Shifted symmetric functions III: Jack and Macdonald analogues

Valentin Féray

Institut für Mathematik, Universität Zürich

Séminaire Lotharingien de Combinatoire Bertinoro, Italy, Sept. 11th-12th-13th

V. Féray (I-Math, UZH)

Shifted symmetric functions III

SLC, 2017-09 1 / 24

Third lecture

In the first lectures, we have seen

 Two bases of the shifted symmetric function ring: s^{*}_μ and Ch_μ with nice vanishing characterizations, multiplication tables and multirectangular expansions.

Third lecture

In the first lectures, we have seen

 Two bases of the shifted symmetric function ring: s^{*}_μ and Ch_μ with nice vanishing characterizations, multiplication tables and multirectangular expansions.

Today:

- Can we define analogue in the Jack/Macdonald setting?
- Do they still have nice vanishing characterizations, multiplication tables and multirectangular expansions? What is the combinatorics involved?
- Application to random Young diagrams.

(No pre-requisite on Jack/Macdonald symmetric functions.)

Transition

Shifted Jack/Macdonald polynomials through vanishing conditions

α shifted symmetric functions

Definition

A polynomial $f(x_1, \ldots, x_N)$ is α -shifted symmetric if it is symmetric in $x_1 - \frac{1}{\alpha}, x_2 - \frac{2}{\alpha}, \ldots, x_N - \frac{N}{\alpha}$.

Examples:
$$p_k^{\star}(x_1,\ldots,x_N) = \sum_{i=1}^N \left(x_i - \frac{i}{\alpha}\right)^k$$
.

$$\alpha = 1$$
 gives previous case.

α shifted symmetric functions

Definition

A polynomial $f(x_1, ..., x_N)$ is α -shifted symmetric if it is symmetric in $x_1 - \frac{1}{\alpha}, x_2 - \frac{2}{\alpha}, ..., x_N - \frac{N}{\alpha}$.

Examples:
$$p_k^{\star}(x_1,\ldots,x_N) = \sum_{i=1}^N (x_i - \frac{i}{\alpha})^k$$
.

lpha = 1 gives previous case.

 α -shifted symmetric function: sequence $f_N(x_1, \ldots, x_N)$ of shifted symmetric polynomials with

$$f_{N+1}(x_1, \dots, x_N, 0) = f_N(x_1, \dots, x_N).$$

Examples: $p_k^{\star} = \sum_{i \ge 1} \left[(x_i - \frac{i}{\alpha})^k - (\frac{-i}{\alpha})^k \right].$

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),\star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu} \alpha^{-|\mu|} H_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H_{\alpha}(\lambda)$: deformation of the hook product.

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),\star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu} \alpha^{-|\mu|} H_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H_{\alpha}(\lambda)$: deformation of the hook product.

Note on the proof: looking for $P_{\mu}^{(\alpha),\star}$ under the form $\sum_{|\nu| \leq |\mu|} c_{\nu} p_{\nu}^{\star}$ the conditions $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu} H_{\alpha}(\lambda)$ defines a square system of linear equations in indeterminates c_{ν} . We need to prove that it is non-degenerate...

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),*}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),*}(\lambda) = \delta_{\lambda,\mu} \alpha^{-|\mu|} H_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H_{\alpha}(\lambda)$: deformation of the hook product.

Theorem (Knop-Sahi '96, Okounkov '98)

•
$$P_{\mu}^{(\alpha),\star}(\lambda) = 0$$
 if $\lambda \not\supseteq \mu$ (extra-vanishing property);

2 in general, $P_{\mu}^{(\alpha),\star}(\lambda)$ counts α -weighted skew SYT.

③ the top degree component of $P_{\mu}^{(\alpha),\star}$ is the usual Jack polynomial $J_{\mu}^{(\alpha)}$.

 $P^{(\alpha),\star}_{\mu}$ is called shifted Jack polynomials (because of 3.)

No determinantal formula as for shifted Schur functions!...

V. Féray (I-Math, UZH)

Shifted symmetric functions III

Jack deformation of normalized characters (Lassalle '08)

Set $\tilde{p}_{\mu} = \alpha^{\frac{|\mu| - \ell(\mu)}{2}} p_{\mu}$, consider the expansion $\tilde{p}_{\mu} = \sum_{|\nu| = |\mu|} \theta^{\nu}_{\mu} P^{(\alpha)}_{\nu}$ (in usual symmetric function ring) and define

$$\mathsf{Ch}_{\mu}^{(\alpha)} = \sum_{|\nu| = |\mu|} \theta_{\mu}^{\nu} P_{\nu}^{(\alpha),\star}.$$

Vanishing characterization (F., Śniady, 2015) $Ch_{\mu}^{(\alpha)}$ is the unique α -shifted sym. function *F* of degree at most $|\mu|$ such that **a** $F(\lambda) = 0$ if $|\lambda| < |\mu|$: **b** formation of characters Note that θ_{μ}^{λ} is a deformation of the character χ_{μ}^{λ} . We can prove $Ch_{\mu}^{(\alpha)}(\lambda) = (|\lambda| + |\mu|) \frac{\theta_{\mu}^{\lambda}}{\Delta}$.

$$\mathsf{Ch}_{\mu}^{(\alpha)}(\lambda) = (|\lambda| \downarrow |\mu|) \frac{1}{\theta_{(1^{k})}^{\lambda}}.$$

(Easy from the SYT interpretation of $P_{\nu}^{(\alpha),\star}(\lambda)$.)

t shifted symmetric functions

Definition

A polynomial $f(y_1, \ldots, y_N)$ is *t*-shifted symmetric if it is symmetric in $y_1 t^{-1}$, $y_2 t^{-2}$, ..., $y_N t^{-N}$.

Examples:
$$p_k^{\star}(y_1, \dots, y_N) = \sum_{i=1}^N (y_i t^{-i})^k$$
.
Set $y_i = q^{\times_i}, q = t^{\alpha} \to 1$
and divide by $(q - 1)^*$
to recover Jack case.

t shifted symmetric functions

Definition

A polynomial $f(y_1, \ldots, y_N)$ is *t*-shifted symmetric if it is symmetric in $y_1 t^{-1}$, $y_2 t^{-2}$, ..., $y_N t^{-N}$.

Examples:
$$p_k^{\star}(y_1, \dots, y_N) = \sum_{i=1}^N (y_i t^{-i})^k$$
.
Set $y_i = q^{x_i}, q = t^{\alpha} \to 1$
and divide by $(q - 1)^*$
to recover Jack case.

t-shifted symmetric function: sequence $f_N(y_1, \ldots, y_N)$ of shifted symmetric polynomials with

$$f_{N+1}(y_1,\ldots,y_N,1) = f_N(y_1,\ldots,y_N).$$

Examples: $p_k^{\star} = \sum_{i \ge 1} \left[(y_i^k - 1) t^{-ki} \right].$

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)

Let μ be a partition. There exists a unique t-shifted symmetric function $P_{\mu}^{(q,t),*}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq |\mu|$,

 $P^{(q,t),\star}_{\mu}(q^{\lambda_1},q^{\lambda_2},\dots)=\delta_{\lambda,\mu}H_{(q,t)}(\lambda).$

 $H_{(q,t)}(\lambda)$: deformation of the hook product.

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)

Let μ be a partition. There exists a unique t-shifted symmetric function $P_{\mu}^{(q,t),\star}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq |\mu|$,

 $P^{(q,t),\star}_{\mu}(q^{\lambda_1},q^{\lambda_2},\dots)=\delta_{\lambda,\mu}H_{(q,t)}(\lambda).$

 $H_{(q,t)}(\lambda)$: deformation of the hook product.

Theorem (Sahi' 96, Knop '97, Okounkov '98)

- $P_{\mu}^{(q,t),\star}(\lambda) = 0$ if $\lambda \not\supseteq \mu$ (extra-vanishing property);
- The top degree component of P^{(q,t),*} is the usual Macdonald polynomial P^(q,t)_µ evaluated in y₁, y₂t⁻¹,..., y_nt⁻ⁿ.

 $P^{(q,t),\star}_{\mu}$ is called shifted Macdonald polynomial.

Note: no interpretation of $P_{\mu}^{(q,t),\star}(\lambda)$ as counting weighted SYTs!

V. Féray (I-Math, UZH)

Shifted symmetric functions III

Macdonald deformation of normalized characters?

Consider the expansion $p_{\mu} = \sum_{|\nu|=|\mu|} \theta^{\nu}_{\mu} P^{(q,t)}_{\nu}$ (in usual symmetric function ring) and define

$$\mathsf{Ch}_{\mu}^{(q,t)} = \sum_{|
u|=|\mu|} heta_{\mu}^{\nu} P_{
u}^{(q,t),\star}.$$

Vanishing characterization $Ch_{\mu}^{(q,t)}$ is the unique *t*-shifted sym. function *F* of degree at most $|\mu|$ such that

•
$$F(\lambda) = 0$$
 if $|\lambda| < |\mu|$;

• The top-degree component of F is p_{μ} .

Deformation of characters We cannot relate $Ch^{(q,t)}_{\mu}(\lambda)$ and θ^{λ}_{μ} .

In fact, I could not find a normalization of $\theta_{\mu}^{\lambda},$ that is t-shifted symmetric.

Macdonald deformation of normalized characters?

Consider the expansion $p_{\mu} = \sum_{|\nu|=|\mu|} \theta^{\nu}_{\mu} P^{(q,t)}_{\nu}$ (in usual symmetric function ring) and define

$$\mathsf{Ch}_{\mu}^{(q,t)} = \sum_{|
u|=|\mu|} heta_{\mu}^{\nu} P_{
u}^{(q,t),\star}.$$

Vanishing characterization $Ch_{\mu}^{(q,t)}$ is the unique *t*-shifted sym. function *F* of degree at most $|\mu|$ such that that Deformation of characters<math>W We cannot relate $Ch_{\mu}^{(q,t)}(\lambda)$ and θ_{μ}^{λ} . In fact, I could not find a normaliza-

- **1** $F(\lambda) = 0$ if $|\lambda| < |\mu|$;
- The top-degree component of F is p_{μ} .

In fact, I could not find a normalization of $\theta^\lambda_\mu,$ that is t-shifted symmetric.

 \Rightarrow Are the functions ${\rm Ch}_{\mu}^{(q,t)}$ nevertheless interesting? I don't know. . . Here, we'll focus on the Jack case. . .

Combinatorial formula for $P^{(q,t),\star}_{\mu}$ and $P^{(lpha),\star}_{\mu}$

Theorem (Okounkov '98)

$$P^{(q,t),\star}_{\mu}(x_1,\ldots,x_N) = \sum_T \Psi^{(q,t)}_T \prod_{(i,j)\in T} t^{1-T(i,j)}(x_{T(i,j)}-q^{j-1}t^{1-i}).$$

where the sum runs over reverse^a semi-std Young tableaux T, and $\Psi_T^{(q,t)}$ is the same weight as for usual Macdonald polynomials (rational function in q and t).

^afilling with decreasing columns and weakly decreasing rows

Combinatorial formula for $P^{(q,t),\star}_{\mu}$ and $P^{(lpha),\star}_{\mu}$

Theorem (Okounkov '98)

$$P^{(q,t),\star}_{\mu}(x_1,\ldots,x_N) = \sum_T \Psi^{(q,t)}_T \prod_{(i,j)\in T} t^{1-T(i,j)} (x_{T(i,j)} - q^{j-1}t^{1-i}).$$

where the sum runs over reverse^a semi-std Young tableaux T, and $\Psi_T^{(q,t)}$ is the same weight as for usual Macdonald polynomials (rational function in q and t).

^afilling with decreasing columns and weakly decreasing rows

Corollary

$$P_{\mu}^{(\alpha),\star}(x_1,\ldots,x_N) = \sum_{T} \Psi_{T}^{(\alpha)} \prod_{\Box \in T} (x_{T(\Box)} - c_{\alpha}(\Box)),$$

where $c(i,j) = \alpha(j-1) - (i-1)$ is the α - content of the box and $\Psi_T^{(\alpha)}$ a rational function in α .

Transition

Multiplications tables

Multiplication tables

Question

Can we understand the multiplication tables of our favorite bases?

$$\begin{split} \mathcal{P}_{\mu}^{(\alpha),\star} & \mathcal{P}_{\nu}^{(\alpha),\star} = \sum_{\substack{\rho: |\rho| \le |\mu| + |\nu|}} c_{\mu,\nu}^{\rho,(\alpha)} \, \mathcal{P}_{\rho}^{(\alpha),\star} \\ \operatorname{Ch}_{\mu}^{(\alpha)} & \operatorname{Ch}_{\nu}^{(\alpha)} = \sum_{\substack{\rho: |\rho| \le |\mu| + |\nu|}} g_{\mu,\nu}^{\rho,(\alpha)} \operatorname{Ch}_{\rho}^{(\alpha)} \end{split}$$

Are $c_{\mu,\nu}^{\rho,(\alpha)}$ and $g_{\mu,\nu}^{\rho,(\alpha)}$ polynomials in α ? with nonnegative coefficients? Do they have a combinatorial interpretation?

Multiplication tables

Question

Can we understand the multiplication tables of our favorite bases?

$$\begin{split} \mathcal{P}_{\mu}^{(\alpha),\star} & \mathcal{P}_{\nu}^{(\alpha),\star} = \sum_{\substack{\rho: |\rho| \le |\mu| + |\nu|}} c_{\mu,\nu}^{\rho,(\alpha)} \, \mathcal{P}_{\rho}^{(\alpha),\star} \\ \operatorname{Ch}_{\mu}^{(\alpha)} & \operatorname{Ch}_{\nu}^{(\alpha)} = \sum_{\substack{\rho: |\rho| \le |\mu| + |\nu|}} g_{\mu,\nu}^{\rho,(\alpha)} \operatorname{Ch}_{\rho}^{(\alpha)} \end{split}$$

Are $c_{\mu,\nu}^{\rho,(\alpha)}$ and $g_{\mu,\nu}^{\rho,(\alpha)}$ polynomials in α ? with nonnegative coefficients? Do they have a combinatorial interpretation?

Note: when $|\rho| = |\mu| + |\nu|$, then $c_{\mu,\nu}^{\rho,(\alpha)}$ is the Jack analogue of LR coefficients (multiplication table of usual Jack symmetric functions). When suitably renormalized, they are conjectured to be polynomials with nonnegative coefficients in α (Stanley '89, still open).

Jack shifted LR coefficients

Conjecture (Alexandersson, F.)

 $\alpha^{|\mu|+|\nu|-|\rho|-2}H_{\alpha}(\mu) H_{\alpha}(\nu) H'_{\alpha}(\rho)c^{\rho,(\alpha)}_{\mu,\nu}$ is a polynomial in α with nonnegative integer coefficients.

- It implies Stanley's conjecture;
- A weaker form had been formulated earlier by Sahi, '11: namely, $c_{\mu,\nu}^{\rho,(\alpha)}$ is a quotient of two polynomials in α with nonnegative integer coefficients.
- We can prove polynomiality in α with rational coefficients.

Computing Jack shifted LR coefficients by induction

As in the Schur case, we have:

 $c_{\mu,\nu}^{\rho,(\alpha)} = 0 \text{ if } \rho \not\supseteq \mu \text{ or } \rho \not\supseteq \nu;$ $c_{\mu,\nu}^{\nu,(\alpha)} = P_{\mu}^{(\alpha),\star}(\nu).$ $c_{\mu,\nu}^{\rho,(\alpha)} = \frac{1}{|\rho| - |\nu|} \left(\sum_{\nu \nwarrow \nu^{+}} \psi_{\nu^{+}/\nu}' c_{\mu,\nu^{+}}^{\rho,(\alpha)} - \sum_{\rho^{-} \nearrow \rho} \psi_{\rho/\rho^{-}}' c_{\mu,\nu}^{\rho^{-}} \right).$

 $(\psi'_{
u^+/
u}$ is the weight appearing in Pieri's formula for Jack polynomials)

Computing Jack shifted LR coefficients by induction

As in the Schur case, we have:

- **1** $c_{\mu,\nu}^{\rho,(\alpha)} = 0$ if $\rho \not\supseteq \mu$ or $\rho \not\supseteq \nu$; **2** $c_{\mu,\nu}^{\nu,(\alpha)} = P_{\mu}^{(\alpha),\star}(\nu)$. **3** $c_{\mu,\nu}^{\rho,(\alpha)} = \frac{1}{|\rho| |\nu|} \left(\sum_{\nu \land \nu^{+}} \psi_{\nu^{+}/\nu}' c_{\mu,\nu^{+}}^{\rho,(\alpha)} \sum_{\rho^{-} \nearrow \rho} \psi_{\rho/\rho^{-}}' c_{\mu,\nu}^{\rho^{-}} \right)$. $(\psi_{\nu^{+}/\nu}' \text{ is the weight appearing in Pieri's formula for Jack polynomials})$
- \rightarrow we can prove the weaker conjecture when $|\rho| \leq |\nu| + 1$.

Computing Jack shifted LR coefficients by induction

As in the Schur case, we have:

- 1. $c_{\mu,\nu}^{\rho,(\alpha)} = 0$ if $\rho \not\supseteq \mu$ or $\rho \not\supseteq \nu$;
 1.
 2. $c_{\mu,\nu}^{\nu,(\alpha)} = P_{\mu}^{(\alpha),\star}(\nu)$.
 3. $c_{\mu,\nu}^{\rho,(\alpha)} = \frac{1}{|\rho| |\nu|} \left(\sum_{\nu \land \nu^{+}} \psi'_{\nu^{+}/\nu} c_{\mu,\nu^{+}}^{\rho,(\alpha)} \sum_{\rho^{-} \nearrow \rho} \psi'_{\rho/\rho^{-}} c_{\mu,\nu}^{\rho^{-}} \right)$.
 ($\psi'_{\nu^{+}/\nu}$ is the weight appearing in Pieri's formula for Jack polynomials)
- \rightarrow we can prove the weaker conjecture when $|\rho| \leq |\nu|+1.$

Strong version completely open (even for $|\rho| = |\nu|$)

Multiplication table of deformed characters

Reminder:
$$\mathsf{Ch}^{(lpha)}_{\mu} \, \mathsf{Ch}^{(lpha)}_{
u} = \sum_{
ho: |
ho| \leq |\mu| + |
u|} g^{
ho, (lpha)}_{\mu,
u} \, \mathsf{Ch}^{(lpha)}_{
ho}$$

Conjecture (Śniady, '16)

 $g_{\mu,
u}^{
ho,(lpha)}$ is a polynomial with nonnegative integer coefficients in

$$\delta := \sqrt{\alpha} - \frac{1}{\sqrt{\alpha}}.$$

Multiplication table of deformed characters

Reminder:
$$\mathsf{Ch}^{(lpha)}_{\mu} \, \mathsf{Ch}^{(lpha)}_{
u} = \sum_{
ho: |
ho| \leq |\mu| + |
u|} g^{
ho, (lpha)}_{\mu,
u} \, \mathsf{Ch}^{(lpha)}_{
ho}$$

Conjecture (Śniady, '16)

 $g_{\mu,
u}^{
ho,(lpha)}$ is a polynomial with nonnegative integer coefficients in

$$\delta := \sqrt{\alpha} - \frac{1}{\sqrt{\alpha}}.$$

Nonnegativity for $\alpha = 1, 2$ (Ivanov, Kerov, '99, Tout, '14). Polynomiality with rational coefficients is known (Dołęga, F., '16).

Implies the matching-Jack conjecture of Goulden and Jackson ('96).

Transition

Multirectangular expansions

Multirectangular expansion of normalized characters

Conjecture (Lassalle, '08)

 $(-1)^k \alpha^{\frac{|\mu|-\ell(\mu)}{2}} \operatorname{Ch}_{\mu}^{(\alpha)}$ is a polynomial with nonnegative integer coefficients in \boldsymbol{p} , $-\boldsymbol{q}$ and $\alpha - 1$.

Polynomiality with rational coefficients also follows from Dołęga, F. '16. Nonnegativity has been proved by Lassalle for rectangular partitions (i.e. one single p, resp. q).

Question: is there again a nice formula in terms of N_G functions?? Such formulas exist for $\alpha = 2$ (F., Śniady, '11) and for rectangular partitions (F. Dołęga, Śniady, '14).

Multirectangular expansion of shifted Jack polynomials

Conjecture (Alexandersson, F., '17)

 $\alpha^{|\mu|-\mu_1} H'_{\alpha}(\mu) P^{(\alpha),\star}_{\mu}$ is a polynomial with nonnegative integer coefficients in the falling factorial basis

$$\alpha^{c}(p_{1} \mid a_{1}) \dots (p_{m} \mid a_{m})(r_{1} \mid b_{1}) \dots (r_{m} \mid b_{m}).$$

Polynomiality with rational coefficients also follows from Dołęga, F. '16.

We could prove it for $\mu = (k)$, by finding a new combinatorial formula for this case.

A new formula for $P_{(k)}^{(\alpha),\star}$

Theorem (Alexandersson, F., '17)

For any integer $k \ge 1$ and Young diagram λ , one has:

$$\frac{1}{k!} H'_{\alpha}((k)) P_{(k)}^{(\alpha),\star}(\lambda) = \sum_{\substack{A \subseteq \lambda, \ |A| = k \\ column-dinstinct}} \left(\prod_{\substack{R \text{ row} \\ of \lambda}} P_{|R \cap A|}(\alpha) \right),$$

where, for $i \ge 0$, we set $P_i(\alpha) = \prod_{j=0}^{i-1} (1+j\alpha).$

1

A new formula for $P_{(k)}^{(\alpha),\star}$

Theorem (Alexandersson, F., '17)

For any integer $k \ge 1$ and Young diagram λ , one has:

$$\frac{1}{k!} H'_{\alpha}((k)) P_{(k)}^{(\alpha),\star}(\lambda) = \sum_{\substack{A \subseteq \lambda, \ |A| = k \\ column-dinstinct}} \left(\prod_{\substack{R \ row \\ of \ \lambda}} P_{|R \cap A|}(\alpha) \right),$$

where, for $i \ge 0$, we set $P_i(\alpha) = \prod_{i=0}^{i-1} (1+j\alpha).$

Main steps of proof:

• observe that
$$\frac{1}{k!}H'_{\alpha}(\mu)P^{(\alpha),*}_{(k)}(\lambda) = \operatorname{const}\left[m_{(k,1^{|\lambda|-k)}}\right]P^{(\alpha)}_{\lambda}$$
.

`

A new formula for $P_{(k)}^{(\alpha),\star}$

Theorem (Alexandersson, F., '17)

For any integer $k \ge 1$ and Young diagram λ , one has:

$$\frac{1}{k!} H'_{\alpha}((k)) P^{(\alpha),\star}_{(k)}(\lambda) = \sum_{\substack{A \subseteq \lambda, \ |A| = k \\ column-dinstinct}} \left(\prod_{\substack{R \ row \\ of \ \lambda}} P_{|R \cap A|}(\alpha) \right),$$

1

where, for $i \ge 0$, we set $P_i(\alpha) = \prod_{j=0}^{i-1} (1+j\alpha)$.

Main steps of proof:

• observe that
$$\frac{1}{k!}H'_{\alpha}(\mu)P^{(\alpha),*}_{(k)}(\lambda) = \operatorname{const}\left[m_{(k,1^{|\lambda|-k)}}\right]P^{(\alpha)}_{\lambda}$$
.

Knop-Sahi combinatorial formula ('97) gives a combinatorial formula for the right-hand side.

١

A new formula for $P_{(k)}^{(lpha),\star}$

Theorem (Alexandersson, F., '17)

For any integer $k \ge 1$ and Young diagram λ , one has:

$$\frac{1}{k!} H'_{\alpha}((k)) P^{(\alpha),\star}_{(k)}(\lambda) = \sum_{\substack{A \subseteq \lambda, \ |A| = k \\ column-dinstinct}} \left(\prod_{\substack{R \ row \\ of \ \lambda}} P_{|R \cap A|}(\alpha) \right),$$

1

where, for $i \ge 0$, we set $P_i(\alpha) = \prod_{j=0}^{i-1} (1+j\alpha)$.

Main steps of proof:

• observe that
$$\frac{1}{k!}H'_{\alpha}(\mu)P^{(\alpha),*}_{(k)}(\lambda) = \operatorname{const}\left[m_{(k,1^{|\lambda|-k)}}\right]P^{(\alpha)}_{\lambda}$$
.

- Knop-Sahi combinatorial formula ('97) gives a combinatorial formula for the right-hand side.
- We transform it into the one in the theorem through a nontrivial bijection.

١

A new formula for $P_{(k)}^{(\alpha),\star}$

Theorem (Alexandersson, F., '17)

For any integer $k \ge 1$ and Young diagram λ , one has:

$$\frac{1}{k!} H'_{\alpha}((k)) P_{(k)}^{(\alpha),\star}(\lambda) = \sum_{\substack{A \subseteq \lambda, \ |A| = k \\ column-dinstinct}} \left(\prod_{\substack{R \text{ row} \\ of \lambda}} P_{|R \cap A|}(\alpha) \right),$$

where, for $i \ge 0$, we set $P_i(\alpha) = \prod_{j=0}^{i-1} (1+j\alpha).$

Question 1: proof through vanishing characterization? (only the shifted symmetry is hard.)

Question 2: is there such a formula for $P^{(\alpha),\star}_{\mu}(\lambda)$? (no direct relation with monomial coefficients anymore.)

`

Transition

A motivation: global fluctuations of Jack-Plancherel random diagrams

A motivation: random Young diagram

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$

©Notices of the AMS, Feb. 2011, front cover.

A motivation: random Young diagram

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$

We rescale rows by $\frac{1}{\sqrt{n}}$ and columns by $\frac{1}{\sqrt{n}}$ and consider the function $\widetilde{\omega_{\lambda}}$ defined by the blue zigzag line.

A motivation: random Young diagram

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$

- limit shape (Vershik-Kerov/Logan-Shepp '77): $\widetilde{\omega_{\lambda}}$ tends almost surely towards a deterministic shape Ω ;
- **2** global fluctuations (Kerov-Ivanov-Olshanski '93-'03): $\widetilde{\omega_{\lambda}}(x) \approx \Omega(x) + \frac{2}{\sqrt{n}} \Delta_{\infty}(x)$ for some Gaussian process λ ;
- edge fluctuations (Borodin-Okounkov-Olshanski '00/Johansson '01): first few rows fluctuations are similar to first few eigenvalue fluctuations in GUE random matrices;

Motivation: random Young diagrams

Jack-Plancherel measure

Jack-Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\alpha^n n!}{H_\alpha(\lambda) H'_\alpha(\lambda)}$$

Jack-Plancherel measure

Jack-Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\alpha^n n!}{H_\alpha(\lambda) H'_\alpha(\lambda)}$$

Simulation for $\alpha = 3$, n = 30.

We rescale rows by $\sqrt{\frac{\alpha}{n}}$ and columns by $\frac{1}{\sqrt{\alpha n}}$ and consider the function $\widetilde{\omega_{\lambda}}$ defined by the blue zigzag line.

Theorem (Dołęga, F., '16, informal version)

Let λ be a random Jack-Plancherel distributed Young diagram. Then $\widetilde{\omega_{\lambda}}(x) \approx \Omega(x) + \frac{2}{\sqrt{n}}\Delta_{\infty}^{(\alpha)}(x),$

where $\Omega(x)$ is the limit shape independent on α and

$$\Delta_{\infty}^{(\alpha)}(2\cos(\theta)) = \frac{1}{\pi} \sum_{k=2}^{\infty} \frac{\Xi_k}{\sqrt{k}} \sin(k\theta) - \gamma/4 + \gamma\theta/2\pi.$$

Jack-Plancherel measure

Jack-Plancherel measure $\mathbb{P}(\lambda) = \frac{\alpha'' n!}{H_{\alpha}(\lambda) H_{\alpha}'(\lambda)}$ Simulation for $\alpha = 3$, n = 30. We rescale rows by $\sqrt{\frac{\alpha}{n}}$ and columns by $\frac{1}{\sqrt{\alpha n}}$ and consider the function $\widetilde{\omega_{\lambda}}$ defined by the blue zigzag line. Recent result (Guionnet, Huang): fluctuation of the first row lengths Theorem (Dołęga, F., '16) Let λ be a random Jack-Plancherel distributed Young diagram. Then $\widetilde{\omega_{\lambda}}(x) \approx \Omega(x) + \frac{2}{\sqrt{n}} \Delta_{\infty}^{(\alpha)}(x),$ where $\Omega(x)$ is the limit shape independent on α and $\Delta_{\infty}^{(\alpha)}(2\cos(\theta)) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\Xi_k}{\sqrt{k}} \sin(k\theta) - \gamma/4 + \gamma\theta/2\pi.$

Key point is to prove (idea due to Kerov):

Proposition

$$(\operatorname{Ch}_{(k)}^{(\alpha)})_{k=2,3,\ldots} \xrightarrow{d} (\Xi_k)_{k=2,3,\ldots},$$

where Ξ_k are independent Gaussian variables with appropriate variances.

Key point is to prove (idea due to Kerov):

Proposition

$$(\operatorname{Ch}_{(k)}^{(\alpha)})_{k=2,3,\ldots} \xrightarrow{d} (\Xi_k)_{k=2,3,\ldots},$$

where Ξ_k are independent Gaussian variables with appropriate variances.

for any $k \ge 1$, $\int_{-\infty}^{\infty} x^k \widetilde{\omega_{\lambda}}(x) dx$ is α -shifted symmetric and thus can be expressed as a polynomials in $Ch_{(k)}^{(\alpha)}$. \rightarrow we can describe the fluctuations of $\int_{-\infty}^{\infty} x^k \widetilde{\omega_{\lambda}}(x) dx$ for all k.

Key point is to prove (idea due to Kerov):

Proposition

$$(\mathsf{Ch}_{(k)}^{(\alpha)})_{k=2,3,\ldots} \xrightarrow{d} (\Xi_k)_{k=2,3,\ldots},$$

where Ξ_k are independent Gaussian variables with appropriate variances.

How to prove the proposition? We do that by moment method, i.e. we compute asymptotics of

$$\mathbb{E}\big[\operatorname{Ch}_{(k_1)}^{(\alpha)}\cdots\operatorname{Ch}_{(k_r)}^{(\alpha)}\big].$$

Since $Ch_{\mu}^{(\alpha)}$ has 0 expectation (unless $\mu = (1^k)$), we use multiplication table to express the product as a linear combination of $Ch_{\mu}^{(\alpha)}$.

Key point is to prove (idea due to Kerov):

Proposition

$$(\operatorname{Ch}_{(k)}^{(\alpha)})_{k=2,3,\ldots} \xrightarrow{d} (\Xi_k)_{k=2,3,\ldots},$$

where Ξ_k are independent Gaussian variables with appropriate variances.

How to prove the proposition? We do that by moment method, i.e. we compute asymptotics of

$$\mathbb{E}\big[\operatorname{Ch}_{(k_1)}^{(\alpha)}\cdots\operatorname{Ch}_{(k_r)}^{(\alpha)}\big].$$

Since $Ch_{\mu}^{(\alpha)}$ has 0 expectation (unless $\mu = (1^k)$), we use multiplication table to express the product as a linear combination of $Ch_{\mu}^{(\alpha)}$.

Multiplication table of $Ch^{(\alpha)}_{\mu}$ is little understood but the polynomiality with bound on the degree, together with special values $\alpha = 1/2, 1, 2$ are enough here.

• Vanishing characterization approach extends well to both Jack and Macdonald setting.

- Vanishing characterization approach extends well to both Jack and Macdonald setting.
- We have more conjectures than results, please help!

- Vanishing characterization approach extends well to both Jack and Macdonald setting.
- We have more conjectures than results, please help!
- The multiplication table conjectures contain two important open problems on Jack polynomials; some partial results were useful to study Jack-Plancherel distributed Young diagrams.

- Vanishing characterization approach extends well to both Jack and Macdonald setting.
- We have more conjectures than results, please help!
- The multiplication table conjectures contain two important open problems on Jack polynomials; some partial results were useful to study Jack-Plancherel distributed Young diagrams.
- The multirectangular expansion conjectures suggest new combinatorial formulae related to Jack polynomials;

- Vanishing characterization approach extends well to both Jack and Macdonald setting.
- We have more conjectures than results, please help!
- The multiplication table conjectures contain two important open problems on Jack polynomials; some partial results were useful to study Jack-Plancherel distributed Young diagrams.
- The multirectangular expansion conjectures suggest new combinatorial formulae related to Jack polynomials;
- In most problems, if we could conjecture a combinatorial formula, we have tools to try to prove it (induction relation, vanishing characterization).

V. Féray (I-Math, UZH)

Shifted symmetric functions III