Dual approach for Jack polynomials and cumulants of almost independent variables

Valentin Féray

LaBRI, CNRS, Bordeaux

Forum on Probability, Statistics, Algebra and Combinatorics Nagoya, July 29th, 2012.

Field of research

Interactions between three branches of mathematics:

- combinatorics: permutations, graphs, Young diagrams. $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix}$
- algebra: representation theory, symmetric functions.
- probability theory: asymptotic behavior of large discrete structures.

The symmetric group

A permutation of size 5:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix}$$
.

Permutations of the same size n can be multiplied:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

They form a group called symmetric group S_n .

The symmetric group

A permutation of size 5:
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix}$$
.

Permutations of the same size n can be multiplied:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

They form a group called symmetric group S_n .

Interests:

- simple infinite family of non-commutative groups;
- they act on labelled discrete structures, multivariate polynomials.

Representation theory

Let G be a finite group.

def: a representation of G = a finite-dimensional vector space Vand a morphism ρ : $G \rightarrow GL(V)$.

Concretely, if we fix a basis of V:

- to each $g \in G$, we associate a matrix $\rho(g)$.
- product in $G \leftrightarrow$ product of matrices.

Representation theory

Let G be a finite group.

def: a representation of G = a finite-dimensional vector space Vand a morphism ρ : $G \rightarrow GL(V)$.

Concretely, if we fix a basis of V:

- to each $g \in G$, we associate a matrix $\rho(g)$.
- product in $G \leftrightarrow$ product of matrices.

Example: geometric representation of S_n

Representation theory

Let G be a finite group.

def: a representation of G = a finite-dimensional vector space Vand a morphism ρ : $G \rightarrow GL(V)$.

Concretely, if we fix a basis of V:

- to each $g \in G$, we associate a matrix $\rho(g)$.
- product in $G \leftrightarrow$ product of matrices.

Interests:

- it gives a concrete representation of elements of G;
- if an operator is invariant by an action of G, its eigenspaces are representations of G (important in theoretical physics).

We are interested in

 $\rho(\mathbf{g}),$

where ρ is a representation and g an element of ${\it G}$.

We are interested in

 $\rho(\mathbf{g}),$

where ρ is a representation and g an element of ${\it G}$.

First simplification (Maschke theorem):

- Every representation is a sum of *irreducible* representations;
- There are a finite number of *irreducible representations*.

We are interested in

 $\rho^{\lambda}(g),$

where ho^{λ} is an irreducible representation and g an element of G .

First simplification (Maschke theorem):

- Every representation is a sum of *irreducible* representations;
- There are a finite number of *irreducible representations*.

We are interested in

$$\operatorname{tr}\left(
ho^{\lambda}(\boldsymbol{g})
ight) ,$$

where ho^{λ} is an irreducible representation and g an element of G .

Second simplification (theory of characters):

• Most natural questions can be answered knowing only the character of the representation, that is the trace of the matrices.

We are interested in

$$\chi^{\lambda}(\mu) = \operatorname{tr}\left(
ho^{\lambda}(g)
ight),$$

where ρ^{λ} is an irreducible representation and g an element of \mathcal{C}_{μ} .

Second simplification (theory of characters):

- Most natural questions can be answered knowing only the character of the representation, that is the trace of the matrices.
- it depends only on the conjugacy class \mathcal{C}_{μ} of g in G.
- $\chi^{\lambda}(\mu)$ are called irreducible character values.

Representation theory of symmetric groups

Consider the case $G = S_n$.

The quantities $\chi^{\lambda}(\mu)$ have been studied by G. Frobenius (1900):

- link with symmetric function theory;
- there is a combinatorial formula for them: Murnaghan-Nakayama rule.

Representation theory of symmetric groups

Consider the case $G = S_n$.

The quantities $\chi^{\lambda}(\mu)$ have been studied by G. Frobenius (1900):

- link with symmetric function theory;
- there is a combinatorial formula for them: Murnaghan-Nakayama rule.

These numbers are useful to:

- enumerate graphs on surfaces;
- evaluate mixing times (for a deck of cards for example, Diaconis);
- compute matrix integrals (link with representation of unitary groups).

My results on irreducible character values of S_n

I have given two new combinatorial formulas for $\chi^{\lambda}(\mu)$.

My results on irreducible character values of S_n

- I have given two new combinatorial formulas for $\chi^{\lambda}(\mu)$.
- With P. Śniady, we have used the first formula to give a new uniform upper bound on $\chi^\lambda(\mu).$

My results on irreducible character values of S_n

- I have given two new combinatorial formulas for $\chi^{\lambda}(\mu)$.
- With P. Śniady, we have used the first formula to give a new uniform upper bound on $\chi^{\lambda}(\mu)$.
- I am currently studying a more general setting, involving Jack polynomials. \rightarrow a lot of open problems here!

Outline of the presentation

Partitions

Let $G = S_n$. Irreducible character values of the symmetric group S_n $\chi^{\lambda}(\mu)$

are indexed by partitions λ and μ of size *n*.

Definition

A partition λ of size *n* (short notation: $\lambda \vdash n$) and length *r* is a non-decreasing list of integers

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r > 0$$
 with $\sum_{i=1}^r \lambda_i = n$.

Example: $(4, 3, 1, 1) \vdash 9$.

Graphical representation:

Kerov and Olshanski dual approach

Fix a partition μ (denote $k = |\mu|$). Consider the following function on partitions of any size:

$$\mathsf{Ch}_{\mu}(\lambda) = \begin{cases} |\lambda|(|\lambda|-1)\dots(|\lambda|-k+1)\frac{\chi^{\lambda}(\mu,1,\dots,1)}{\chi^{\lambda}(1,\dots,1)} & \text{if } |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

 Roughly, its values are the (renormalized) irreducible character values of symmetric groups;

Kerov and Olshanski dual approach

Fix a partition μ (denote $k = |\mu|$). Consider the following function on partitions of any size:

$$\mathsf{Ch}_{\mu}(\lambda) = \begin{cases} |\lambda|(|\lambda|-1)\dots(|\lambda|-k+1)\frac{\chi^{\lambda}(\mu,1,\dots,1)}{\chi^{\lambda}(1,\dots,1)} & \text{if } |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

- Roughly, its values are the (renormalized) irreducible character values of symmetric groups;
- the novelty here is to see it as a function on all Young diagrams: we consider characters of several symmetric group at the same time;

Kerov and Olshanski dual approach

Fix a partition μ (denote $k = |\mu|$). Consider the following function on partitions of any size:

$$\mathsf{Ch}_{\mu}(\lambda) = \begin{cases} |\lambda|(|\lambda|-1)\dots(|\lambda|-k+1)\frac{\chi^{\lambda}(\mu,1,\dots,1)}{\chi^{\lambda}(1,\dots,1)} & \text{if } |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

- Roughly, its values are the (renormalized) irreducible character values of symmetric groups;
- the novelty here is to see it as a function on all Young diagrams: we consider characters of several symmetric group at the same time;
- Ch_{μ} has nice analytic properties, but no combinatorial description in the work of Kerov and Olshanski.

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in \mathbf{S}_{k} \\ \tau \sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathcal{G}_{\sigma,\tau}}.$$

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in S_{k} \\ \tau\sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathcal{G}_{\sigma,\tau}}.$$

• sum index: factorisations of a fixed permutation in two factors.

11 / 1

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in \mathbf{S}_{k} \\ \tau \sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathcal{G}_{\sigma,\tau}}.$$

sum index: factorisations of a fixed permutation in two factors.
sign: number of cycles of σ.

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in \mathbf{S}_{k} \\ \tau \sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathbf{G}_{\sigma, \tau}}.$$

- sum index: factorisations of a fixed permutation in two factors.
- sign: number of cycles of σ .
- $G_{\sigma,\tau}$: oriented graph canonically associated to the pair (σ, τ) .

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in \mathbf{S}_{k} \\ \tau \sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathbf{G}_{\sigma, \tau}}.$$

- sum index: factorisations of a fixed permutation in two factors.
- sign: number of cycles of σ .
- $G_{\sigma,\tau}$: oriented graph canonically associated to the pair (σ, τ) .
- *N_G*: family of functions on Young diagrams indexed by oriented graphs.

FoPSAaC, 2012–07 11 / 1

Fix a partition μ of size k and a permutation π in S_k of cycle-type μ .

Theorem (F., Ann. Comb. 2010, conjectured by Stanley)

$$\mathsf{Ch}_{\mu} = \sum_{\substack{\tau, \sigma \in \mathbf{S}_{k} \\ \tau \sigma = \pi}} (-1)^{|\mathcal{C}(\sigma)|} N_{\mathcal{G}_{\sigma, \tau}}.$$

- sum index: factorisations of a fixed permutation in two factors.
- sign: number of cycles of σ .
- $G_{\sigma,\tau}$: oriented graph canonically associated to the pair (σ, τ) .
- N_G : family of functions on Young diagrams indexed by oriented graphs.

Interest: it gives a combinatorial framework to Kerov's and Olshanski's theory.

The summation index: factorisation of permutations

Question (classical in enumerative combinatorics)

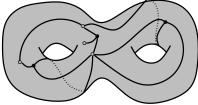
Enumerate factorizations $\sigma \cdot \tau$ of a fixed permutation π with given properties (number of cycles, ...).

The summation index: factorisation of permutations

Question (classical in enumerative combinatorics)

Enumerate factorizations $\sigma \cdot \tau$ of a fixed permutation π with given properties (number of cycles, ...).

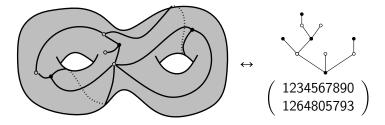
When $\pi = (1 \ 2 \ \cdots \ k)$, it is equivalent to study unicellular bipartite map with k edges.



map: a connected graph G embedded in a surface S bipartite: with black and white vertices and no monochromatic edges unicellular: $S \setminus G$ is homeomorphic to an open disc

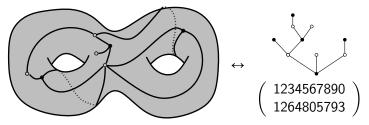
A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps



A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps



Interests:

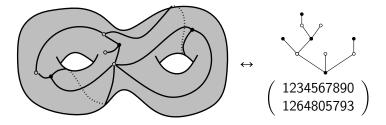
- our correspondence preserves a lot of structure;
- trees and permutations are simpler than unicellular maps.

Consequences:

- we can prove in a simple and unified way a lot of formulas;
- our construction also gives a new formula for Ch_{μ} .

A simple model for unicellular maps

With G. Chapuy and É. Fusy, we have found a simple model for maps



See Guillaume's talk on Friday morning.

Non-decreasing functions on oriented graphs

We are interested in functions N_G .

I will rather define a formal series F(G) in infinitely many variables x_1, x_2, \cdots , which shares many properties with N_G .

Non-decreasing functions on oriented graphs

We are interested in functions N_G .

I will rather define a formal series F(G) in infinitely many variables x_1, x_2, \cdots , which shares many properties with N_G . Let G be an oriented graph

$$G = \bigvee$$

Note: edges are oriented from bottom to top.

Non-decreasing functions on oriented graphs

We are interested in functions N_G .

I will rather define a formal series F(G) in infinitely many variables x_1, x_2, \cdots , which shares many properties with N_G . Let G be an oriented graph

$$G = \checkmark \qquad \qquad F(G) = \sum_{\varphi} \prod_{v \in G} x_{\varphi(v)}$$

where the sum runs over non-decreasing functions from V_G to \mathbb{N} (*i.e.* $(u \rightarrow v) \in E_G \Rightarrow \varphi(u) \leq \varphi(v)$).

Note: edges are oriented from bottom to top.

Non-decreasing functions on oriented graphs

We are interested in functions N_G .

I will rather define a formal series F(G) in infinitely many variables x_1, x_2, \cdots , which shares many properties with N_G . Let G be an oriented graph

 $G = \int_{i}^{\ell} \bigwedge_{k} K \qquad F(G) = \sum_{\substack{\varphi \in G \\ v \in G}} \prod_{\substack{\varphi(v) \\ \varphi(v) \\ z_i \leq l, k \\ j, k \leq \ell}} x_j x_j x_k x_l$

where the sum runs over non-decreasing functions from V_G to \mathbb{N} (*i.e.* $(u \rightarrow v) \in E_G \Rightarrow \varphi(u) \leq \varphi(v)$).

Note: edges are oriented from bottom to top.

Non-decreasing functions on oriented graphs

We are interested in functions N_G .

I will rather define a formal series F(G) in infinitely many variables x_1, x_2, \cdots , which shares many properties with N_G . Let G be an oriented graph

 $G = \int_{i}^{\ell} \bigwedge_{k} K \qquad F(G) = \sum_{\substack{\varphi \in G \\ v \in G}} \prod_{\substack{\varphi(v) \\ \varphi(v) \\ z_i \leq l, k \\ j, k \leq \ell}} x_j x_j x_k x_l$

where the sum runs over non-decreasing functions from V_G to \mathbb{N} (*i.e.* $(u \rightarrow v) \in E_G \Rightarrow \varphi(u) \leq \varphi(v)$).

F(G) appears also in *P*-partition theory, quasi-symmetric function theory...

```
Cyclic inclusion-exclusion (1/2)
```

Functions F(G) fulfill the following relation:

$$F\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right) = F\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right) + F\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right) - F\left(\begin{array}{c}\bullet\\\bullet\\\bullet\end{array}\right)$$

```
Cyclic inclusion-exclusion (1/2)
```

Functions F(G) fulfill the following relation:

• it is still true if we add the same vertices/edges to all graphs.

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$.

$$G_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

where

$$\delta_{\varphi,G_i} = \begin{cases} 1 & \varphi \text{ is non-decreasing on } G_i \\ 0 & \text{otherwise.} \end{cases}$$

$$G_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

We will show that for any φ , its total contribution is 0.

$$G_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

We will show that for any φ , its total contribution is 0.

• If
$$\varphi(2) \leqslant \varphi(4)$$
, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1}$ and $\delta_{\varphi,G_2} = \delta_{\varphi,G_3}$.

$$G_0 = \begin{pmatrix} 0 & 0 \\ 2 & 3 \\ 0 & 0 \end{pmatrix}, \quad G_1 = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 3 \\ 0 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 3 \\ 0 & 0 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 3 \\ 0 & 0 \end{pmatrix}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

We will show that for any φ , its total contribution is 0.

- If $\varphi(2) \leqslant \varphi(4)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1}$ and $\delta_{\varphi,G_2} = \delta_{\varphi,G_3}$.
- If $\varphi(1) \leqslant \varphi(6)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_2}$ and $\delta_{\varphi,G_1} = \delta_{\varphi,G_3}$.

$$G_0 = \begin{array}{c} @ & 0 \\ @ & 2 \\ @ & 3 \end{array}, \quad G_1 = \begin{array}{c} @ & 0 \\ @ & 3 \\ @ & 3 \end{array}, \quad G_2 = \begin{array}{c} @ & 0 \\ @ & 2 \\ @ & 3 \end{array}, \quad G_3 = \begin{array}{c} @ & 0 \\ @ & 2 \\ @ & 3 \end{array}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

We will show that for any φ , its total contribution is 0.

• If $\varphi(2) \leq \varphi(4)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1}$ and $\delta_{\varphi,G_2} = \delta_{\varphi,G_3}$. • If $\varphi(1) \leq \varphi(6)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_2}$ and $\delta_{\varphi,G_1} = \delta_{\varphi,G_3}$. • If $\varphi(1) > \varphi(4)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1} = \delta_{\varphi,G_2} = \delta_{\varphi,G_3} = 0$.

$$G_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

We want to prove $F(G_0) - F(G_1) - F(G_2) + F(G_3) = 0$. All graphs have the same vertex set $V = \{1, \dots, 6\}$. Hence,

$$F(G_i) = \sum_{\varphi: V \to \mathbb{N}} x_{\varphi(1)} \cdots x_{\varphi(6)} \delta_{\varphi, G_i}$$

We will show that for any φ , its total contribution is 0.

- If $\varphi(2) \leqslant \varphi(4)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1}$ and $\delta_{\varphi,G_2} = \delta_{\varphi,G_3}$.
- If $\varphi(1) \leqslant \varphi(6)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_2}$ and $\delta_{\varphi,G_1} = \delta_{\varphi,G_3}$.
- If $\varphi(1) > \varphi(4)$, then $\delta_{\varphi,G_0} = \delta_{\varphi,G_1} = \delta_{\varphi,G_2} = \delta_{\varphi,G_3} = 0$.
- Same thing if $\varphi(2) > \varphi(5)$ or $\varphi(5) > \varphi(6)$.
- Otherwise $\varphi(2) > \varphi(4) \ge \varphi(1) > \varphi(6) \ge \varphi(5) \ge \varphi(2)$. Impossible.

Cyclic inclusion-exclusion (1/2)

Functions F(G) fulfill the following relation:

• it is still true if we add the same vertices/edges to all graphs;

Cyclic inclusion-exclusion (1/2)

Functions F(G) fulfill the following relation:

• it is still true if we add the same vertices/edges to all graphs;

• it can be generalized to more complicated cycles.

Cyclic inclusion-exclusion (1/2)

Functions F(G) fulfill the following relation:

it is still true if we add the same vertices/edges to all graphs;
it can be generalized to more complicated cycles.

I call these relations cyclic inclusion-exclusion.

Cyclic inclusion-exclusion (2/2)

These new family of relations have nice properties

- they are simple local combinatorial operations on the graphs;
- they span the kernel of the application $G \mapsto F(G)$;
- iterating these relations displays surprising properties: confluence, positivity.

Cyclic inclusion-exclusion (2/2)

These new family of relations have nice properties

- they are simple local combinatorial operations on the graphs;
- they span the kernel of the application $G \mapsto F(G)$;
- iterating these relations displays surprising properties: confluence, positivity.

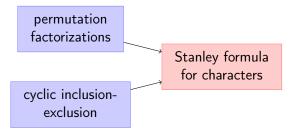
Applications

- they are central in the proof of Kerov's conjecture for Ch_{μ} ;
- with A. Boussicault, we have used them to generalize some identity due to C. Greene;
- their investigation leads to consider new bases of (word) quasi-symmetric functions.

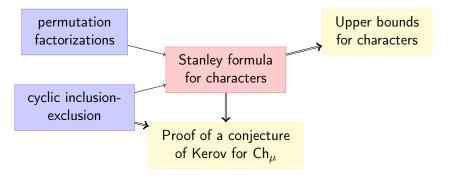
Transition

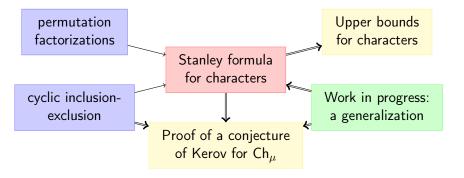
Stanley formula for characters

Transition



Transition





Symmetric functions and characters

We consider symmetric polynomials in *n* variables x_1, \ldots, x_n .

Power sums: for
$$k \ge 1$$
, $p_k(x_1, ..., x_n) = x_1^k + \dots + x_n^k$;
if $\mu \vdash d$, $p_\mu(x_1, ..., x_n) = \prod_{h=1}^{\ell(\mu)} p_{\mu_h}(x_1, ..., x_n)$.
Schur functions: $s_\lambda(x_1, ..., x_n) = \frac{\det \left(x_i^{\lambda_j + n - j}\right)_{1 \le i, j \le n}}{\prod_{1 \le i, j \le n} (x_j - x_i)}$

Symmetric functions and characters

We consider symmetric polynomials in *n* variables x_1, \ldots, x_n .

Power sums: for
$$k \ge 1$$
, $p_k(x_1, ..., x_n) = x_1^k + \dots + x_n^k$;
if $\mu \vdash d$, $p_\mu(x_1, ..., x_n) = \prod_{h=1}^{\ell(\mu)} p_{\mu_h}(x_1, ..., x_n)$.
Schur functions: $s_\lambda(x_1, ..., x_n) = \frac{\det \left(x_i^{\lambda_j + n - j}\right)_{1 \le i,j \le n}}{\prod_{1 \le i,j \le n} (x_j - x_i)}$

Theorem (Frobenius, 1900)

For any n, any x_1, \ldots, x_n and any partition $\mu \vdash d$, one has:

$$p_{\mu}(x_1,\ldots,x_n) = \sum_{\lambda \vdash d} \chi^{\lambda}(\mu) \ s_{\lambda}(x_1,\ldots,x_n).$$

Note: this property determines uniquely $\chi^{\lambda}(\mu)$.

Jack polynomials

 $J_{\lambda}^{(\alpha)}$: one-parameter deformation of Schur functions. (for $\alpha = 1$, we recover Schur functions).

• introduced by H. Jack in 1971;

Jack polynomials

- $J_{\lambda}^{(\alpha)}$: one-parameter deformation of Schur functions.
- (for $\alpha = 1$, we recover Schur functions).
 - introduced by H. Jack in 1971;
 - it was proved by L. Lapointe and L. Vinet in 1995 that the coefficients of Jack polynomials are polynomials in α (*a priori* they are rational functions).

Jack polynomials

- $J_{\lambda}^{(\alpha)}$: one-parameter deformation of Schur functions. (for $\alpha = 1$, we recover Schur functions).
 - introduced by H. Jack in 1971;
 - it was proved by L. Lapointe and L. Vinet in 1995 that the coefficients of Jack polynomials are polynomials in α (*a priori* they are rational functions).

Define $\chi^{\lambda,(\alpha)}(\mu)$ by: for all $n \ge 1$ and $\mu \vdash d$,

$$p_{\mu}(x_1,\ldots,x_n) = \sum_{\lambda \vdash d} \chi^{\lambda,(\alpha)}(\mu) \ J_{\lambda}^{(\alpha)}(x_1,\ldots,x_n).$$

We can also define a one-parameter deformation $Ch^{(\alpha)}_{\mu}$ of Ch_{μ} .

M. Lassalle formulated two positivity conjectures (extending Stanley and Kerov's conjecture) on ${\rm Ch}_{\mu}^{(\alpha)}.$

M. Lassalle formulated two positivity conjectures (extending Stanley and Kerov's conjecture) on ${\rm Ch}_{\mu}^{(\alpha)}.$

Partial result:

• With P. Śniady, we solved the case $\alpha = 2$; the combinatorial objects involved are graphs embedded on non-necessarily orientable surfaces.

M. Lassalle formulated two positivity conjectures (extending Stanley and Kerov's conjecture) on ${\rm Ch}_{\mu}^{(\alpha)}.$

Partial result:

• With P. Śniady, we solved the case $\alpha = 2$; the combinatorial objects involved are graphs embedded on non-necessarily orientable surfaces.

A solution to Lassalle's conjectures would reveal a continuous interpolation between the orientable and non-orientable settings.

M. Lassalle formulated two positivity conjectures (extending Stanley and Kerov's conjecture) on ${\rm Ch}_{\mu}^{(\alpha)}.$

Partial result:

• With M. Dołęga, we got some polynomiality result in the general case. They imply Lapointe's and Vinet's result.

M. Lassalle formulated two positivity conjectures (extending Stanley and Kerov's conjecture) on ${\rm Ch}_{\mu}^{(\alpha)}.$

Partial result:

• With M. Dołęga, we got some polynomiality result in the general case. They imply Lapointe's and Vinet's result.

Besides their combinatorial interests, these conjectures are interesting from a symmetric function point of view.

Our approach

We look for an expression of $Ch^{(\alpha)}$ in terms of the N_G .

- $Ch^{(\alpha)} \in Vect(N_G)$ so such an expression exists but is not unique;
- a nice expression could imply both Lassalle's conjectures;

Our approach

We look for an expression of $Ch^{(\alpha)}$ in terms of the N_G .

- $Ch^{(\alpha)} \in Vect(N_G)$ so such an expression exists but is not unique;
- a nice expression could imply both Lassalle's conjectures;

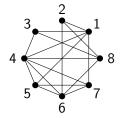
First step: study the algebra $Vect(N_G)$ (first preliminary result: it is isomorphic to quasi-symmetric functions).

Second part: cumulants of almost independent variables

A problem in random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge (i, j) is taken independently with probability p;



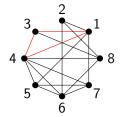
Example :
$$n = 8, p = 1/2$$

FoPSAaC, 2012–07

A problem in random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge (i, j) is taken independently with probability p;



Example :
$$n = 8, p = 1/2$$

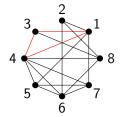
Question

Fix $p \in]0; 1[$. Describe asymptotically the fluctuations of the number T_n of triangles.

A problem in random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge (i, j) is taken independently with probability p;



Example :
$$n = 8, p = 1/2$$

Question

Fix $p \in]0; 1[$. Describe asymptotically the fluctuations of the number T_n of triangles.

Answer (Rucińsky, 1988)

The fluctuations are asymptotically Gaussian.

A good tool for that: mixed cumulants

• the *r*-th mixed cumulant k_r of *r* random variables is *r*-linear symmetric. Examples:

$$\begin{aligned} \kappa_1(X) &= \mathbb{E}(X), \quad \kappa_2(X,Y) = \mathsf{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \\ \kappa_3(X,Y,Z) &= \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y) \\ &- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z). \end{aligned}$$

26 / 1

A good tool for that: mixed cumulants

• the *r*-th mixed cumulant k_r of *r* random variables is *r*-linear symmetric. Examples:

$$\begin{aligned} \kappa_1(X) &= \mathbb{E}(X), \quad \kappa_2(X,Y) = \mathsf{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \\ \kappa_3(X,Y,Z) &= \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y) \\ &- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z). \end{aligned}$$

• if the variables can be split in two mutually independent sets, then the cumulant vanishes.

A good tool for that: mixed cumulants

• the *r*-th mixed cumulant k_r of *r* random variables is *r*-linear symmetric. Examples:

$$\begin{aligned} \kappa_1(X) &= \mathbb{E}(X), \quad \kappa_2(X,Y) = \mathsf{Cov}(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \\ \kappa_3(X,Y,Z) &= \mathbb{E}(XYZ) - \mathbb{E}(XY)\mathbb{E}(Z) - \mathbb{E}(XZ)\mathbb{E}(Y) \\ &- \mathbb{E}(YZ)\mathbb{E}(X) + 2\mathbb{E}(X)\mathbb{E}(Y)\mathbb{E}(Z). \end{aligned}$$

- if the variables can be split in two mutually independent sets, then the cumulant vanishes.
- if, for each $r \neq 2$, the sequence $\kappa_r(X_n, \ldots, X_n)$ converges towards 0 and if $Var(X_n)$ has a limit, then X_n converges in distribution towards a Gaussian law.

$$T_n = \sum_{1 \leq i,j,k \leq n} B_{i,j,k},$$

where $B_{i,j,k}(G) = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$

By multilinearity,

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

$$T_n = \sum_{1 \leq i,j,k \leq n} B_{i,j,k},$$

where $B_{i,j,k}(G) = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$

By multilinearity,

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But most of the terms vanish (because the variables are independent).

$$T_n = \sum_{1 \leq i,j,k \leq n} B_{i,j,k},$$

where $B_{i,j,k}(G) = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$

By multilinearity,

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But most of the terms vanish (because the variables are independent).

One can show that cumulants converge to 0 after a suitable renormalization.

$$T_n = \sum_{1 \leq i,j,k \leq n} B_{i,j,k},$$

where $B_{i,j,k}(G) = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$

By multilinearity,

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But most of the terms vanish (because the variables are independent).

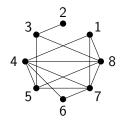
One can show that cumulants converge to 0 after a suitable renormalization.

This is a classical approach, formalized by the notion of dependency graphs. (see for example the book of S. Janson, T. Luczack and T. Rucinski)

A slightly different model of random graphs

Erdös-Rényi model of random graphs G(n, M):

- G has n vertices labelled 1,...,n;
- we choose a set of *M* edges, uniformly among the ⁿ₂ 2-element subsets of vertices;



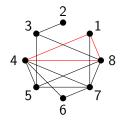
Example : n = 8, M = 14.

FoPSAaC, 2012–07

A slightly different model of random graphs

Erdös-Rényi model of random graphs G(n, M):

- G has n vertices labelled 1,...,n;
- we choose a set of *M* edges, uniformly among the ⁿ₂ 2-element subsets of vertices;



Example : n = 8, M = 14.

Question

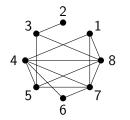
Fix $p \in]0; 1[$ and let $M(n) = \lfloor p\binom{n}{2} \rfloor$. Describe asymptotically the fluctuations of the number T_n of triangles in G(n, M(n)).

FoPSAaC, 2012–07 28 / 1

A slightly different model of random graphs

Erdös-Rényi model of random graphs G(n, M):

- G has n vertices labelled 1,...,n;
- we choose a set of *M* edges, uniformly among the ⁿ₂ 2-element subsets of vertices;



Example : n = 8, M = 14.

Question

Fix $p \in]0; 1[$ and let $M(n) = \lfloor p\binom{n}{2} \rfloor$. Describe asymptotically the fluctuations of the number T_n of triangles in G(n, M(n)).

Solved by Janson (1994): fluctuations are still Gaussian. We will present a new approach to this problem.

V. Féray

I. Jack polynomials, II. Cumulants

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But now, all variables are dependent the one from the others, so there is no reason why some terms should vanish.

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But now, all variables are dependent the one from the others, so there is no reason why some terms should vanish.

Lemma (F.) If $i_1, j_1, k_1, \ldots, i_{\ell}, j_{\ell}, k_{\ell}$ are pairwise distinct, then

$$\kappa_{\ell}(B_{i_1,j_1,k_1},\ldots,B_{i_{\ell},j_{\ell},k_{\ell}})=O(n^{-\ell+1})$$

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But now, all variables are dependent the one from the others, so there is no reason why some terms should vanish.

Lemma (F.) If $i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}$ are pairwise distinct, then $\kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, i_{\ell}, k_{\ell}}) = O(n^{-\ell+1})$

• this bound on cumulants seems new;

FoPSAaC, 2012-07 29 / 1

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But now, all variables are dependent the one from the others, so there is no reason why some terms should vanish.

Lemma (F.) If $i_1, j_1, k_1, \ldots, i_{\ell}, j_{\ell}, k_{\ell}$ are pairwise distinct, then

$$\kappa_{\ell}(B_{i_1,j_1,k_1},\ldots,B_{i_{\ell},j_{\ell},k_{\ell}}) = O(n^{-\ell+1})$$

- this bound on cumulants seems new;
- it can be generalized to non distinct indices;

$$\kappa_{\ell}(T_n) = \sum_{i_1, j_1, k_1, \dots, i_{\ell}, j_{\ell}, k_{\ell}} \kappa_{\ell}(B_{i_1, j_1, k_1}, \dots, B_{i_{\ell}, j_{\ell}, k_{\ell}}).$$

But now, all variables are dependent the one from the others, so there is no reason why some terms should vanish.

Lemma (F.) If $i_1, j_1, k_1, \ldots, i_{\ell}, j_{\ell}, k_{\ell}$ are pairwise distinct, then

$$\kappa_{\ell}(B_{i_1,j_1,k_1},\ldots,B_{i_{\ell},j_{\ell},k_{\ell}})=O(n^{-\ell+1})$$

- this bound on cumulants seems new;
- it can be generalized to non distinct indices;
- it can be used to prove the convergence in distribution of $\widetilde{T_n}$ (T_n after a suitable normalization) towards a Gaussian law.

Small mixed cumulants appear in a lot of contexts

 Random permutations (with uniform or Ewens distribution): the images of different integers have small cumulants.
 ⇒ We can prove the Gaussian fluctuations of a large class of statistics, called dashed patterns.

Small mixed cumulants appear in a lot of contexts

- Random permutations (with uniform or Ewens distribution): the images of different integers have small cumulants.
 ⇒ We can prove the Gaussian fluctuations of a large class of statistics, called dashed patterns.
- Random unitary/orthogonal matrices (distributed with Haar measure): Cumulants of powers of entries in different rows and columns (and their conjugate) can be bounded (Collins, Śniady, 2003, 2006).
 ⇒ lead still to be explored...

Project

- Define a theory of ε -dependency graph, containing these examples;
- in each framework, try to go as far as possible and compare with existing results, ...;
- study large deviations, local limit laws (this requires a uniform bound, in ℓ and n, on cumulants $\kappa_{\ell}(X_n)$).