeq [\mathit{id}_k; \sigma^{-1}\sigma'] \simeq \prod [e; c_i] \simeq \prod \mathsf{NC}(|c_i|+1)$$

イロン 不得と イヨン イヨン

Intervals and cumulants

Let ϕ be an isomorphism :

$$[\sigma; \sigma'] \simeq \prod \mathsf{NC}(|c_i|+1)$$

If $\tau \in [\sigma; \sigma']$, denote :

$$N_{\phi}(\tau) = N(M^{\phi(\tau)})$$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intervals and cumulants

Let ϕ be an isomorphism :

$$[\sigma; \sigma'] \simeq \prod \mathsf{NC}(|c_i|+1)$$

If $\tau \in [\sigma; \sigma']$, denote :

$$N_{\phi}(\tau) = N(M^{\phi(\tau)})$$

Then

$$\sum_{\tau\in S(k)} N_{\phi}(\tau) = \prod R_{|c_i|+2}$$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Intervals and cumulants

Let ϕ be an isomorphism :

$$[\sigma; \sigma'] \simeq \prod \mathsf{NC}(|c_i|+1)$$

If $au \in [\sigma; \sigma']$, denote :

$$N_{\phi}(\tau) = N(M^{\phi(\tau)})$$

Then

$$\sum_{\tau\in S(k)}N_{\phi}(\tau)=\prod R_{|c_i|+2}$$

If we choose well ϕ , $N_{\phi}(\tau)$ appears in N(D(M)). So intervals are a good tool to make appear products of free cumulants in Σ_k .

Main theorem

With an appropriate family of isomorphisms ϕ , we prove :

Theorem

If $\mu \in S(k)$, let

$$\Sigma'_{\mu} \stackrel{\text{def}}{:=} \sum_{\substack{\tau, \overline{\tau} \in S(k) \\ \tau \cdot \overline{\tau} = \mu \\ < \tau, \overline{\tau} > \text{ trans.}}} (-1)^{|C(\overline{\tau})| + |C(\mu)| - 1} N(M^{\tau, \overline{\tau}})$$

then there exists a polynomial with **non-negative** integer coefficients such that :

$$\Sigma'_{\mu} = K'_{\mu}(R_2,\ldots,R_k)$$

The case $|C(\mu)| = 1$ is the result we claimed for classical Kerov's polynomial.

Computation of coefficients

Proposition

The coefficient of monomial $\prod_{i=1}^{t} R_{j_i+1}$ in K'_{μ} is the coefficient of the disjoint union of t trees with one black and respectively j_1, \ldots, j_t white vertices in

$$\sum_{\substack{\tau,\overline{\tau}\in S(k)\\\tau\overline{\tau}=\sigma,<\tau,\overline{\tau}>trans.\\|C(\overline{\tau})|=t}} D(M^{\tau,\overline{\tau}})$$

Computation of coefficients

Proposition

The coefficient of monomial $\prod_{i=1}^{t} R_{j_i+1}$ in K'_{μ} is the coefficient of the disjoint union of t trees with one black and respectively j_1, \ldots, j_t white vertices in

$$\sum_{\substack{\tau,\overline{\tau}\in S(k)\\\tau\overline{\tau}=\sigma,<\tau,\overline{\tau}>trans.\\|C(\overline{\tau})|=t}} D(M^{\tau,\overline{\tau}})$$

Corollary

The coefficient of the linear monomial R_d in K_k is the number of cycles $\sigma \in S(k)$ such that $\sigma^{-1}(12...k)$ has d-1 cycles.

Decomposition of maps in forests Intervals and cumulants

Computation of coefficients

Corollary

The coefficient of the linear monomial R_d in K_k is the number of cycles $\sigma \in S(k)$ such that $\sigma^{-1}(12...k)$ has d-1 cycles.

Proof.

If $|C(\overline{\tau})| = 1$, the map $M = M^{\tau,\overline{\tau}}$ has one black vertex, so D(M) is a tree with one black vertex and as many white vertices as M.

Thank you!

Valentin Féray Combinatorial interpretation of Kerov's polynomials

(日) (四) (三) (三) (三)

2