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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Free cumulants

Young diagram A — Transition measure
—  Free cumulants (Ri(\))i>2

Proposition (Biane)
Homogeneous R;i(x - A) = x'R;(\)
Asymptotics X**(1...k) ~x—oo Rieg1(A)|x - A|7/2
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Kerov's polynomials

If p e S(k) C S(n) and AF n, let

)\
SA=n(n—1)...(n—k+1) A((/Z))

where x* is the character of the irreducible representation indexed
by A.
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Kerov's polynomials

If p e S(k) C S(n) and AF n, let

A
Sh=n(n—1)...(n—k+ 1)X>§(553)

where x* is the character of the irreducible representation indexed
by A.

Theorem (Existence of Kerov's polynomials, Kerov, Biane)

Let k > 1, there exists a universal polynomial K such that :

z?l...k) = Kk(R2(A), - - -, Reg1(N))

It does not depend on the diagram !
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Introduction Free cumulants and Kerov's polynomials

Combinatorial formula for characters

Description of the coefficients

Asymptotics property of free cumulants implies :

Proposition

Kk = Rik+1 + lower degree terms

Moreover :

@ It has integer coefficients.
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Description of the coefficients

Asymptotics property of free cumulants implies :

Proposition

Kk = Rik+1 + lower degree terms

Moreover :
@ It has integer coefficients.

@ We will sketch the proof of their positivity thanks to a
combinatorial description using permutations in S(k).
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Irreducible representations of symmetric groups

@ They are indexed by partitions A F n, or equivalently by Young
diagrams.

0)\1:3;)\2:)\3:2;
)\4:1;)\5:...:0,

Valentin Féray Combinatorial interpretation of Kerov's polynomials



Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Irreducible representations of symmetric groups

@ They are indexed by partitions A F n, or equivalently by Young
diagrams.

@ Other notation: A =p x q.

q3
q2

P3

0)\1:3;)\2:)\3:2; y
)\4:1;)\5:...:0,

P2
o A=(1,2,1) x (3,2,1)

P1

qi
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

T = (14)(325), 7 = (13)(254)
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Introduction Free cumulants and Kerov's polynomials

Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

7 = (14)(325), 7 = (13)(254)
e

(253)o (13) o(14)
®2 45)

white vertices <« cycles of 7

black vertices <« cycles of 7
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Introduction Free cumulants and Kerov's polynomials

Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

= (14)(325), 7 = (13)(254)

(253)0 (.\0(1 4)

%2 45)

The edge labeled 1 links the two vertices corresponding to cycles
containing 1.
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Introduction Free cumulants and Kerov's polynomials

Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

T = (14)(325), 7 = (13)(254)

Same thing for the integers between 2 and k. The cyclic order at
each vertex is given by the corresponding cycle.
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

T = (14)(325), 7 = (13)(254)

We can recover the pair of permutations from the map.
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Power series associated to a bicolored map

A colouring of the white vertices of M is :

¢: Vy(M)— N*
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Power series associated to a bicolored map

A colouring of the white vertices of M is :
¢: Vy(M)— N*
We associate the following colouring of the black vertices :
Vo(M) — N

v b max o(w)
w neighbour of b

Valentin Féray Combinatorial interpretation of Kerov's polynomials



Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Power series associated to a bicolored map

A colouring of the white vertices of M is :
¢: Vy(M)— N*
We associate the following colouring of the black vertices :

Vb(M) — N
Y b
~ w neigTbao)L(Jr of b(p(W)

Let define the power series in indeterminates p and q :

NM) = > [T powy II aqw

¢ colouring of weVy, (M) be Vi, (M)
the white vertices
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Sniady)

With these notations, the character values is given by :

A= % (-1)OINMTT)(p,q)
T,ng(k)
TT=p
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Sniady)

With these notations, the character values is given by :

A= % (-1)OINMTT)(p,q)
T,ng(k)
TT=p

From asymptotic property of cumulants, we have :

Rer1(p x q) = > (-)DINmTT)(p, q)
T,7€S5(k)
77=(1...k)
|C(r)+ C (P =k+1
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Introduction Free cumulants and Kerov's polynomials
Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

Theorem (Stanley, Féray, Sniady)

With these notations, the character values is given by :

A= % (-1)OINMTT)(p,q)
T,ng(k)
TT=p

From asymptotic property of cumulants, we have :

Rer1(p x q) = > (-)DINmTT)(p, q)
T,7€S5(k)
77=(1...k)
|C(7)|+|C(T)|=k+1

The factorisation appearing in the second equation are in bijection
with NC(k) (non-crossing partitions of [k]|). They are exactly the
pair of permutations whose map is a planar tree.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Recall that, as power series in p and q :
Y = Ki(Ra, .-, Riy1)

Replace R; by their combinatoric expression and expand, we obtain
something of the kind:

2= Z =+ series associated to forests
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Recall that, as power series in p and q :
Y = Ki(Ra, .-, Riy1)

Replace R; by their combinatoric expression and expand, we obtain
something of the kind:

2= Z =+ series associated to forests

But Ty = ) £N77
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Recall that, as power series in p and q :
Y = Ki(Ra, .-, Riy1)

Replace R; by their combinatoric expression and expand, we obtain
something of the kind:

2= Z =+ series associated to forests

But Ty = ) £N77
We will write each summand under the form :

NTT = Z 4+ series associated to forests

Valentin Féray Combinatorial interpretation of Kerov's polynomials



Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

Description on our favorite example
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

We choose a loop (here dotted)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

Call erasable one edge over two of this loop
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

Let T;(M) be the formal expression :
3
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Decomposition of maps in forests
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Elementary transformation

Let T;(M) be the formal expression :
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

Let T;(M) be the formal expression :

Proposition

N(T(M)) = N(M)

Some choices of . Some way to write
loops and erasable edges N(M) as > N(forest)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Elementary transformation

Let T;(M) be the formal expression :

Proposition

N(T(M)) = N(M)

Different choices of . Maybe different ways to write
loops and erasable edges N(M) as > N(forest)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :

© Add an external half-edge of black
extremity to connected components
which do not have one (after the edge
of smallest label) and draw it on top
on the map.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :

© Add an external half-edge to connected
components which do not have one.

@ In any connected component, choose i
an admissible oriented loop : a loop Il S
g.oing.through. * oriented from left to ) 5_)\ 4/,0
right if there is some. 27" a7
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :

© Add an external half-edge to connected
components which do not have one.

© In any connected component, choose
an admissible oriented loop.

© Select the edges which are oriented
from their white extremity to their
black extremity in L.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :

© Add an external half-edge to connected
components which do not have one.

© In any connected component, choose
an admissible oriented loop : if there is .
no loop going through x, take an

y
[

o 0 :
admissible oriented loop of one of the ' ‘. Y
M;. M, M, M,

© Select the edges which are oriented
from white to black in L.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Restriction of choices

To obtain a particular decomposition, we will specify some choices :

© Add an external half-edge to connected
components which do not have one.

@ In any connected component, choose " .y,

an admissible oriented loop. /////' /////' W
© Select the edges which are oriented M M, M,

from white to black in L.

If we iterate transformations with such choices of erasable edges,
we obtain an algebraic sum of forests, whose associated polynomial
is equal to N(M).
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Invariance of the result

There is still some choices to do, but :

Proposition

If we follow the rules above, we always obtain the same sum of
forests which we will denote D(M).
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Invariance of the result

There is still some choices to do, but :

Proposition

If we follow the rules above, we always obtain the same sum of
forests which we will denote D(M).
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Properties of our decomposition

As we iterate N—invariant transformations :

Proposition

N(D(M)) = N(M)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Properties of our decomposition

As we iterate N—invariant transformations :

Proposition

N(D(M)) = N(M)

Thanks to our choice of loops, one has :

Proposition

The sign of the coefficient of M in (—1)# <€ FMD(M) is
(_1)# c.c. of M’

Valentin Féray
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Back to Kerov's polynomials

Recall :
Se= Y ()OI
7,7€S(k)
77=(1...k)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Back to Kerov's polynomials

Recall :

L= Y ()OI
7,7€S(k)
77=(1...k)

Replace each term N(M) by N(D(M)), we have something like :

Y= Z + N(forests)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Back to Kerov's polynomials

Recall :
Te= Y (<))

7,7€S(k)
77=(1...k)

Replace each term N(M) by N(D(M)), we have something like :
Y= Z + N(forests)

To understand Kerov's polynomial we have to put terms together
and make appear free cumulants.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Order on the symmetric group

def . ..
|o| :== min {h s.t. 3 transpositions Ty, ..., Th

WithO‘ZTl'Tz-...'Th}
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Order on the symmetric group

def . ..
|o| :== min {h s.t. 3 transpositions Ty, ..., Th

WithO‘ZTl'Tz-...'Th}

/ def

o<d & |

| = lo| + 0" o]
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Order on the symmetric group

def . ..
|o| :== min {h s.t. 3 transpositions Ty, ..., Th

with U:Tl-Tz-...-Th}
d —
c<o ¥ 0’| = |o| + 0" Lo
. ot
Ifo <o ando o' =ci-... ¢ (decomposition in cycles of

disjoint supports),

[o;0'] ~ [idx; 0~ a']NH[e c,]_HNC lci| + 1)

\
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Intervals and cumulants

Let ¢ be an isomorphism :

[0;0'] ~ H NC(Jci| +1)
If 7 € [o;0'], denote :

Ny(r) = N(M*))
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Intervals and cumulants

Let ¢ be an isomorphism :
o)~ [T vC(leil + 1)
If 7 € [o;0'], denote :
Ny(r) = N(M*D)
Then

> No(m) =[] Rz

TS (k)
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Intervals and cumulants

Let ¢ be an isomorphism :
o)~ [T vC(leil + 1)
If 7 € [o;0'], denote :
Ny(r) = N(M*D)

Then

> No(m) =[] Rz

TS (k)

If we choose well ¢, Ny(7) appears in N(D(M)). So intervals are a
good tool to make appear products of free cumulants in .
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Main theorem

With an appropriate family of isomorphisms ¢, we prove :

If i € S(k), let

) def S (1) COIHCWI (T
7,7€S(k)

T T=
<T,7> trans.

then there exists a polynomial with non-negative integer
coefficients such that :

T, =K.(Ray- .., Rk)

The case |C(u)| =1 is the result we claimed for classical Kerov's
polynomial.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Computation of coefficients

Proposition

The coefficient of monomial [ Rj,11 in K, is the coefficient of the
i=1
disjoint union of t trees with one black and respectively ji, ..., J:

white vertices in
> D(MTT).

7,7€S(k)
TT=0,<T,T>trans.

|C(T)|=t
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Combinatorics of Kerov’'s polynomials Intervals and cumulants

Computation of coefficients

Proposition
The coefficient of monomial [ Rj,11 in K, is the coefficient of the
i=1
disjoint union of t trees with one black and respectively ji, ..., J:
white vertices in
> D(MTT).
7,7€S(k)
TT=0,<T,T>trans.
|C(7)|=t

The coefficient of the linear monomial Ry in Ky is the number of
cycles o € S(k) such that c=1(12... k) has d — 1 cycles.
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomials Intervals and cumulants

Computation of coefficients

Corollary

The coefficient of the linear monomial Ry in Ky is the number of
cycles o € S(k) such that c=1(12... k) has d — 1 cycles.

Proof.

If |C(7)| =1, the map M = M™7 has one black vertex, so D(M) is
a tree with one black vertex and as many white vertices as M. [

| \
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Decomposition of maps in forests
Combinatorics of Kerov’'s polynomi Intervals and cumulants

Thank you!

Valentin Féray
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