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Introduction

Permutation classes: set of permutations defining by avoidance of some
substructures, called patterns.

Studied thoroughly from enumerative and algorithmic perspective since the
90’s.

Emerging question: what are the asymptotic properties of a uniform
random permutation in a given class?

−→ this talk: emphasize connections with walks in cones and Brownian
limits.
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A few uniform random permutations in classes

no constraints Av(4321) ( c© Slivken) . . .

. . . separable Baxter ( c© Borga)

(These are diagrams of permutations; a dot at (i , σ(i)) for each i ≥ 1.)
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Outline of the talk

1 Permutations avoiding monotone patterns and Dyson Brownian bridge
(after Hoffman, Rizzolo and Slivken).

2 A universal Brownian limiting object for permutation classes (joint
works with Bassino, Bouvel, Gerin, Maazoun and Pierrot and Borga,
Bouvel and Stufler).

3 Perspective: Baxter permutations and 2-dimensional walks in cone
(after Borga and Maazoun).
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Monotone patterns and Dyson Brownian bridge

Permutations without decreasing subsequence of size
d + 1. . .

Simulation for d = 3 ( c©Hoffman, Rizzolo, Slivken)

Second picture: exceedance process (σ(i)− i).
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Monotone patterns and Dyson Brownian bridge

and d -dimensional Dyson Brownian bridge

For σ in Av(d + 1 . . . 1), we fix arbitrarily a partition into d increasing
sequences (always exists, but not unique).

For ` ≤ d , we let (u`i , σ(u`i ))i be the `-th increasing sequence and set

s`σ(i) =

(
u`i

n + 1
,
σ(u`i )− u`i )√

n

)
.

Finally, let ŝ`σ be the linear interpolation of s`σ.

Theorem (Hoffman, Rizzolo, Slivken, in preparation)

When σ is taken uniformly at random among permutations of size n
without decreasing subsequence of size d + 1, we have

(ŝ1
σ, . . . , ŝ

d
σ )

(d)−→ Λ,

where Λ is a traceless d dimensional Dyson Brownian bridge.
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Substitution in permutations and the Brownian separable permuton

Outline of the talk

1 Permutations avoiding monotone patterns and Dyson Brownian bridge
(after Hoffman, Rizzolo and Slivken).

2 A universal Brownian limiting object for permutation classes (joint
works with Bassino, Bouvel, Gerin, Maazoun and Pierrot and Borga,
Bouvel and Stufler).

3 Perspective: Baxter permutations and 2-dimensional walks in cone
(after Borga and Maazoun).
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Substitution in permutations and the Brownian separable permuton

Substitution in permutations

Definition

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] =
12

= = 24387156
132

21

1
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Substitution in permutations and the Brownian separable permuton

Separable permutations and signed Schröder trees

Definition
The class of separable permutations is the smallest set of permutations (of
all sizes) containing 1, 12 and 21 and stable by substitution.

Every separable permutations is encoded uniquely by a signed Schröder tree
(no unary vertices) with alternating signs.

1 2 3

4- -5

6 7

= 3214576

+

Observation
(i , j) is an inversion in σ if and only if the leaves i and j have a joint
labeled with 	.
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Substitution in permutations and the Brownian separable permuton

Simulations

Two large uniform random separable permutation
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Substitution in permutations and the Brownian separable permuton

Which notion of convergence? Permutons. . .

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a nice compact Polish space.
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Which notion of convergence? Permutons. . .

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Note: the projection on µπ on each axis is the Lebesgue measure on [0, 1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.
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Substitution in permutations and the Brownian separable permuton

Which notion of convergence? Permutons. . .

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on [0, 1]2 with uniform marginals.
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Substitution in permutations and the Brownian separable permuton

Construction of the limiting object (Maazoun, 2018)

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

e is a Brownian excursion and S : LocalMin(e)→ {⊕,	} is a
independent assignment of balanced random signs to local minima of
e.
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⊕
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(e,S)

7→ σ 7→

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	µ = (x , σ(x))?(Leb([0, 1])

σ : [0, 1]→ [0, 1] is the unique Lebesgue preserving function s.t. (x , y)
is an inversion if and only if the sign of min[x ,y ] e is 	.
The Brownian separable permuton is the “graph of the function σ”.
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Substitution in permutations and the Brownian separable permuton

Limits of separable permutations

Theorem (Bassino-Bouvel-F.-Gerin-Pierrot, 2016)

The permuton associated with a uniform random separable permutation of
size n converges in distribution to the Brownian separable permuton.

Later works with Maazoun/Borga and Stufler: the same holds for uniform
permutations in

some classes stable by the substitution operation;
some classes finitely generated for the substitution operation.

(with appropriate analytic conditions.)

The Brownian separable permuton is in some sense universal.
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Substitution in permutations and the Brownian separable permuton

Proof (1/3): finite dimensional distribution

As for many objects, convergence of permutons is equivalent to
convergence of “finite dimensional distribution” and tightness.

The space is compact → tightness is automatic.

What are the finite dimensional distribution of a permuton µ?
Take k points i.i.d. according to µ and look at the corresponding
permutation:

7→ = 231.
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Substitution in permutations and the Brownian separable permuton

Proof (2/3): translating into trees

1 2 3

4- -5

6 7

+ ? //x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕
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Substitution in permutations and the Brownian separable permuton

Proof (2/3): translating into trees

1 2 3

4- -5

6 7

+ ? //

��
x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	
��

-

+ ? //

-
-

We compare finite dimensional distributions. The extracted tree from a
Brownian excursion is known to be a uniform binary tree (here with
independent balanced signs).
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Substitution in permutations and the Brownian separable permuton

Proof (3/3): convergence of extracted signed subtrees

Without signs: the convergence follows from standard random tree
theory (in particular from results of Kortchemski, 2012,
Douglas–Rizzolo, 2013).

For the signs: adhoc exchangeability argument or local limit result for
length of branches in random trees.
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Substitution in permutations and the Brownian separable permuton

Transition

1 Permutations avoiding monotone patterns and Dyson Brownian bridge
(after Hoffman, Rizzolo and Slivken).

2 A universal Brownian limiting object for permutation classes (joint
works with Bassino, Bouvel, Gerin, Maazoun and Pierrot and Borga,
Bouvel and Stufler).

3 Perspective: Baxter permutations and 2-dimensional walks in cone
(after Borga and Maazoun).
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Baxter permutations and 2D random walks in a quadrant

Baxter permutations

Baxter permutations are the permuta-
tions avoiding (vincular) patterns 3142
and 2413. They are in bijection with
families of maps, tilings, pairs of trees.

Question (work in progress by Borga and Maazoun)

What is the limiting permuton?

→ there is an underlying 2D random walks in the positive quadrant. . .
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Baxter permutations and 2D random walks in a quadrant

Baxter generating tree

2 1 3

1 3 4 2

3 4 1 2

3 2 1 4

3 2 4 1

3 4 2 1

4 3 2 1

2 3 1 4

2 3 4 1

2 4 3 1

4 2 3 1

2 3 1

1 2 3 4

1 2 4 3

1 4 2 3

4 1 2 3

1 3 2 4

1 4 3 2

4 1 3 2

3 1 2 4

4 3 1 2

1 2 33 1 2 1 3 2 

2 1 3 4

2 1 4 3

4 2 1 3

1

2 1 1 2

3 2 1

Generating tree of Baxter permutations obtained
by adding a new maximal element at each step.

c©Guerrini

Replace σ by (#LRmax(σ),#RLmax(σ)).

The resulting tree has a simple rewriting (or offspring) rule:

(h, k) 7→ (1, k + 1), (2, k + 1), ..., (h, k + 1),
(h + 1, 1), (h + 1, 2), ..., (h + 1, k).
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(1,1)

(4,1)

(3,2)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(1,3)

(3,1)(2,2)(1,2)

(3,1)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(2,3)

(1,4)

(1,3) (2,1)(2,2)

(2,1)(1,2)

Replace σ by (#LRmax(σ),#RLmax(σ)).

The resulting tree has a simple rewriting (or offspring) rule:
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Baxter permutations and 2D random walks in a quadrant

Baxter generating tree
(1,1)

(4,1)

(3,2)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(1,3)

(3,1)(2,2)(1,2)

(3,1)

(2,2)

(1,2)

(3,1)

(3,2)

(2,3)

(1,3)

(2,1)

(2,2)

(2,3)

(1,4)

(1,3) (2,1)(2,2)

(2,1)(1,2)

A (random) Baxter permutation is a (random) sequence of labels.

Proposition (Borga, Maazoun, ’19)

Taking a uniform random Baxter permutation of size n, the associated
random sequence has the distribution of a random walk with i.i.d. steps,
conditioned to stay in the positive quadrant and . . .
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Baxter permutations and 2D random walks in a quadrant

Thank you for your attention

no constraints Av(4321) ( c© Slivken) . . .

. . . separable Baxter ( c© Borga)
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