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Introduction

Third lecture

In the first lectures, we have seen
Two bases of the shifted symmetric function ring: s⋆µ and Chµ with
nice vanishing characterizations, multiplication tables and
multirectangular expansions.

Today:
Can we define analogue in the Jack/Macdonald setting?
Do they still have nice vanishing characterizations, multiplication
tables and multirectangular expansions? What is the combinatorics
involved?
Application to random Young diagrams.

(No pre-requisite on Jack/Macdonald symmetric functions.)
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Jack/Macdonald analogues Deformation of our favorite bases

Transition

Shifted Jack/Macdonald polynomials
through vanishing conditions
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Jack/Macdonald analogues Deformation of our favorite bases

α shifted symmetric functions

Definition
A polynomial f (x1, . . . , xN) is α-shifted symmetric if it is symmetric in
x1 − 1

α , x2 − 2
α , . . . , xN − N

α .

Examples: p⋆k(x1, . . . , xN) =
∑N

i=1
(
xi − i

α

)k . �
�

�


α = 1 gives
previous case.

α-shifted symmetric function: sequence fN(x1, . . . , xN) of shifted
symmetric polynomials with

fN+1(x1, . . . , xN , 0) = fN(x1, . . . , xN).

Examples: p⋆k =
∑

i≥1
[
(xi − i

α)
k − (−i

α )k
]
.
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Jack/Macdonald analogues Deformation of our favorite bases

Shifted Jack polynomials

Proposition (Sahi, ’94)

Let µ be a partition. There exists a unique α-shifted symmetric function
P
(α),⋆
µ of degree at most |µ| such that P(α),⋆

µ (λ) = δλ,µα
−|µ|Hα(λ) for

|λ| ≤ |µ|.

Hα(λ): deformation of the hook product.

Note on the proof: looking for P(α),⋆
µ under the form

∑
|ν|≤|µ| cνp

⋆
ν the

conditions P
(α),⋆
µ (λ) = δλ,µHα(λ) defines a square system of linear

equations in indeterminates cν . We need to prove that it is
non-degenerate. . .

Theorem (Knop-Sahi ’96, Okounkov ’98)

1 P
(α),⋆
µ (λ) = 0 if λ ̸⊃ µ (extra-vanishing property);

2 in general, P(α),⋆
µ (λ) counts α-weighted skew SYT.

3 the top degree component of P(α),⋆
µ is the usual Jack polynomial J(α)µ .

P
(α),⋆
µ is called shifted Jack polynomials (because of 3.)

No determinantal formula as for shifted Schur functions!. . .
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Jack/Macdonald analogues Deformation of our favorite bases

Jack deformation of normalized characters (Lassalle ’08)

Set p̃µ = α
|µ|−ℓ(µ)

2 pµ, consider the expansion p̃µ =
∑

|ν|=|µ| θ
ν
µ P

(α)
ν (in

usual symmetric function ring) and define

Ch(α)µ =
∑

|ν|=|µ|

θνµ P
(α),⋆
ν .

Vanishing characterization
(F., Śniady, 2015) Ch(α)µ is the unique
α-shifted sym. function F of degree
at most |µ| such that

1 F (λ) = 0 if |λ| < |µ|;
2 The top-degree component of

F is p̃µ.

Deformation of characters
Note that θλµ is a deformation of the
character χλ

µ. We can prove

Ch(α)µ (λ) = (|λ| ⇂ |µ|)
θλµ

θλ
(1k)

.

(Easy from the SYT interpretation of
P
(α),⋆
ν (λ).)
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Jack/Macdonald analogues Deformation of our favorite bases

t shifted symmetric functions

Definition
A polynomial f (y1, . . . , yN) is t-shifted symmetric if it is symmetric in
y1 t

−1, y2 t
−2, . . . , yN t−N .

Examples: p⋆k(y1, . . . , yN) =
∑N

i=1
(
yi t

−i
)k .�

�
�
�

Set yi = qxi , q = tα → 1
and divide by (q − 1)∗

to recover Jack case.

t-shifted symmetric function: sequence fN(y1, . . . , yN) of shifted symmetric
polynomials with

fN+1(y1, . . . , yN , 1) = fN(y1, . . . , yN).

Examples: p⋆k =
∑

i≥1
[
(yki − 1) t−ki

]
.
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Jack/Macdonald analogues Deformation of our favorite bases

Shifted Macdonald polynomials

Proposition (Sahi ’96, Knop ’97)

Let µ be a partition. There exists a unique t-shifted symmetric function
P
(q,t),⋆
µ of degree at most |µ| such that, for |λ| ≤ |µ|,

P(q,t),⋆
µ (qλ1 , qλ2 , . . . ) = δλ,µH(q,t)(λ).

H(q,t)(λ): deformation of the hook product.

Theorem (Sahi’ 96, Knop ’97, Okounkov ’98)
1 P

(q,t),⋆
µ (λ) = 0 if λ ̸⊃ µ (extra-vanishing property);

2 the top degree component of P(q,t),⋆
µ is the usual Macdonald

polynomial P(q,t)
µ evaluated in y1, y2t

−1, . . . , ynt
−n.

P
(q,t),⋆
µ is called shifted Macdonald polynomial.

Note: no interpretation of P(q,t),⋆
µ (λ) as counting weighted SYTs!
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Jack/Macdonald analogues Deformation of our favorite bases

Macdonald deformation of normalized characters?

Consider the expansion pµ =
∑

|ν|=|µ| θ
ν
µ P

(q,t)
ν (in usual symmetric

function ring) and define

Ch(q,t)µ =
∑

|ν|=|µ|

θνµ P
(q,t),⋆
ν .

Vanishing characterization
Ch(q,t)µ is the unique t-shifted sym.
function F of degree at most |µ| such
that

1 F (λ) = 0 if |λ| < |µ|;
2 The top-degree component of

F is pµ.

Deformation of characters
We cannot relate Ch(q,t)µ (λ) and

θλµ.

In fact, I could not find a normaliza-
tion of θλµ, that is t-shifted symmet-
ric.

⇒ Are the functions Ch(q,t)µ nevertheless interesting? I don’t know. . .
Here, we’ll focus on the Jack case. . .
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Jack/Macdonald analogues Deformation of our favorite bases

Combinatorial formula for P (q,t),⋆
µ and P

(α),⋆
µ

Theorem (Okounkov ’98)

P(q,t),⋆
µ (x1, . . . , xN) =

∑
T

Ψ
(q,t)
T

∏
(i ,j)∈T

t1−T (i ,j)(xT (i ,j) − qj−1t1−i ).

where the sum runs over reversea semi-std Young tableaux T ,
and Ψ

(q,t)
T is the same weight as for usual Macdonald polynomials (rational

function in q and t).
afilling with decreasing columns and weakly decreasing rows

Corollary

P(α),⋆
µ (x1, . . . , xN) =

∑
T

Ψ
(α)
T

∏
□∈T

(xT (□)−cα(□)),

where c(i , j) = α(j − 1)− (i − 1) is the α- content of the box and Ψ
(α)
T a

rational function in α.
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Jack/Macdonald analogues Structure constants

Transition

Multiplications tables
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Jack/Macdonald analogues Structure constants

Multiplication tables

Question
Can we understand the multiplication tables of our favorite bases?

P(α),⋆
µ P(α),⋆

ν =
∑

ρ:|ρ|≤|µ|+|ν|

cρ,(α)µ,ν P(α),⋆
ρ

Ch(α)µ Ch(α)ν =
∑

ρ:|ρ|≤|µ|+|ν|

gρ,(α)
µ,ν Ch(α)ρ

Are c
ρ,(α)
µ,ν and g

ρ,(α)
µ,ν polynomials in α? with nonnegative coefficients? Do

they have a combinatorial interpretation?

Note: when |ρ| = |µ|+ |ν|, then c
ρ,(α)
µ,ν is the Jack analogue of LR

coefficients (multiplication table of usual Jack symmetric functions). When
suitably renormalized, they are conjectured to be polynomials with
nonnegative coefficients in α (Stanley ’89, still open).
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Jack/Macdonald analogues Structure constants

Jack shifted LR coefficients

Conjecture (Alexandersson, F.)

α|µ|+|ν|−|ρ|−2Hα(µ)Hα(ν)H
′
α(ρ)c

ρ,(α)
µ,ν is a polynomial in α with

nonnegative integer coefficients.

It implies Stanley’s conjecture;

A weaker form had been formulated earlier by Sahi, ’11: namely, cρ,(α)µ,ν

is a quotient of two polynomials in α with nonnegative integer
coefficients.

We can prove polynomiality in α with rational coefficients.
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Jack/Macdonald analogues Structure constants

Computing Jack shifted LR coefficients by induction

As in the Schur case, we have:
1 c

ρ,(α)
µ,ν = 0 if ρ ̸⊇ µ or ρ ̸⊇ ν;

2 c
ν,(α)
µ,ν = P

(α),⋆
µ (ν).

3 c
ρ,(α)
µ,ν = 1

|ρ|−|ν|

(∑
ν↖ν+ ψ

′
ν+/νc

ρ,(α)
µ,ν+ −

∑
ρ−↗ρ ψ

′
ρ/ρ−c

ρ−
µ,ν

)
.

(ψ′
ν+/ν is the weight appearing in Pieri’s formula for Jack polynomials)

→ we can prove the weaker conjecture when |ρ| ≤ |ν|+ 1.

Strong version completely open (even for |ρ| = |ν|)
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Jack/Macdonald analogues Structure constants

Multiplication table of deformed characters

Reminder: Ch(α)µ Ch(α)ν =
∑

ρ:|ρ|≤|µ|+|ν| g
ρ,(α)
µ,ν Ch(α)ρ

Conjecture (Śniady, ’16)

g
ρ,(α)
µ,ν is a polynomial with nonnegative integer coefficients in

δ :=
√
α− 1√

α
.

Nonnegativity for α = 1, 2 (Ivanov, Kerov, ’99, Tout, ’14).
Polynomiality with rational coefficients is known (Dołęga, F., ’16).

Implies the matching-Jack conjecture of Goulden and Jackson (’96).
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Jack/Macdonald analogues Multirectangular expansions

Transition

Multirectangular expansions
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Jack/Macdonald analogues Multirectangular expansions

Multirectangular expansion of normalized characters

Conjecture (Lassalle, ’08)

(−1)kα
|µ|−ℓ(µ)

2 Ch(α)µ is a polynomial with nonnegative integer coefficients
in p, −q and α− 1.

Polynomiality with rational coefficients also follows from Dołęga, F. ’16.

Nonnegativity has been proved by Lassalle for rectangular partitions (i.e.
one single p, resp. q).

Question: is there again a nice formula in terms of NG functions??
Such formulas exist for α = 2 (F., Śniady, ’11) and for rectangular
partitions (F. Dołęga, Śniady, ’14).

V. Féray (I-Math, UZH) Shifted symmetric functions III SLC, 2017–09 17 / 24



Jack/Macdonald analogues Multirectangular expansions

Multirectangular expansion of shifted Jack polynomials

Conjecture (Alexandersson, F., ’17)

α|µ|−µ1 H ′
α(µ)P

(α),⋆
µ is a polynomial with nonnegative integer coefficients

in the falling factorial basis

αc (p1 ⇂ a1) . . . (pm ⇂ am)(r1 ⇂ b1) . . . (rm ⇂ bm).

Polynomiality with rational coefficients also follows from Dołęga, F. ’16.

We could prove it for µ = (k), by finding a new combinatorial formula for
this case.
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Jack/Macdonald analogues Multirectangular expansions

A new formula for P (α),⋆
(k)

Theorem (Alexandersson, F., ’17)

For any integer k ≥ 1 and Young diagram λ, one has:

1
k! H

′
α((k))P

(α),⋆
(k) (λ) =

∑
A⊆λ, |A|=k

column-dinstinct

 ∏
R row
of λ

P|R∩A|(α)

 ,

where, for i ≥ 0, we set Pi (α) =
∏i−1

j=0(1 + j α).

Main steps of proof:
1 observe that 1

k!H
′
α(µ)P

(α),⋆
(k) (λ) = const·

[
m(k,1|λ|−k)

]
P
(α)
λ .

2 Knop-Sahi combinatorial formula (’97) gives a combinatorial formula
for the right-hand side.

3 We transform it into the one in the theorem through a nontrivial
bijection.

Question 1: proof through vanishing characterization? (only the shifted
symmetry is hard.)

Question 2: is there such a formula for P(α),⋆
µ (λ) ? (no direct relation with

monomial coefficients anymore.)
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µ (λ) ? (no direct relation with

monomial coefficients anymore.)
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Jack/Macdonald analogues Motivation: random Young diagrams

Transition

A motivation:
global fluctuations of

Jack-Plancherel random diagrams
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Jack/Macdonald analogues Motivation: random Young diagrams

A motivation: random Young diagram

Plancherel measure

P(λ) =
dim(ρλ)2

n!

c⃝Notices of the AMS, Feb. 2011, front cover.
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Jack/Macdonald analogues Motivation: random Young diagrams

A motivation: random Young diagram

Plancherel measure

P(λ) =
dim(ρλ)2

n!

We rescale rows by 1√
n

and columns by 1√
n

and consider the function ω̃λ

defined by the blue zigzag line.

V. Féray (I-Math, UZH) Shifted symmetric functions III SLC, 2017–09 21 / 24



Jack/Macdonald analogues Motivation: random Young diagrams

A motivation: random Young diagram

Plancherel measure

P(λ) =
dim(ρλ)2

n!

1 limit shape (Vershik-Kerov/Logan-Shepp ’77): ω̃λ tends almost surely
towards a deterministic shape Ω;

2 global fluctuations (Kerov-Ivanov-Olshanski ’93-’03):
ω̃λ(x) ≈ Ω(x) + 2√

n
∆∞(x) for some Gaussian process λ;

3 edge fluctuations (Borodin-Okounkov-Olshanski ’00/Johansson ’01):
first few rows fluctuations are similar to first few eigenvalue
fluctuations in GUE random matrices;
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Jack/Macdonald analogues Motivation: random Young diagrams

Jack-Plancherel measure

Jack-Plancherel measure

P(λ) =
αnn!

Hα(λ)H ′
α(λ) Simulation for α = 3, n = 30.

We rescale rows by
√

α
n and columns by 1√

αn
and consider the function ω̃λ

defined by the blue zigzag line.

Theorem (Dołęga, F., ’16, informal version)

Let λ be a random Jack-Plancherel distributed Young diagram. Then
ω̃λ(x) ≈ Ω(x) + 2√

n
∆(α)

∞ (x),

where Ω(x) is the limit shape independent on α and

∆(α)
∞ (2 cos(θ)) =

1
π

∞∑
k=2

Ξk√
k

sin(kθ)− γ/4 + γθ/2π.

�
�

�


Recent result (Guionnet, Huang):
fluctuation of the first row lengths
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Jack/Macdonald analogues Motivation: random Young diagrams

How is it related to multiplication tables?

Key point is to prove (idea due to Kerov):

Proposition

(Ch(α)(k))k=2,3,...
d−→ (Ξk)k=2,3,... ,

where Ξk are independent Gaussian variables with appropriate variances.
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How is it related to multiplication tables?

Key point is to prove (idea due to Kerov):

Proposition

(Ch(α)(k))k=2,3,...
d−→ (Ξk)k=2,3,... ,

where Ξk are independent Gaussian variables with appropriate variances.

for any k ≥ 1,
∫∞
−∞ xk ω̃λ(x)dx is α-shifted symmetric and thus can be

expressed as a polynomials in Ch(α)(k) .
→ we can describe the fluctuations of

∫∞
−∞ xk ω̃λ(x)dx for all k .
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How is it related to multiplication tables?

Key point is to prove (idea due to Kerov):

Proposition

(Ch(α)(k))k=2,3,...
d−→ (Ξk)k=2,3,... ,

where Ξk are independent Gaussian variables with appropriate variances.

How to prove the proposition? We do that by moment method, i.e. we
compute asymptotics of

E
[
Ch(α)(k1)

· · ·Ch(α)(kr )

]
.

Since Ch(α)µ has 0 expectation (unless µ = (1k)), we use multiplication
table to express the product as a linear combination of Ch(α)µ .

Multiplication table of Ch(α)µ is little understood but the polynomiality with
bound on the degree, together with special values α = 1/2, 1, 2 are enough
here.
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Jack/Macdonald analogues Motivation: random Young diagrams

Conclusion

Vanishing characterization approach extends well to both Jack and
Macdonald setting.

We have more conjectures than results, please help!

The multiplication table conjectures contain two important open
problems on Jack polynomials; some partial results were useful to
study Jack-Plancherel distributed Young diagrams.

The multirectangular expansion conjectures suggest new combinatorial
formulae related to Jack polynomials;

In most problems, if we could conjecture a combinatorial formula, we
have tools to try to prove it (induction relation, vanishing
characterization).
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