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Objects of interest: meandric systems...

A meandric system is a pair of two non-crossing pair-partitions.

Enumeration is straight-forward : Cat?.
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Objects of interest: meandric systems...

A meandric system is a pair of two non-crossing pair-partitions.

Enumeration is straight-forward : Cat?.

But many questions involving connected components are hard (and
interesting! links with percolation theory, quantum field theory, ...):
Conjecture (Di Francesco—Golinelli-Guitter, '00)

The number of connected meandric systems (a.k.a. meanders) of size n
behaves asymptotically as CA"n™%, with a =(29+ v'145)/12 = 3.42.
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Objects of interest: meandric systems...

A meandric system is a pair of two non-crossing pair-partitions.

Enumeration is straight-forward : Cat?.

But many questions involving connected components are hard (and
interesting! links with percolation theory, quantum field theory, ...):
Conjecture (Borga—Gwynne—Park, '23)

The largest component of a uniform random meandric system has size
nP+or(1) where = 1(3-v2)=0.79.
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Objects of interest: meandric systems...

A meandric system is a pair of two non-crossing pair-partitions.

Enumeration is straight-forward : Cat?.

But many questions involving connected components are hard (and
interesting! links with percolation theory, quantum field theory, ...):
Theorem (F.—Thévenin '23, conjectured by Goulden—Nica—Puder and Kargin '20)

The number of connected components of a uniform random meandric
system is (k + op(1))n, for some constant x = 0.23.
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Objects of interest: meandric systems... and their
patterns

All these questions can be formulated in terms of the random variable

|Ci(Mp)|, i.e. the size of the component of a uniform random element i in
a uniform random meandric system M, of size n.
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Objects of interest: meandric systems... and their
patterns

All these questions can be formulated in terms of the random variable

|Ci(Mp)|, i.e. the size of the component of a uniform random element i in
a uniform random meandric system M, of size n.

Our contribution: define a notion of shape/pattern of the component if 0,
and compute, for a given S,
lim P(Ci(M,)=S5).

n—+oo

Note: The probability P(|C;(M,)]|) is then a finite sum of “shape
probabilities”.
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Definition: patterns in meandric systems

Let M be a meandric system, i an element of M, and set k =|C;(M)|.

The pattern Pat;(M) of i in M is obtained by relabelling the vertices of
Ci(M) with the unique increasing bijection V(C;(M)) —{0,...,2k - 1}.

O Lo
\b? 3 4 /5

Patls(Af)

0

Note: Pat;(M) is a meander.
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Informal statement of the results

Result 1 (F.—Thévenin '23): an expression of limp_.0cP(Ci(M,)=S) as a
mutli-indexed sum of "normalized" Catalan numbers Caty =4~ Caty.

Examples

i PG = S )=5 ¥ Gt .

Rl

nﬂrpoo[FD(C,-(l\/l,,) ~ () ) Y Gaty, Caty, Caty, Cateyre,
[1,[2,[320

()

v
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Informal statement of the results
Result 1 (F.—Thévenin '23): an expression of limp—.oP(Cj(Ms) = S) as a
mutli-indexed sum of "normalized" Catalan numbers Catj =4~ Caty.

Result 2 (Bostan—F.—Thévenin '25): an algorithm computing these sums
(in particular, they are always polynomials in 1/7).

Examples
lim P (Gi(M) = %)=%2@’t§:%—%:0.137 (1)
im P (Ci(Mn) = @ ) = 6_14 '[1122,;320 Caty, Caty, Caty, Caty, 1,
- % - % ~0.038 @)
T
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Informal statement of the results
Result 1 (F.—Thévenin '23): an expression of limp—.oP(Cj(Ms) = S) as a
mutli-indexed sum of "normalized" Catalan numbers Catj =4~ Caty.

Result 2 (Bostan—F.—Thévenin '25): an algorithm computing these sums
(in particular, they are always polynomials in 1/7).

Examples
i 18— 2 1
lim _P(Ci(M) = @)—§£C3t4—5—5~0.137 (1)
1 .
lim [FD(C,-(I\/I,,) = () ): —~. Y Gaty,Caty, Caty, Cateyse,
n—+oo 64 [1,[2,[320
1 2
=-——-—~0.038 2

4 3n ( )J

Next few slides: I'll explain Result 1.

Catalan summations

PP, 2025-07 5/17



The Uniform Infinite Meandric System, or Infinite Noodle (Soup)

Definition (UIMS)

Draw two bi-infinite
sequences of i.i.d. left/right -
arrows and connect them in < #. e m

the unique non-crossing way. | <— ~w 4 —» AN = —w
The resulting configuration N
is called Infinite Noodle, and e
denoted M.
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The Uniform Infinite Meandric System, or Infinite Noodle (Soup)

Definition (UIMS)

Draw two bi-infinite T

sequences of i.i.d. left/right
arrows and connect them in | <. —& e @
the unique non-crossing way. | <— ~w 4 —» A =

The resulting configuration
is called Infinite Noodle, and e
denoted M. )
Proposition (F.—Thévenin, '23)
nETOOP(C,'(Mn)ZS)Z[FD(Co(MOO)z.S). J

Note: whether Co(My) is a.s. finite or not is an open question.
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-
Warmup: S= <

Up to changing the place of 0, a realization of My, with Co(My) =S looks
like this:

any arc system
on 2k points

any arc system
on 2k points

Hence 1 .,
P[Co(Mwo)=S]=2 ) Cat227#~4= = )" Cat,.
k=1 8 k=1
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.
More interesting: S = @

Up to changing the place of 0, a configuration with Co(My) =S looks like
this:

Catz catz

Hence

P[Co(Mw)=S]=4 ) CatyCat,Cat,Caty, 2 24278

x,y,z=0
1

> Y GG, Gat, Gites.

x,y,z=0
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More interesting: S = @

Up to changing the place of 0, a configuration with Co(My) =S looks like

this:

Hence

P[Co(Mw)=S]=4 ) Cat,Cat,Cat,Caty, 2 24278

x,y,z=0
1

> Y GG, Gat, Gites.

X,y,z=20
Let us draw the "dual forest" of S. We observe that there is one

summation index for each edge of the forest, and one Catalan factor for
each vertex.
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N
General S: tree indexed sums of Catalan numbers

Foratree T, weset X(T):= ) ( I1 évatzeavxe)-
(Xe)EZf(T) V€V(T)

Proposition (F.—Thévenin '23)

For any meander S of size k, we have

d
P(Co(Mwo) = S) =271k [T 2(T)),
i=1
where the T;'s are the “dual trees” of the meander.

REY | 4

V. Féray (CNRS, IECL)
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|
Computing 2(T) - main result

For a tree T, we set X(T):=

H GJatZeste)'

(Xe)EZf(T) (v€ V(T)

Theorem (Bostan—F.—Thévenin '25)

For any tree T, the sum X(T) is a polynomial in 1/m of degree at most
\Vrl/2.

Moreover, we provide an algorithm to compute these sums.
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|
Computing 2(T) - examples

2(T)=Xab=0 65:fa E;taer Egib

a
_lg 04
b B 3n
bl \c Z( ) Zz5cata+b+ccata+d
Catb+eCatcCatdCate
d |e

512 1024 4096
=|-108- 22 2, T2
971 2 373

Mathematica (or Maple) can deal with the first example, but not with the second onel!
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2(=—a) and hypergeometric functions

We want to compute Z( == ) =Y, c7, ux, where uy = (Catd™)2.
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|
2(=—a) and hypergeometric functions

We want to compute Z( == ) =Y, c7, ux, where uy = (Catd™)2.

Reminder: one has the recurrence (x +2)Caty4+1 = 2(2x + 1) Caty. Hence
the quotient uy.1/uy is a rational function in x. Such terms are called
hypergeometric. Standard hypergeometric sums are

aTann 7N
sFi(ab;c;z):= Z

T_l
n=0 C n!
where UTn = U(U+ 1)---(u+n—l).

)
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|
2(=—a) and hypergeometric functions

We want to compute Z( == ) =Y, c7, ux, where uy = (Catd™)2.

Reminder: one has the recurrence (x +2)Caty4+1 = 2(2x + 1) Caty. Hence
the quotient uy.1/uy is a rational function in x. Such terms are called

hypergeometric. Standard hypergeometric sums are
aTann 7N
2Fi(ab;c;z) = ,EO—CT” ~

where u!":=u(u+1)---(u+n-1).

)

In fact, we have X(s—a) :4-2F1(—%,—%;1;1)—4.
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|
2(=—a) and hypergeometric functions

We want to compute Z( == ) =Y, c7, ux, where uy = (Catd™)2.

Reminder: one has the recurrence (x +2)Caty4+1 = 2(2x + 1) Caty. Hence
the quotient uy.1/uy is a rational function in x. Such terms are called
hypergeometric. Standard hypergeometric sums are

Tniptn on
al"p'" z
Fi(abicz)i=) ——=—
2 l(a C Z) = CTn n!

where u!":=u(u+1)---(u+n-1).

In fact, we have X(s—a) :4-2F1(—%,—%;1;1)—4.
Lemma (Gauss identity)
If c—a—b>0, we have
I[(c)l(c—a-b)
[(c-a)(c-b)
Thus ,F, (-3, ;,1,1)_- and Z(s—u)=10_4
Catalan summations PP, 2025-07 12 /17




2(=—=—a) and the quadratic recurrence

We want to compute Z( =—=—a) =3, 7, CatxCat, Catys), 1677,
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2(=—=—a) and the quadratic recurrence

We want to compute Z( =—=—a) =3, 7, CatxCat, Catys), 1677,
Rewrite the sum using Z=x+y.

Z( == ) = Z Caty 16_2 Z Caty Caty
420 i’

= Z CatzCatzyg 167%.
Z=0

Looks like Z( =—= ) with a shift of indices.
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2(=—=—a) and the quadratic recurrence

We want to compute Z( =—=—a) =3, 7, CatxCat, Catys), 1677,

Rewrite the sum using Z=x+y.

Z( == ) = Z Caty 16_2 Z Caty Caty

7Z=0 x,y=0
x+y=2

= Z CatzCatzyg 1674
Z=0

Looks like Z( =—= ) with a shift of indices.

Again, this can be related to hypergeometric functions, namely
Z('—'—')=8_8‘2F1( 2’2'2 1)

and Gauss identity allows to compute

64
Py g —— 8— —.
( )=8-+
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2(o—o—): changing variables and manipulating inequalities

We want to compute Z(o—o— ) =Y, ez, Caty Catyyy 4727V,
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|
2(o—o—): changing variables and manipulating inequalities
We want to compute Z(o—o— ) =Y, ez, Caty Catyyy 4727V,

Set z=x+y. S(oo )= Z Cat, Cat, 42,

z=x=0
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|
2(o—o—): changing variables and manipulating inequalities

We want to compute Z(o—o— ) =Y, ez, Caty Catyyy 4727V,

Set z=x+y. S(o—o)= ¥ CateCat, 4.

z=zx20
By symmetry, we also have

Z( o—o— ) = Z Cat, Cat, 472
x=2z=0

and thus

22(o0—o—)= Z Cat,Cat, 47 %+ Z Cat,Cat, 4777

X,ZZO x,z20

X=z

:(ZCatx4—x)2+2(H):4+(§_4): 16

x=0
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-
Overview of the algorithm computing 2(T)

@ We forget about edge variables, and use vertex-indexed variables
constrained by one equality and inequalities.
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-
Overview of the algorithm computing 2(T)

@ We forget about edge variables, and use vertex-indexed variables
constrained by one equality and inequalities.

@ We need to generalize the problem with shifts, more general
inequalities, . ..
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-
Overview of the algorithm computing 2(T)

@ We forget about edge variables, and use vertex-indexed variables
constrained by one equality and inequalities.

@ We need to generalize the problem with shifts, more general
inequalities, . ..

@ The base case uses the linear recurrence of Catalan numbers and
hypergeometric function identity.
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-
Overview of the algorithm computing 2(T)

@ We forget about edge variables, and use vertex-indexed variables
constrained by one equality and inequalities.

@ We need to generalize the problem with shifts, more general
inequalities, . ..

@ The base case uses the linear recurrence of Catalan numbers and
hypergeometric function identity.

@ The induction step uses inequality manipulations and the Catalan
quadratic recurrence.
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-
Overview of the algorithm computing 2(T)

We forget about edge variables, and use vertex-indexed variables
constrained by one equality and inequalities.

@ We need to generalize the problem with shifts, more general
inequalities, . ..

@ The base case uses the linear recurrence of Catalan numbers and
hypergeometric function identity.

@ The induction step uses inequality manipulations and the Catalan
quadratic recurrence.

@ The induction is intricate (see next slide).. ..
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A linear system for long stars

i times j times k times

Lemma

For any “rootstock” R, any decoration A and any d =2, we have

2010 OV SRIVE ) [ X ) (S(RIVE)
1 2 1 . 0
0 . . .0 : = : |- : :
R | 1 A 0
o ... 0 1 2 S(RIVdel,o) Xd-1 S(R| dOO)

where, forl<i<d-1,
Xi= 5(R|VA1d 1- ,2)+25(R|VA1d 1-ig)S(m—m )+ S(RIVE 1d-1-i0)° S(H)JZ
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Thanks for your attention!

_ Y Cat, Cates, Coty ., Cot

S= X,y,Z
_ 304 64 1228.
T T
li My) =S 3 2
Jim_ P(Co(Meo) = S) = 37 Z( a—n—a—a)2( o)
3 3 3
__Z+2 +—~0031428
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