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Introduction

Second lecture

Yesterday, we have seen
Two nice bases of the shifted symmetric function ring: shifted Schur
functions s?µ and normalized characters Chµ.

Today:
several sets of coordinates of Young diagrams on which we can write
shifted symmetric functions (writing in terms of the λi is not
necessarily the best thing!);
investigate expansions in one of these sets, multirectangular
coordinates.
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Multirectangular expansions

First part

Equivalent descriptions
of the shifted symmetric function ring
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Multirectangular expansions Shifted symmetric functions and generating functions

A generating function point of view (Ivanov, Kerov,
Olshanski, 2003)

With a Young diagram λ, we associate the function

Φ(λ; z) =
∏
i≥1

z + i

z − λi + i
.

Around z =∞,
log
(
Φ(λ; z)

)
=
∑
k≥1

1
k p

?
k(λ) z−k ,

where p?k(λ) =
∑

i≥1
[
(λi − i)N − (−i)N

]
.

Proposition
The shifted symmetric ring Λ? is algebraically generated by the coefficients
of the expansion of Φ(λ; z) at z =∞.
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Multirectangular expansions Shifted symmetric functions and generating functions

Kerov’s interlacing coordinates

x0 y1 x1 y2 x2

Alternative description of Young diagrams

x-coordinates of lower corners
x0 = −4, x1 = 1, x2 = 4

x-coordinates of higher corners
y1 = −2, y2 = 3

Proposition (IKO ’03)
Φ(λ; z − 1)

Φ(λ; z)
=

z
∏m

i=1(z − yi )∏m
i=0(z − xi )

.

As a consequence, Λ? is algebraically generated by the coefficients of the
expansion of the RHS at z =∞ (or of log(RHS)).

Proof: Φ(λ;z−1)
Φ(λ;z) = z

z−λ1
∏

i≥1
z−λi+i

z−λi+1+i . Only factors corresponding to
corners do not cancel out.
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Multirectangular expansions Shifted symmetric functions and generating functions

Contents

b

c

c
c − 1 c + 1

Content c is the x-coordinate of the box
center.

Note that c − 1 (resp c , c + 1, c) are the
x-coordinate of the box left (resp. top,
right, bottom) corners of the box.

Claim:∏
�∈λ

(z − c(�))2

(z − c(�)− 1)(z − c(�) + 1)
=

z
∏m

i=1(z − yi )∏m
i=0(z − xi )

=
Φ(λ; z − 1)

Φ(λ; z)
.

Indeed, in LHS, only factors corresponding to corners of the diagram do
not cancel out. We deduce from this (exercise!)

Proposition

Λ? is the set of symmetric functions in Cλ = (c(�))�∈λ with coefficients
that are polynomials in |λ|.
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Multirectangular expansions Shifted symmetric functions and generating functions

Character on cycles

There is a efficient way to compute Ch(k) using the function Φ.

Proposition (Frobenius, ’00)

Ch(k)(λ) = −1
k

[z−1] (z � k)
Φ(λ; z)

Φ(λ; z − k)
.

Generalized by Rattan and Śniady (’06) to several cycles.
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Multirectangular expansions of normalized characters

Transition

Multirectangular coordinates –
expansion of normalized characters

V. Féray (I-Math, UZH) Shifted symmetric functions II SLC, 2017–09 8 / 23



Multirectangular expansions of normalized characters

Multirectangular coordinates (Stanley, 2003)

We see partitions as obtained by piling up rectangles of size pi × qi .

q1
q2

p1

p2

Connection to Kerov’s interlacing coordinates
x1 = q1, y1 = q1 − p1

x2 = q2 − p1, y2 = q2 − p1 − p2

x3 = −p1 − p2

→ Shifted symmetric functions are polynomials
in multirectangular coordinates.

Why expression in multirectangular coordinates?
Contains expression in parts (by setting pi = 1), but is more
convenient when taking transpose or dilatation of Young diagrams.
It turns out that these expressions have nice positivity/combinatorial
properties!

More symmetric variant: ri = qi − qi+1.
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Multirectangular expansions of normalized characters
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Multirectangular expansions of normalized characters

Embeddings of bipartite graphs

G H

Definition: A bipartite graph embedding G → H

maps edges of G to edges of H respecting incidence
relations: i.e. edges sharing a black (resp. white)
extremity in G are mapped to edges sharing a black
(resp. white) extremity in H.

Notation
NG (H) := #

{
embeddings of G in H

}
ÑG (H) := #

{
injective embeddings of G in H

}

Note: an embedding also maps black (resp. white) vertices of G to black
(resp. white) vertices of H
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Multirectangular expansions of normalized characters

Two families of bipartite graphs associated . . .

with pairs of permutations

(1, 2, 4)

(3, 5)

(1, 4)

(2, 3)

(5)

G(σ, τ)

σ = (1, 2, 4) (3, 5), τ = (1, 4) (2, 3) (5)

Vertices share as many edges as the
size of their intersection.

with partitions

H(λ)

λ = (4, 2, 1)

The i-th white vertex is connected to
the λi first black vertices.

Short notation: Nσ,τ (λ) := NG(σ,τ)

(
H(λ)

)
; Ñσ,τ (λ) := ÑG(σ,τ)

(
H(λ)

)
.

Lemma
Nσ,τ (λ) is a polynomial with nonnegative coefficients in multirectangular
coordinates. It has degree |C (σ)| in p and degree |C (τ)| in q (or r).
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Multirectangular expansions of normalized characters

A formula for normalized characters

Theorem (Stanley, 2006, F., Śniady, 2007)

Let π be a permutation in Sk of type µ

Chµ =
∑
σ,τ
σ τ=π

(−1)τNσ,τ =
∑
σ,τ
σ τ=π

(−1)τ Ñσ,τ .

(−1)τ = sign of τ = (−1)k (−1)|C(τ)|.
Note: second equality is relatively easy (show by sign-reversing involution
that non-injective embeddings do not contribute to the total sum).

Corollary

(−1)k Chµ is a polynomial with nonnegative coefficients in p and −q (and
thus in p and −r).

The formula is also suited for finding upper bounds for characters (F.,
Śniady, 2007).
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Multirectangular expansions of normalized characters

A formula for normalized characters - sketch of proof

Use vanishing characterization: we define

F =
∑
σ,τ
σ τ=π

(−1)τNσ,τ =
∑
σ,τ
σ τ=π

(−1)τ Ñσ,τ

1 The shifted symmetry is hard – more on that later;

2 That F (λ) = 0 if |λ| < |µ| is obvious from the second expression:
indeed all Ñσ,τ (λ) are zero since G (σ, τ) has more edges than G (λ).

3 The component of F of degree |µ| comes from the term σ = π and
τ = id (in the first expression). But in this term is

Nπ,id(λ) = pµ(λ),

so that the top-component of F is pµ as wanted.
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Multirectangular expansions of normalized characters

Connection with maps combinatorics

Reminder: if π has type µ, then Chµ =
∑
σ,τ
σ τ=π

(−1)τNσ,τ .

But the set {σ, τ ; σ τ = π} is in bijection with maps (=graphs
embedded in oriented surfaces) with prescribed face-degree. In other
terms, Chµ is a signed weighted enumeration of maps.

Maps with prescribed face-degree are better understood in the
unicellular case, corresponding to µ = (k). For example, using a
bijection of Chapuy (’11), we get this suprising relation:∑
i≥1
h≥0

pi
(2h + 1)!

∂2h+1

∂p2h+1
i

+
ri

(2h + 1)!

∂2h+1

∂r2h+1
i

Ch(k) = (k + 1)Ch(k) .

Representation-theoretical consequence/interpretation? similar
formulas for several parts?
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Multirectangular expansions of shifted Schur functions

Transition

Multirectangular coordinates –
expansion of shifted Schur functions
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Multirectangular expansions of shifted Schur functions

The falling factorial basis

Reminder: s?µ(λ) = 0 if λ 6⊃ µ.

→ we cannot expect s?µ to expand positively on multirectangular
coordinates since it vanishes on a lot on Young diagrams (i.e. for a lot of
positive specializations of multirectangular coordinates).

We introduce the falling factorial basis of multirectangular coordinates

(p1 � a1) . . . (pm � am)(r1 � b1) . . . (rm � bm).

(Basis of polynomial ring in p and r when a1, . . . , am, b1, . . . , bm runs over
lists of nonnegative integers.)
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Multirectangular expansions of shifted Schur functions

A nonnegative expansion for shifted Schur functions

Theorem (Alexandersson, F., 2017)

s?µ expands positively on the falling factorial basis of multirectangular
coordinates.

Corollary

s?µ(x1, . . . , xn) expands positively on the basis(
(x1 − x2)b1 · · · (x`−1 − x`)b`−1(x`)b`

)
b1,...,b`≥0

.

lifts to the polynomial s?µ the nonnegativity of s?µ(λ), for all partitions λ.
No combinatorial interpretation (although the coefficients of |µ|! s?µ are

integers).
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Multirectangular expansions of shifted Schur functions

Main step of proofs

Using the previous formula for Chµ and the relation s?µ =
∑

ν χ
µ
ν Chν , we

get
s?µ =

1
k!

∑
σ,τ∈Sk

χµ(στ) (−1)τ Nσ,τ .

From there, we can extract the coefficient in FF-basis and reduce their
nonnegativity to the one of

BµS,T =
∑
σ∈SS
τ∈ST

χµ(στ) (−1)τ ,

for set-partitions S and T .

We conclude with representation-theoretic arguments.
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Multirectangular expansions Quasi symmetric functions on Young diagrams

Transition

Quasi-symmetric functions
on Young diagrams
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Multirectangular expansions Quasi symmetric functions on Young diagrams

In which algebra lives NG?

Expressing the shifted symmetric functions Chµ and s?µ in terms of NG

gives nice expression.

But NG is not shifted symmetric!

In the following slides, we study QΛ? := Span(NG ) and connect it with
quasi-symmetric functions.

Definition
A polynomial F is symmetric if
for any exponents a1, . . . , ar , the coefficients of xa1i1 . . . x

ar
ir

is the same for
all repetition-free sequences i1, . . . , ir .

Example: x2
1x2 + x2

1x3 + x2
2x3 + x2

2x1 + x2
3x1 + x2

3x2 + . . .
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Multirectangular expansions Quasi symmetric functions on Young diagrams

In which algebra lives NG?

Expressing the shifted symmetric functions Chµ and s?µ in terms of NG

gives nice expression.

But NG is not shifted symmetric!

In the following slides, we study QΛ? := Span(NG ) and connect it with
quasi-symmetric functions.

Definition
A polynomial F is quasi-symmetric if
for any exponents a1, . . . , ar , the coefficients of xa1i1 . . . x

ar
ir

is the same for
all increasing sequences i1, . . . , ir .

Example: x2
1x2 + x2

1x3 + x2
2x3 + 2x2

2x1 + 2x2
3x1 + 2x2

3x2 + . . .
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Multirectangular expansions Quasi symmetric functions on Young diagrams

Detour: Quasi-symmetric function of an acyclic graph

Take an unlabelled acyclic directed graph Gex = .

Definition
A function f : VG → N is order-preserving if

(i , j) ∈ EG ⇒ f (i) ≤ f (j).

We consider the multivariate generating function in x1, x2, . . .

Γ(G ) =
∑

f :V→N
f order-preserving

∏
v∈V

xf (v) ∈ QSym .

On the example above:

Γ(Gex) =
∑

k1,k2,k3,k4
k1≤k3, k2≤k3, k2≤k4

xk1xk2xk3xk4 .

It is a quasisymmetric function (studied by Stanley, Gessel, . . . ).
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Multirectangular expansions Quasi symmetric functions on Young diagrams

Quasisymmetric functions as functions on Young diagrams

Theorem (Aval, F., Novelli, Thibon, 2015)

There is an isomorphism QSym ' QΛ? = Span(NG ) such that
Sym ⊂ QSym is mapped to Λ? ⊂ QΛ?;
for bipartite graphs G , the function Γ(G ) is mapped to NG .

(Bipartite graphs are seen as acyclic graphs, by orienting edges from white
to black.)

We have an “explicit” construction of the isomorphism using the virtual
alphabet framework.
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Multirectangular expansions Quasi symmetric functions on Young diagrams

Quasisymmetric functions as functions on Young diagrams

Theorem (Aval, F., Novelli, Thibon, 2015)

There is an isomorphism QSym ' QΛ? = Span(NG ) such that
Sym ⊂ QSym is mapped to Λ? ⊂ QΛ?;
for bipartite graphs G , the function Γ(G ) is mapped to NG .

As a consequence, ∑
cGNG

is shifted symmetric
⇔

∑
cGΓ(G )

is symmetric

→ more standard problem in symmetric function literature.
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Multirectangular expansions Quasi symmetric functions on Young diagrams

Conclusion

Seeing shifted symmetric functions as functions on Young diagrams
leads to considering them in terms of various sets of coordinates;

Nice combinatorics when using multirectangular coordinates;

Tomorrow we will discuss Jack (and Macdonald) analogues of Chµ and
s?µ; the extension of the positivity results shown today are only
conjectured!
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