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Introduction

Field of research

Interactions between three branches of mathematics:

combinatorics: permutations, graphs, Young diagrams.
�

1 2 3 4 5
5 3 2 4 1




algebra: representation theory, symmetric functions.

probability theory: asymptotic behavior of large discrete structures.
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Introduction

The symmetric group

A permutation of size 5:

�

1 2 3 4 5
5 3 2 4 1




.

Permutations of the same size n can be multiplied:
�

1 2 3 4 5
5 3 2 4 1




�

�

1 2 3 4 5
2 4 5 1 3




�

�

1 2 3 4 5
3 5 4 1 2




They form a group called symmetric group Sn.
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Introduction

The symmetric group

A permutation of size 5:

�

1 2 3 4 5
5 3 2 4 1




.

Permutations of the same size n can be multiplied:
�

1 2 3 4 5
5 3 2 4 1




�

�

1 2 3 4 5
2 4 5 1 3




�

�

1 2 3 4 5
3 5 4 1 2




They form a group called symmetric group Sn.

Interests:

simple infinite family of non-commutative groups;

they act on labelled discrete structures, multivariate polynomials.
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Introduction

Representation theory

Let G be a finite group.

def: a representation of G � a finite-dimensional vector space V

and a morphism ρ : G Ñ GLpV q.

Concretely, if we fix a basis of V :
to each g P G , we associate a matrix ρpgq.
product in G Ø product of matrices.
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Introduction

Representation theory

Let G be a finite group.

def: a representation of G � a finite-dimensional vector space V

and a morphism ρ : G Ñ GLpV q.

Concretely, if we fix a basis of V :
to each g P G , we associate a matrix ρpgq.
product in G Ø product of matrices.

Example: geometric representation of Sn

�

1 2 3 4 5
5 3 2 4 1




ÞÑ

�

�

�

�

�

�

0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

�

Æ

Æ

Æ

Æ
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Introduction

Representation theory

Let G be a finite group.

def: a representation of G � a finite-dimensional vector space V

and a morphism ρ : G Ñ GLpV q.

Concretely, if we fix a basis of V :
to each g P G , we associate a matrix ρpgq.
product in G Ø product of matrices.

Interests:
it gives a concrete representation of elements of G ;
if an operator is invariant by an action of G , its eigenspaces are
representations of G (important in theoretical physics).
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Introduction

Representation theory of finite groups

We are interested in
ρpgq,

where ρ is a representation and g an element of G .
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Introduction

Representation theory of finite groups

We are interested in
ρpgq,

where ρ is a representation and g an element of G .

First simplification (Maschke theorem):

Every representation is a sum of irreducible representations;

There are a finite number of irreducible representations.

V. Féray (LaBRI, CNRS, Bordeaux)I. Jack polynomials, II. Cumulants FoPSAaC, 2012–07 5 / 1



Introduction

Representation theory of finite groups

We are interested in
ρλpgq,

where ρλ is an irreducible representation and g an element of G .

First simplification (Maschke theorem):

Every representation is a sum of irreducible representations;

There are a finite number of irreducible representations.
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Introduction

Representation theory of finite groups

We are interested in

tr

�

ρλpgq




,

where ρλ is an irreducible representation and g an element of G .

Second simplification (theory of characters):

Most natural questions can be answered knowing only the character of
the representation, that is the trace of the matrices.
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Introduction

Representation theory of finite groups

We are interested in

χλ
pµq � tr

�

ρλpgq




,

where ρλ is an irreducible representation and g an element of Cµ.

Second simplification (theory of characters):

Most natural questions can be answered knowing only the character of
the representation, that is the trace of the matrices.

it depends only on the conjugacy class Cµ of g in G .

χλ
pµq are called irreducible character values.
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Introduction

Representation theory of symmetric groups

Consider the case G � Sn.

The quantities χλ
pµq have been studied by G. Frobenius (1900):

link with symmetric function theory;

there is a combinatorial formula for them: Murnaghan-Nakayama rule.
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Introduction

Representation theory of symmetric groups

Consider the case G � Sn.

The quantities χλ
pµq have been studied by G. Frobenius (1900):

link with symmetric function theory;

there is a combinatorial formula for them: Murnaghan-Nakayama rule.

These numbers are useful to:

enumerate graphs on surfaces;

evaluate mixing times (for a deck of cards for example, Diaconis);

compute matrix integrals (link with representation of unitary groups).
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Introduction

My results on irreducible character values of Sn

I have given two new combinatorial formulas for χλ
pµq.
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Introduction

My results on irreducible character values of Sn

I have given two new combinatorial formulas for χλ
pµq.

With P. Śniady, we have used the first formula to give a new uniform upper
bound on χλ

pµq.
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Introduction

My results on irreducible character values of Sn

I have given two new combinatorial formulas for χλ
pµq.

With P. Śniady, we have used the first formula to give a new uniform upper
bound on χλ

pµq.

I am currently studying a more general setting, involving Jack polynomials.
Ñ a lot of open problems here!
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Introduction

Outline of the presentation
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Stanley formula

Partitions

Let G � Sn. Irreducible character values of the symmetric group Sn

χλ
pµq

are indexed by partitions λ and µ of size n.

Definition

A partition λ of size n (short notation: λ $ n) and length r is a
non-decreasing list of integers

λ1 ¥ λ2 ¥ � � � ¥ λr ¡ 0 with
ŗ

i�1

λi � n.

Example: p4, 3, 1, 1q $ 9.

Graphical representation: .
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Stanley formula

Kerov and Olshanski dual approach

Fix a partition µ (denote k � |µ|). Consider the following function on
partitions of any size:

Chµpλq �

$

&

%

|λ|p|λ| � 1q . . . p|λ| � k � 1q
χλ
�

µ,1,...,1
�

χλ
p1,...,1q

if |λ| ¥ k ;

0 otherwise.

Roughly, its values are the (renormalized) irreducible character values
of symmetric groups;
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Stanley formula

Kerov and Olshanski dual approach

Fix a partition µ (denote k � |µ|). Consider the following function on
partitions of any size:

Chµpλq �

$

&

%

|λ|p|λ| � 1q . . . p|λ| � k � 1q
χλ
�

µ,1,...,1
�

χλ
p1,...,1q

if |λ| ¥ k ;

0 otherwise.

Roughly, its values are the (renormalized) irreducible character values
of symmetric groups;

the novelty here is to see it as a function on all Young diagrams: we
consider characters of several symmetric group at the same time;

V. Féray (LaBRI, CNRS, Bordeaux)I. Jack polynomials, II. Cumulants FoPSAaC, 2012–07 10 / 1



Stanley formula

Kerov and Olshanski dual approach

Fix a partition µ (denote k � |µ|). Consider the following function on
partitions of any size:

Chµpλq �

$

&

%

|λ|p|λ| � 1q . . . p|λ| � k � 1q
χλ
�

µ,1,...,1
�

χλ
p1,...,1q

if |λ| ¥ k ;

0 otherwise.

Roughly, its values are the (renormalized) irreducible character values
of symmetric groups;

the novelty here is to see it as a function on all Young diagrams: we
consider characters of several symmetric group at the same time;

Chµ has nice analytic properties, but no combinatorial description in
the work of Kerov and Olshanski.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.

sum index: factorisations of a fixed permutation in two factors.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.

sum index: factorisations of a fixed permutation in two factors.

sign: number of cycles of σ.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.

sum index: factorisations of a fixed permutation in two factors.

sign: number of cycles of σ.

Gσ,τ : oriented graph canonically associated to the pair pσ, τq.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.

sum index: factorisations of a fixed permutation in two factors.

sign: number of cycles of σ.

Gσ,τ : oriented graph canonically associated to the pair pσ, τq.

NG : family of functions on Young diagrams indexed by oriented
graphs.
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Stanley formula

Stanley formula

Fix a partition µ of size k and a permutation π in Sk of cycle-type µ.

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

Chµ �
¸

τ,σPSk
τσ�π

p�1q|Cpσq|NGσ,τ
.

sum index: factorisations of a fixed permutation in two factors.

sign: number of cycles of σ.

Gσ,τ : oriented graph canonically associated to the pair pσ, τq.

NG : family of functions on Young diagrams indexed by oriented
graphs.

Interest: it gives a combinatorial framework to Kerov’s and Olshanski’s
theory.
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Stanley formula

The summation index: factorisation of permutations

Question (classical in enumerative combinatorics)

Enumerate factorizations σ � τ of a fixed permutation π with given
properties (number of cycles, . . . ).
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Stanley formula

The summation index: factorisation of permutations

Question (classical in enumerative combinatorics)

Enumerate factorizations σ � τ of a fixed permutation π with given
properties (number of cycles, . . . ).

When π � p1 2 � � � kq, it is equivalent to study unicellular bipartite map
with k edges.

map: a connected graph G embedded in a surface S

bipartite: with black and white vertices and no monochromatic edges
unicellular: SzG is homeomorphic to an open disc
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Stanley formula

A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps

Ø

�

1234567890
1264805793
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Stanley formula

A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps

Ø

�

1234567890
1264805793




Interests:
our correspondence preserves a lot of structure;
trees and permutations are simpler than unicellular maps.

Consequences:
we can prove in a simple and unified way a lot of formulas;
our construction also gives a new formula for Chµ.
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Stanley formula

A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps

Ø

�

1234567890
1264805793




See Guillaume’s talk on Friday morning.
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Stanley formula

Non-decreasing functions on oriented graphs

We are interested in functions NG .

I will rather define a formal series F pG q in infinitely many variables
x1, x2, � � � , which shares many properties with NG .
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Stanley formula

Non-decreasing functions on oriented graphs

We are interested in functions NG .

I will rather define a formal series F pG q in infinitely many variables
x1, x2, � � � , which shares many properties with NG .
Let G be an oriented graph

G �

Note: edges are oriented from bottom to top.
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Stanley formula

Non-decreasing functions on oriented graphs

We are interested in functions NG .

I will rather define a formal series F pG q in infinitely many variables
x1, x2, � � � , which shares many properties with NG .
Let G be an oriented graph

G �

F pG q �

°

ϕ

±

vPG

xϕpvq

where the sum runs over non-decreasing functions from VG to N

(i.e. pu Ñ vq P EG ñ ϕpuq ¤ ϕpvq).

Note: edges are oriented from bottom to top.
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Stanley formula

Non-decreasing functions on oriented graphs

We are interested in functions NG .

I will rather define a formal series F pG q in infinitely many variables
x1, x2, � � � , which shares many properties with NG .
Let G be an oriented graph

G �

i

j k

ℓ F pG q �

°

ϕ

±

vPG

xϕpvq

�

°

i¤j,k
j,k¤ℓ

xixjxkxl

where the sum runs over non-decreasing functions from VG to N

(i.e. pu Ñ vq P EG ñ ϕpuq ¤ ϕpvq).

Note: edges are oriented from bottom to top.
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Stanley formula

Non-decreasing functions on oriented graphs

We are interested in functions NG .

I will rather define a formal series F pG q in infinitely many variables
x1, x2, � � � , which shares many properties with NG .
Let G be an oriented graph

G �

i

j k

ℓ F pG q �

°

ϕ

±

vPG

xϕpvq

�

°

i¤j,k
j,k¤ℓ

xixjxkxl

where the sum runs over non-decreasing functions from VG to N

(i.e. pu Ñ vq P EG ñ ϕpuq ¤ ϕpvq).

F pG q appears also in P-partition theory, quasi-symmetric function
theory. . .
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Stanley formula

Cyclic inclusion-exclusion (1/2)

Functions F pG q fulfill the following relation:

F

� �

� F

� �

� F

� �

� F

� �
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Stanley formula

Cyclic inclusion-exclusion (1/2)

Functions F pG q fulfill the following relation:

F

� �

� F

� �

� F

� �

� F

� �

it is still true if we add the same vertices/edges to all graphs.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

where

δϕ,Gi
�

#

1 ϕ is non-decreasing on Gi ;

0 otherwise.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

We will show that for any ϕ, its total contribution is 0.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

We will show that for any ϕ, its total contribution is 0.

If ϕp2q ¤ ϕp4q, then δϕ,G0
� δϕ,G1

and δϕ,G2
� δϕ,G3

.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

We will show that for any ϕ, its total contribution is 0.

If ϕp2q ¤ ϕp4q, then δϕ,G0
� δϕ,G1

and δϕ,G2
� δϕ,G3

.

If ϕp1q ¤ ϕp6q, then δϕ,G0
� δϕ,G2

and δϕ,G1
� δϕ,G3

.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

We will show that for any ϕ, its total contribution is 0.

If ϕp2q ¤ ϕp4q, then δϕ,G0
� δϕ,G1

and δϕ,G2
� δϕ,G3

.

If ϕp1q ¤ ϕp6q, then δϕ,G0
� δϕ,G2

and δϕ,G1
� δϕ,G3

.

If ϕp1q ¡ ϕp4q, then δϕ,G0
� δϕ,G1

� δϕ,G2
� δϕ,G3

� 0.
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Stanley formula

Cyclic inclusion-exclusion: proof

G0 �

6

4 5

2

1

3 , G1 �

6

4 5

2

1

3 , G2 �

6

4 5

2

1

3 , G3 �

6

4 5

2

1

3 .

We want to prove F pG0q � F pG1q � F pG2q � F pG3q � 0.
All graphs have the same vertex set V � t1, . . . , 6u. Hence,

F pGi q �

¸

ϕ:VÑN

xϕp1q � � � xϕp6qδϕ,Gi

We will show that for any ϕ, its total contribution is 0.

If ϕp2q ¤ ϕp4q, then δϕ,G0
� δϕ,G1

and δϕ,G2
� δϕ,G3

.

If ϕp1q ¤ ϕp6q, then δϕ,G0
� δϕ,G2

and δϕ,G1
� δϕ,G3

.

If ϕp1q ¡ ϕp4q, then δϕ,G0
� δϕ,G1

� δϕ,G2
� δϕ,G3

� 0.

Same thing if ϕp2q ¡ ϕp5q or ϕp5q ¡ ϕp6q.

Otherwise ϕp2q ¡ ϕp4q ¥ ϕp1q ¡ ϕp6q ¥ ϕp5q ¥ ϕp2q. Impossible.
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Stanley formula

Cyclic inclusion-exclusion (1/2)

Functions F pG q fulfill the following relation:

F

� �

� F

� �

� F

� �

� F

� �

it is still true if we add the same vertices/edges to all graphs;
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Functions F pG q fulfill the following relation:

F

� �

� F

� �

� F

� �

� F

� �

it is still true if we add the same vertices/edges to all graphs;

it can be generalized to more complicated cycles.
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Stanley formula

Cyclic inclusion-exclusion (1/2)

Functions F pG q fulfill the following relation:

F

� �

� F

� �

� F

� �

� F

� �

it is still true if we add the same vertices/edges to all graphs;

it can be generalized to more complicated cycles.

I call these relations cyclic inclusion-exclusion.
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Stanley formula

Cyclic inclusion-exclusion (2/2)

These new family of relations have nice properties

they are simple local combinatorial operations on the graphs;

they span the kernel of the application G ÞÑ F pG q;

iterating these relations displays surprising properties: confluence,
positivity.
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Stanley formula

Cyclic inclusion-exclusion (2/2)

These new family of relations have nice properties

they are simple local combinatorial operations on the graphs;

they span the kernel of the application G ÞÑ F pG q;

iterating these relations displays surprising properties: confluence,
positivity.

Applications

they are central in the proof of Kerov’s conjecture for Chµ;

with A. Boussicault, we have used them to generalize some identity
due to C. Greene;

their investigation leads to consider new bases of (word)
quasi-symmetric functions.
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Transition

Stanley formula
for characters

permutation
factorizations

cyclic inclusion-
exclusion

Upper bounds
for characters

Proof of a conjecture
of Kerov for Chµ

Work in progress:
a generalization



Extensions to Jack polynomials

Symmetric functions and characters

We consider symmetric polynomials in n variables x1, . . . , xn.

Power sums:
for k ¥ 1, pkpx1, . . . , xnq � xk

1 � � � � � xk
n ;

if µ $ d , pµpx1, . . . , xnq �
±ℓpµq

h�1
pµh

px1, ..., xnq.

Schur functions: sλpx1, ..., xnq �

det
�

x
λj�n�j

i

	

1¤i ,j¤n
±

1¤i ,j¤npxj � xi q
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Extensions to Jack polynomials

Symmetric functions and characters

We consider symmetric polynomials in n variables x1, . . . , xn.

Power sums:
for k ¥ 1, pkpx1, . . . , xnq � xk

1 � � � � � xk
n ;

if µ $ d , pµpx1, . . . , xnq �
±ℓpµq

h�1
pµh

px1, ..., xnq.

Schur functions: sλpx1, ..., xnq �

det
�

x
λj�n�j

i

	

1¤i ,j¤n
±

1¤i ,j¤npxj � xi q

Theorem (Frobenius, 1900)

For any n, any x1, . . . , xn and any partition µ $ d, one has:

pµpx1, . . . , xnq �

¸

λ$d

χλ
pµq sλpx1, . . . , xnq.

Note: this property determines uniquely χλ
pµq.
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Extensions to Jack polynomials

Jack polynomials

J
pαq

λ : one-parameter deformation of Schur functions.
(for α � 1, we recover Schur functions).

introduced by H. Jack in 1971;
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Extensions to Jack polynomials

Jack polynomials

J
pαq

λ : one-parameter deformation of Schur functions.
(for α � 1, we recover Schur functions).

introduced by H. Jack in 1971;

it was proved by L. Lapointe and L. Vinet in 1995 that the coefficients
of Jack polynomials are polynomials in α (a priori they are rational
functions).
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Extensions to Jack polynomials

Jack polynomials

J
pαq

λ : one-parameter deformation of Schur functions.
(for α � 1, we recover Schur functions).

introduced by H. Jack in 1971;

it was proved by L. Lapointe and L. Vinet in 1995 that the coefficients
of Jack polynomials are polynomials in α (a priori they are rational
functions).

Define χλ,pαq
pµq by: for all n ¥ 1 and µ $ d ,

pµpx1, . . . , xnq �

¸

λ$d

χλ,pαq
pµq J

pαq

λ px1, . . . , xnq.

We can also define a one-parameter deformation Chpαqµ of Chµ.
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Extensions to Jack polynomials

Extension of Stanley formula

M. Lassalle formulated two positivity conjectures (extending Stanley and
Kerov’s conjecture) on Chpαqµ .
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Extensions to Jack polynomials

Extension of Stanley formula

M. Lassalle formulated two positivity conjectures (extending Stanley and
Kerov’s conjecture) on Chpαqµ .

Partial result:

With P. Śniady, we solved the case α � 2; the combinatorial objects
involved are graphs embedded on non-necessarily orientable surfaces.
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Extensions to Jack polynomials

Extension of Stanley formula

M. Lassalle formulated two positivity conjectures (extending Stanley and
Kerov’s conjecture) on Chpαqµ .

Partial result:

With P. Śniady, we solved the case α � 2; the combinatorial objects
involved are graphs embedded on non-necessarily orientable surfaces.

A solution to Lassalle’s conjectures would reveal a continuous interpolation
between the orientable and non-orientable settings.
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Extensions to Jack polynomials

Extension of Stanley formula

M. Lassalle formulated two positivity conjectures (extending Stanley and
Kerov’s conjecture) on Chpαqµ .

Partial result:

With M. Dołęga, we got some polynomiality result in the general case.
They imply Lapointe’s and Vinet’s result.
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Extensions to Jack polynomials

Extension of Stanley formula

M. Lassalle formulated two positivity conjectures (extending Stanley and
Kerov’s conjecture) on Chpαqµ .

Partial result:

With M. Dołęga, we got some polynomiality result in the general case.
They imply Lapointe’s and Vinet’s result.

Besides their combinatorial interests, these conjectures are interesting from
a symmetric function point of view.
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Extensions to Jack polynomials

Our approach

We look for an expression of Chpαq in terms of the NG .

Chpαq P VectpNG q so such an expression exists but is not unique;

a nice expression could imply both Lassalle’s conjectures;
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Extensions to Jack polynomials

Our approach

We look for an expression of Chpαq in terms of the NG .

Chpαq P VectpNG q so such an expression exists but is not unique;

a nice expression could imply both Lassalle’s conjectures;

First step: study the algebra VectpNG q (first preliminary result: it is
isomorphic to quasi-symmetric functions).
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Transition

Second part: cumulants of

almost independent variables



Cumulants of almost independent variables

A problem in random graphs

Erdös-Rényi model of random graphs G pn, pq:

G has n vertices labelled 1,. . . ,n;

each edge pi , jq is taken independently
with probability p;

1
2

3

4

5
6

7

8

Example : n � 8, p � 1{2
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Cumulants of almost independent variables

A problem in random graphs

Erdös-Rényi model of random graphs G pn, pq:

G has n vertices labelled 1,. . . ,n;

each edge pi , jq is taken independently
with probability p;

1
2

3

4

5
6

7

8

Example : n � 8, p � 1{2

Question

Fix p Ps0; 1r.
Describe asymptotically the fluctuations of the number Tn of triangles.
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Cumulants of almost independent variables

A problem in random graphs

Erdös-Rényi model of random graphs G pn, pq:

G has n vertices labelled 1,. . . ,n;

each edge pi , jq is taken independently
with probability p;

1
2

3

4

5
6

7

8

Example : n � 8, p � 1{2

Question

Fix p Ps0; 1r.
Describe asymptotically the fluctuations of the number Tn of triangles.

Answer (Rucińsky, 1988)

The fluctuations are asymptotically Gaussian.
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Cumulants of almost independent variables

A good tool for that: mixed cumulants

the r -th mixed cumulant kr of r random variables is r -linear
symmetric. Examples:

κ1pX q � EpX q, κ2pX ,Y q � CovpX ,Y q � EpXY q � EpX qEpY q

κ3pX ,Y ,Z q � EpXYZ q � EpXY qEpZ q � EpXZ qEpY q

� EpYZ qEpX q � 2EpX qEpY qEpZ q.
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Cumulants of almost independent variables

A good tool for that: mixed cumulants

the r -th mixed cumulant kr of r random variables is r -linear
symmetric. Examples:

κ1pX q � EpX q, κ2pX ,Y q � CovpX ,Y q � EpXY q � EpX qEpY q

κ3pX ,Y ,Z q � EpXYZ q � EpXY qEpZ q � EpXZ qEpY q

� EpYZ qEpX q � 2EpX qEpY qEpZ q.

if the variables can be split in two mutually independent sets, then the
cumulant vanishes.
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Cumulants of almost independent variables

A good tool for that: mixed cumulants

the r -th mixed cumulant kr of r random variables is r -linear
symmetric. Examples:

κ1pX q � EpX q, κ2pX ,Y q � CovpX ,Y q � EpXY q � EpX qEpY q

κ3pX ,Y ,Z q � EpXYZ q � EpXY qEpZ q � EpXZ qEpY q

� EpYZ qEpX q � 2EpX qEpY qEpZ q.

if the variables can be split in two mutually independent sets, then the
cumulant vanishes.

if, for each r � 2, the sequence κr pXn, . . . ,Xnq converges towards 0
and if VarpXnq has a limit, then Xn converges in distribution towards a
Gaussian law.
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Cumulants of almost independent variables

Application to the number of triangles

Tn �

¸

1¤i ,j ,k¤n

Bi ,j ,k ,

where Bi ,j ,kpG q �

#

1 if G contains the triangle i , j , k ;

0 otherwise.

By multilinearity,

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.
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Cumulants of almost independent variables

Application to the number of triangles

Tn �

¸

1¤i ,j ,k¤n

Bi ,j ,k ,

where Bi ,j ,kpG q �

#

1 if G contains the triangle i , j , k ;

0 otherwise.

By multilinearity,

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But most of the terms vanish (because the variables are independent).
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Cumulants of almost independent variables

Application to the number of triangles

Tn �

¸

1¤i ,j ,k¤n

Bi ,j ,k ,

where Bi ,j ,kpG q �

#

1 if G contains the triangle i , j , k ;

0 otherwise.

By multilinearity,

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But most of the terms vanish (because the variables are independent).

One can show that cumulants converge to 0 after a suitable
renormalization.
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Cumulants of almost independent variables

Application to the number of triangles

Tn �

¸

1¤i ,j ,k¤n

Bi ,j ,k ,

where Bi ,j ,kpG q �

#

1 if G contains the triangle i , j , k ;

0 otherwise.

By multilinearity,

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But most of the terms vanish (because the variables are independent).

One can show that cumulants converge to 0 after a suitable
renormalization.

This is a classical approach, formalized by the notion of dependency graphs.
(see for example the book of S. Janson, T. Luczack and T. Rucinski)
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Cumulants of almost independent variables

A slightly different model of random graphs

Erdös-Rényi model of random graphs G pn,Mq:

G has n vertices labelled 1,. . . ,n;

we choose a set of M edges, uniformly
among the

�

n
2

�

2-element subsets of
vertices;

1
2

3

4

5
6

7

8

Example : n � 8,M � 14.
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Cumulants of almost independent variables

A slightly different model of random graphs

Erdös-Rényi model of random graphs G pn,Mq:

G has n vertices labelled 1,. . . ,n;

we choose a set of M edges, uniformly
among the

�

n
2

�

2-element subsets of
vertices;

1
2

3

4

5
6

7

8

Example : n � 8,M � 14.

Question

Fix p Ps0; 1r and let Mpnq � tp
�

n
2

�

u.
Describe asymptotically the fluctuations of the number Tn of triangles in
G pn,Mpnqq.
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Cumulants of almost independent variables

A slightly different model of random graphs

Erdös-Rényi model of random graphs G pn,Mq:

G has n vertices labelled 1,. . . ,n;

we choose a set of M edges, uniformly
among the

�

n
2

�

2-element subsets of
vertices;

1
2

3

4

5
6

7

8

Example : n � 8,M � 14.

Question

Fix p Ps0; 1r and let Mpnq � tp
�

n
2

�

u.
Describe asymptotically the fluctuations of the number Tn of triangles in
G pn,Mpnqq.

Solved by Janson (1994): fluctuations are still Gaussian.
We will present a new approach to this problem.
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Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

V. Féray (LaBRI, CNRS, Bordeaux)I. Jack polynomials, II. Cumulants FoPSAaC, 2012–07 29 / 1



Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But now, all variables are dependent the one from the others, so there is no
reason why some terms should vanish.
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Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But now, all variables are dependent the one from the others, so there is no
reason why some terms should vanish.

Lemma (F.)

If i1, j1, k1, . . . , iℓ, jℓ, kℓ are pairwise distinct, then

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq � Opn�ℓ�1

q

V. Féray (LaBRI, CNRS, Bordeaux)I. Jack polynomials, II. Cumulants FoPSAaC, 2012–07 29 / 1



Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But now, all variables are dependent the one from the others, so there is no
reason why some terms should vanish.

Lemma (F.)

If i1, j1, k1, . . . , iℓ, jℓ, kℓ are pairwise distinct, then

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq � Opn�ℓ�1

q

this bound on cumulants seems new;
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Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But now, all variables are dependent the one from the others, so there is no
reason why some terms should vanish.

Lemma (F.)

If i1, j1, k1, . . . , iℓ, jℓ, kℓ are pairwise distinct, then

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq � Opn�ℓ�1

q

this bound on cumulants seems new;

it can be generalized to non distinct indices;

V. Féray (LaBRI, CNRS, Bordeaux)I. Jack polynomials, II. Cumulants FoPSAaC, 2012–07 29 / 1



Cumulants of almost independent variables

As before, we can write:

κℓpTnq �

¸

i1,j1,k1,...,iℓ,jℓ,kℓ

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq.

But now, all variables are dependent the one from the others, so there is no
reason why some terms should vanish.

Lemma (F.)

If i1, j1, k1, . . . , iℓ, jℓ, kℓ are pairwise distinct, then

κℓpBi1,j1,k1
, . . . ,Biℓ,jℓ,kℓq � Opn�ℓ�1

q

this bound on cumulants seems new;

it can be generalized to non distinct indices;

it can be used to prove the convergence in distribution of �Tn (Tn after
a suitable normalization) towards a Gaussian law.
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Cumulants of almost independent variables

Small mixed cumulants appear in a lot of contexts

Random permutations (with uniform or Ewens distribution):
the images of different integers have small cumulants.
ñ We can prove the Gaussian fluctuations of a large class of
statistics, called dashed patterns.
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Cumulants of almost independent variables

Small mixed cumulants appear in a lot of contexts

Random permutations (with uniform or Ewens distribution):
the images of different integers have small cumulants.
ñ We can prove the Gaussian fluctuations of a large class of
statistics, called dashed patterns.

Random unitary/orthogonal matrices (distributed with Haar
measure):
Cumulants of powers of entries in different rows and columns (and
their conjugate) can be bounded (Collins, Śniady, 2003, 2006).
ñ lead still to be explored. . .
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Cumulants of almost independent variables

Project

Define a theory of ε-dependency graph, containing these examples;

in each framework, try to go as far as possible and compare with
existing results, . . . ;

study large deviations, local limit laws (this requires a uniform bound,
in ℓ and n, on cumulants κℓpXnq).
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