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Introduction

Central limit theorems

Theorem (De Moivre, Laplace, Lyapunov)

If Y1,Y2, . . . are independent identically distributed variables with finite
variance, and Xn =

∑n
i=1 Yi , then

Xn−E(Xn)√
VarXn

d→ N (0, 1). (CLT)

Relax identical distribution hypothesis −→ Lindeberg condition.

Relax independence hypothesis: leads to CLT for Markov chains,
martingales, mixing sequences, exchangeable pairs, determinantal point
processes, Schur generating functions, dependency graphs, . . .

Goal of the talk: give an extension of dependency graphs and applications
to statistical mechanics models.
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Weighted dependency graphs

V. Féray (UZH) Weighted dependency graphs Moscow, 2017–07 3 / 19



Weighted dependency graphs An asymptotic normality criterion

Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.
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Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.

Example 1

L =

Y1 Y2 Y3

Y4 Y5 Y6

Y2 and Y4 are independent;
{Y1,Y4,Y5} independent from {Y3,Y6}.
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Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.

Example 2 (triangles in G (n, p))

Consider G = G (n, p). Let A = {∆ ∈
([n]

3

)
} (set of potential triangles) and

{∆1, ∆2} ∈ EL iff ∆1 and ∆2 share an edge in G .

Then L is a dependency graph for the family {1∆⊂G ,∆ ∈
([n]

3

)
}.

�� ��Note: L has degree O(n)
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Janson’s normality criterion

Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.
we have a dependency graph Ln with maximal degree ∆n − 1.
we set Xn =

∑Nn
i=1 Yn,i and σ2

n = Var(Xn).

Theorem (Janson, 1988)

Assume that
(

Nn
∆n

)1/s
∆n
σn
→ 0 for some integer s. Then Xn satisfies a CLT.

For triangles, Nn =
(n
3

)
, ∆n = O(n), while σn � n2. (for fixed p)

Corollary

Fix p in (0, 1). Then the number Tn of triangles in G (n, p) satisfies a CLT.

(also true for pn → 0 with npn →∞; originally proved by Rucinski, 1988).

V. Féray (UZH) Weighted dependency graphs Moscow, 2017–07 5 / 19



Weighted dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.
we have a dependency graph Ln with maximal degree ∆n − 1.
we set Xn =

∑Nn
i=1 Yn,i and σ2

n = Var(Xn).

Theorem (Janson, 1988)

Assume that
(

Nn
∆n

)1/s
∆n
σn
→ 0 for some integer s. Then Xn satisfies a CLT.

For triangles, Nn =
(n
3

)
, ∆n = O(n), while σn � n2. (for fixed p)

Corollary

Fix p in (0, 1). Then the number Tn of triangles in G (n, p) satisfies a CLT.

(also true for pn → 0 with npn →∞; originally proved by Rucinski, 1988).
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Applications of dependency graphs to CLT results

mathematical modelization of cell populations (Petrovskaya,
Leontovich, 82);

subgraph counts in random graphs (Janson, Baldi, Rinott, Penrose,
88, 89, 95, 03);

Geometric probability (Avram, Bertsimas, Penrose, Yukich, Bárány,
Vu, 93, 05, 07);

pattern occurrences in random permutations (Bóna, Janson,
Hitchenko, Nakamura, Zeilberger, 07, 09, 14).

m-dependence (Hoeffding, Robbins, 53, . . . ; now widely used in
statistics) is a special case.

(Some of these applications use variants of Janson’s normality criterion,
which are more technical to state and omitted here. . . )
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A weighted variant

In many models (G (n,M), Markov chains, statistical mechanics),
variables are weakly dependent but not independent.

Idea: put weights on the edges of dependency graphs.

Philosophy

The smaller the weight on the edge {Yα,Yβ} is, the closer to independence
Yα and Yβ should be.

We need to quantify the dependence somehow: we’ll use cumulants.
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What are (mixed) cumulants?

The r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Notation: κr (X ) := κr (X , . . . ,X ).

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.

If, for each r big enough, we have κr (Xn) = o(Var(Xn)r/2),
then Xn satisfies a CLT. (Janson, 1988)
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Weighted dependency graphs

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣ ≤ CrM
(
L̃[α1, · · · , αr ]

)
.

L̃[α1, · · · , αr ]: graph induced
by L̃ on vertices α1, · · · , αr .

M
(
K
)
: Maximum weight of a

spanning tree of K .

In the example,
M
(
L̃[α1, · · · , α4]

)
= ε2.

L̃

ε2

ε3
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ε2
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Weighted dependency graphs: an example

Example (triangles in G (n,M))

Consider G = G (n,Mn), where Mn = p
(n
2

)
. Let A = {∆ ∈

([n]
3

)
} and

wt
L̃
({∆1, ∆2}) =

{
1 if ∆1 and ∆2 share an edge in G .
1/n2 otherwise.

Then L̃ is a weighted dependency graph for the family {1∆⊂G ,∆ ∈
([n]

3

)
}.

Note: L̃ has degree O(n3), but weighted degree O(n).
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A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.
we have a weighted dependency graph L̃n with weighted maximal
degree ∆n − 1.
we set Xn =

∑Nn
i=1 Yn,i and σ2

n = Var(Xn).

Theorem (F., 2016)

Assume that
(

Nn
∆n

)1/s
∆n
σn
→ 0 for some integer s. Then Xn satisfies a CLT.

For triangles in G (n,Mn), Nn =
(n
3

)
, ∆n = O(n), while σn � n3/2.

Corollary

Fix p in (0, 1) and set Mn = p
(n
2

)
. Then Tn satisfies a CLT.

(also true for n� Mn � n2; originally proved by Janson 1994).
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Stability by powers

Setting:
Let {Yα, α ∈ A} be r.v. with weighted dependency graph L̃;
fix an integer m ≥ 2;
for a multiset B = {α1, · · · , αm} of elements of A, denote

YB := Yα1 · · · Yαm .

Proposition

The set of r.v. {YB} has a weighted dependency graph L̃m, where

wt
L̃m

(YB ,YB′) = max
α∈B,α′∈B′

wt
L̃
(Yα,Yα′).

In short: if we have a dependency graph for some variables Yα, we have
also one for monomials in the Yα.
(And potentially CLT for polynomials in the Yα).
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Applications of weighted dependency graphs

crossings in random pair-partitions;
subgraph counts in G (n,M);
random permutations;
particles in symmetric simple exclusion process (SSEP);
subword counts in Markov chains;
patterns in multiset permutations*, in set-partitions*;
spins in Ising model (with Jehanne Dousse);
determinantal point process**.

*in progress with Marko Thiel. **project

( Some of these applications use a variant of the above definition and
normality criterion, which is more technical to state. . . )
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Applications to ASEP and Ising model
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Weighted dependency graphs Applications to SSEP and Ising

Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ

τ = (τ1, · · · , τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi , 1 ≤ i ≤ N}.
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ

τ = (τ1, · · · , τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi , 1 ≤ i ≤ N}.

In particular, for disjoint i1, · · · , ir ,

κ(τi1 , . . . , τir ) = Or (N−r+1).
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Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ

τ = (τ1, · · · , τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi , 1 ≤ i ≤ N}.

Ingredients of the proof:
joint moments of the τi given by matrix ansatz;
in case of SSEP, this gives an induction formula for cumulants
(Derrida, Lebowitz, Speer, 2006).
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Weighted dependency graphs Applications to SSEP and Ising

Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ

τ = (τ1, · · · , τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi , 1 ≤ i ≤ N}.

Consequences:
functional CLT for the particle distribution function;
also, e.g., for the number

∑
i τi (1− τi+1) of particles that can jump

to their right (using stability by powers).
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Weighted dependency graphs Applications to SSEP and Ising

Symmetric simple exclusion process (SSEP)
1 1 1

1111

α β

γ δ

τ = (τ1, · · · , τN) particle configuration with stationary distribution.

Theorem
The complete graph on [N] with weight 1/N on each edge is a weighted
dependency graph for the family {τi , 1 ≤ i ≤ N}.

The same is conjectured for ASEP in general.
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[
− H(ω)

]
;

H(ω) = −β
∑

x∼y ωxωy − h
∑

x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε = ε(d , h, β) > 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x , y} is a weighted dependency graph for
{σx , x ∈ Zd}
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P(ω) ∝ exp
[
− H(ω)

]
;

H(ω) = −β
∑

x∼y ωxωy − h
∑

x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε = ε(d , h, β) > 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x , y} is a weighted dependency graph for
{σx , x ∈ Zd}

In particular, for disjoint x1, · · · , xr ,

κ(σx1 , . . . , σxr ) = Or (ε`T (x1,...,xr )),

where `T (x1, . . . , xr ) is the smallest length of a tree connecting x1, . . . , xr .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[
− H(ω)

]
;

H(ω) = −β
∑

x∼y ωxωy − h
∑

x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε = ε(d , h, β) > 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x , y} is a weighted dependency graph for
{σx , x ∈ Zd}

The bound on cumulants was proved by Duneau, Iagolnitzer and Souillard
(with magnetic field or in very high temperature) and Malyshev and Minlos
in very low temperature.
Proofs based on cluster expansion. . .
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Ising model

+ − − + + − +
− − − + + − −
+ + − + − + −
− − + − + − −
+ + + − − − +

P(ω) ∝ exp
[
− H(ω)

]
;

H(ω) = −β
∑

x∼y ωxωy − h
∑

x ωx .

Theorem
In presence of a magnetic field or at very low or very large temperature,
there exists ε = ε(d , h, β) > 0 such that the complete graph on Zd with
weight ε‖x−y‖1 on the edge {x , y} is a weighted dependency graph for
{σx , x ∈ Zd}

Question: does it hold near the critical point?
(At the critical point, the answer is NO, since already covariances do not
decay exponentially)
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Ising model: CLT for global patterns

+ − − + + − +
− − − + + ⊕ −
+ ⊕ − + − + −
− − + − + − −
+ + ⊕ − − − +

Circled spins:
occurrence of the +pattern 2 3 1

(notion inspired from patterns in permutations.)
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Ising model: CLT for global patterns

+ − − + + − +
− − − + + ⊕ −
+ ⊕ − + − + −
− − + − + − −
+ + ⊕ − − − +

Circled spins:
occurrence of the +pattern 2 3 1

SPn := number of occurrences of P within Λn = [−n, n]d .

Theorem (Dousse, F., 2016)

Assume Var(SPn ) ≥ cst|Λn|2|P|−2+η for η > 0. Then we have

SPn − E(SPn )√
Var(SPn )

d−−−→
n→∞

N (0, 1).

The lower bound of the variance is always fulfilled for patterns of only
positive spins (as in the example).
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Weighted dependency graphs Perspective

Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition
X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)
1≤i ,j≤r

.
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Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition
X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)
1≤i ,j≤r

.

Strange definition (not even clear a priori if such a process exists at all),
but there are lots of example:

random Young diagrams, taken with Poissonized Plancherel measure;
spanning trees in graphs;
eigenvalues of random matrices (continuous DPP).
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Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition
X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)
1≤i ,j≤r

.

Lemma (Soshnikov, 2000)

If X is a discrete determinantal point process with kernel K , then, for any
distinct s1, . . . , sr in S ,

κ(1s1∈X , . . . , 1sr∈X ) =
∑

σ ε(σ)
∏

i K (si , sσ(i)),

where the sum runs over cyclic permutation in Sr .
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Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition
X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)
1≤i ,j≤r

.

Soshnikov cumulant formula ⇒
for each DPP, we have a weighted

dependency graph for {1s∈X , s ∈ S}
with weights K (s, t)s,t∈S .

CLT for linear statistics is known;
Project: investigate CLT for “multilinear” statistics.

V. Féray (UZH) Weighted dependency graphs Moscow, 2017–07 18 / 19



Weighted dependency graphs Perspective

Большое Спасибо

Thanks for your attention !
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