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Tools: yesterday's convergence criterion + analytic combinatorics.
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Separable permutations

Definition 1
The class of separable permutations is Av(3142,2413). J
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Separable permutations

Definition 1
The class of separable permutations is Av(3142,2413). J

Better description: consider the two (associative) operations

[ ] [ ]
21 4l 132 o
@[132,21] = — e — 13254 ©[132,21] = e — 35421

132 ® D
3 S 21 %

Definition 2
The class of separable permutations is the smallest sets of permutations
containing 1 and stable by @ and ©.
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Separable permutations

Definition 1
The class of separable permutations is Av(3142,2413). J

Better description: consider the two (associative) operations

[ ] [ ]
21 4l 132 o

®[132,21] = = [T = 13254 ©[132,21] = - [® = 35421

132 ® D
3 S 21 %

Definition 2
The class of separable permutations is the smallest sets of permutations
containing 1 and stable by @ and ©.

Separable permutations pop up in connection with: sorting algorithms,
bootstrap percolation, polynomial interchanges, ...
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Tree description

Example of a separable permutation (obtained by iterating & and ©
operations:

perm(t, ) = @{@ [9 [1,1,1], 1} 1,01, 1]} - @[@ [321, 1], 1,21]

= ®[3214,1,21] = 3214576.
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Tree description

Example of a separable permutation (obtained by iterating & and ©
operations:

perm(t, ) = @{@ [9 [1,1,1], 1} 1,01, 1]} - @[@ [321, 1], 1,21]

= ®[3214,1,21] = 3214576.

This “construction” of 7 can be encoded in a tree:
1 2 3

o = 3214576

V. Féray (UZH) Patterns and random permutations Il Villa Volpi, 2017-09 4 /23



Tree description

Example of a separable permutation (obtained by iterating & and ©
operations:

perm(t, ) = @{@ [9 [1,1,1], 1} 1,01, 1]} - @[@ [321, 1], 1,21]

= ®[3214,1,21] = 3214576.

This “construction” of 7 can be encoded in a tree:
1 2 3

o = 3214576

A\ This tree is not unique! To get uniqueness, impose alternating signs.
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Patterns and trees

The following diagram commutes:
1@ 3

6 @ perm
=5

\Lsubtree lpattern
1

2 3 pom 123
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Patterns and trees

The following diagram commutes:
1@ 3

6 @ perm
=5

\Lsubtree ipattern
1

2 3 pom 123

Consequence: let 0 = perm(T,S) a permutation. Take k distinct leaves
uniformly at random in T and call (t, &) the corresponding random signed
subtree. Then s

occ(m, o) = P(perm(t,e) = ).
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Convergence of separable permutations

Let (" be a uniform random separable permutation of size n.

Theorem (BBFGP,'16)

U (n tends towards a non-deterministic permuton p, whose pattern
densities occ(m, ) are constructed below.

Fix a pattern 7 of size k. Let (7", S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in 7 and extract the corresponding signed subtree (t,€). Then

oce(m, p) = P[perm(t,e) = n|(T, S)].
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Convergence of separable permutations

Let (" be a uniform random separable permutation of size n.

Theorem (BBFGP,'16)

U (n tends towards a non-deterministic permuton p, whose pattern
densities occ(m, ) are constructed below.

Fix a pattern 7 of size k. Let (7", S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in 7 and extract the corresponding signed subtree (t,€). Then

oce(m, p) = P[perm(t,e) = n|(T, S)].
Intuition: the tree encoding o(") converges to T~ (as many families of

random trees) and the signs of the extracted subtrees are asymptotically
independent.
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Convergence of separable permutations

Let (" be a uniform random separable permutation of size n.

Theorem (BBFGP,'16)

U (n tends towards a non-deterministic permuton p, whose pattern
densities occ(m, ) are constructed below.

Fix a pattern 7 of size k. Let (7", S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in 7 and extract the corresponding signed subtree (t,€). Then

oce(m, p) = P[perm(t,e) = n|(T, S)].

@ p is called the Brownian separable permuton.
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Convergence of separable permutations

Let (" be a uniform random separable permutation of size n.

Theorem (BBFGP,'16)

U (n tends towards a non-deterministic permuton p, whose pattern
densities occ(m, p) are constructed below.

Fix a pattern 7 of size k. Let (7", S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in 7 and extract the corresponding signed subtree (t,€). Then

oce(m, p) = P[perm(t,e) = n|(T, S)].

@ p is called the Brownian separable permuton.

@ One can also construct directly o from (77, S) (Maazoun, '17+)
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Transition

Substitution-closed classes
and universality of
the Brownian separable permuton
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Substitution in permutations

Definition
Let # be a permutation of size d and #(), ..., 7(9) be permutations. The
diagram of the permutation 9[71(1), e 7T(d)] is obtained by replacing the

i-th dot in the diagram of § with the diagram of 7() (for each ).

2] e
2413[132,21,1,12] = @ = E — 24387156
132 .

(1l (o]

— we are interested in substitution-closed permutation classes C.
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Substitution in permutations

Definition

Let @ be a permutation of size d and 7(1) ...

, (@) be permutations. The

diagram of the permutation 9[71(1), e 7T(d)] is obtained by replacing the
i-th dot in the diagram of § with the diagram of 7() (for each ).

2413[132,21,1,12] =

2]
]

132

e

(1l

(@]

o
= 24387156

— we are interested in substitution-closed permutation classes C.

Note: @ (resp. ©) are substitution in increasing (resp. decreasing)
permutations, so separable permutations form a (the simplest)

substitution-closed class.
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Substitution in permutations

Definition

Let @ be a permutation of size d and 7(1) ...

, (@) be permutations. The

diagram of the permutation 9[71(1), e 7T(d)] is obtained by replacing the
i-th dot in the diagram of § with the diagram of 7() (for each ).

2413[132,21,1,12] =

2]
]

132

e

(1l

(@]

o
= 24387156

— we are interested in substitution-closed permutation classes C.

Def: a permutation is simple if it can not be written as substitution of
smaller permutations (~ g—z' permutations of size n).

Then Av(my, -+ ,7) < 71,

, T, are simple.
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Tree representation in substitution closed classes (Albert,
Atkinson, '05)

As separable permutations, permutations in a substitution closed class C
can be represented by “substitution trees’:

[ ]
— EE = 24387156
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Tree representation in substitution closed classes (Albert,
Atkinson, '05)

As separable permutations, permutations in a substitution closed class C
can be represented by “substitution trees’:

[ ]
— EE = 24387156

The tree is unique (and then called canonical tree) if we require:
@ no adjacent @ (resp. ©) nodes;
@ permutations labeling the nodes are simple.

— the set S of simple permutations in C will play a crucial role.
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Subtree-pattern equivalence in substitution-closed classes

Again, we have a commutative diagram

N
= 4123
(312) .
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Universality of the (biased) Brownian separable permuton

Theorem (BBFGMP, '17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function $(z) = Y cs zlol Assume

2

, — —
Rs >0 and S (Rs) > (1 T R5)2 1. (Hl)

Rs: radius of convergence of 5(z).
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Universality of the (biased) Brownian separable permuton

Theorem (BBFGMP, '17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function $(z) = Y cs zlol Assume
2
— -1
(1+Rs)
For every n > 1, let o, be a uniform permutation in C. The sequence

(1t )n tends to the biased Brownian separable permuton u(P) for some
explicit parameter p in [0, 1].

Rs >0 and Sl(Rs) > (Hl)

Biased Brownian separable permuton p(P): occ(mr, u(P)) is as occ(, p),
except that the signs on the branching points of 7 are + with proba p
(independently from each other).
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Universality of the (biased) Brownian separable permuton

Theorem (BBFGMP, '17)
Let C be a substitution-closed class whose set of simple permutations S
has generating function $(z) = Y cs zlol Assume
2
1
(1 + R5)2
For every n > 1, let o, be a uniform permutation in C. The sequence

(1t )n tends to the biased Brownian separable permuton u(P) for some
explicit parameter p in [0, 1].

Rs >0 and Sl(Rs) > (Hl)

@ universality phenomenon: the limit only depends on S through a single
parameter p (in practice, always closed to 1/2).

@ intuition: tree encoding o, tends towards the continuous Brownian
tree.
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Pictures
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Simulation of biased Brownian permutons for
p=.2 and p=.45
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Other limiting behaviours

@ (Reminder) If S'(Rs) > ﬁ — 1, convergence to u(P);
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Other limiting behaviours

@ (Reminder) If S'(Rs) > ﬁ — 1, convergence to u(P);

Q If S'(Rs) < ﬁ — 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.
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Other limiting behaviours

@ (Reminder) If S'(Rs) > ﬁ — 1, convergence to u(P);

Q If S'(Rs) < ﬁ — 1, degenerate case: composite structure
disappears at the limit and a random permutation has the same limit
as a random simple permutation.

@ If S'(Rs) = ﬁ — 1, two subcases:

a. S”(Rs) < oo again, convergence to pu(P);
b. S”(Rs) = oo new nontrivial limits, called “stable permutons”.
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Other limiting behaviours

: 2 .
@ (Reminder) If S’(Rs) > {@7Rs? — L convergence to uP);
Q If S'(Rs) < ﬁ — 1, degenerate case: composite structure
disappears at the limit and a random permutation has the same limit
as a random simple permutation.

@ If S'(Rs) = ﬁ — 1, two subcases:

a. S”(Rs) < oo again, convergence to pu(P);
b. S”(Rs) = oo new nontrivial limits, called “stable permutons”.

Note: we always assume Rs > 0, which exclude only the class of all
permutations.
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Other limiting behaviours

: 2 .
@ (Reminder) If S’(Rs) > {@7Rs? — L convergence to uP);
Q If S'(Rs) < ﬁ — 1, degenerate case: composite structure
disappears at the limit and a random permutation has the same limit
as a random simple permutation.

@ If S'(Rs) = ﬁ — 1, two subcases:

a. S”(Rs) < oo again, convergence to pu(P);
b. S”(Rs) = oo new nontrivial limits, called “stable permutons”.

Intuition: in case 2, the tree encoding o, has one vertex of very large
degree. In case 3b., it tends towards a stable tree.

(Cases 2, 3a and 3b require additional technical hypotheses.)
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Pictures (stable permutons)

0

Simulation of stable permutons of parameter
0=11land 6 =15
(Stable permutons depend deeply on the set
of simples; here we assume that a uniform
large random simple permutation is close to
a uniform random permutation)

We do not know
substitution-closed classes
which fits in case 3b.
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Ideas of proofs

Transition

|deas of proofs
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Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any m,
E[occ(m, o,)] — E[oce(m, v)],

where v is the targeted limit random permuton.
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Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any m,
E[occ(m, o,)] — E[oce(m, v)],

where v is the targeted limit random permuton.

On both side,
oce(r,...) = occ(t,...),
t

where the sum runs over substitution trees of 7.
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Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any t,
E[occ(t,0n)] — E[oce(t,v)],

where v is the targeted limit random permuton.

On both side,
oce(r,...) = occ(t,...),
t

where the sum runs over substitution trees of 7.

— one can replace w by t above.
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Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any t,
E[occ(t,0n)] — E[oce(t,v)],

where v is the targeted limit random permuton.

On both side, - -
occ(m,...) = Z occ(t,
t
where the sum runs over substitution trees of 7.

— one can replace w by t above.

The right-hand side is explicit (from the theory of random trees):
Brownian case o/\c/c(t’ u(p)) e M p#+(t (1 _ )#_(t)'

Caty 1
stable case more complicated formulas (not only binary trees appear).
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Ideas of proofs

How to evaluate E[ occ(t, o)]?

Do combinatorics! Recall that permutation in C are uniquely represented by
canonical trees, then

Nums,t)

E[C;(\Z/C(t,o'n)]: Den. ’

with
Den,, = #{canonical trees}

canonical trees with
Numg,t) =4 k marked leaves
inducing a subtree t
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Ideas of proofs

How to evaluate E[ occ(t, o)]?

Do combinatorics! Recall that permutation in C are uniquely represented by
canonical trees, then

(t)

E[oe(t, 0,)] = "o

with
Den,, = #{canonical trees}

canonical trees with
Numg,t) =4 k marked leaves
inducing a subtree t

To get the asymptotics, we use analytic combinatorics.
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Ideas of proofs

Scratch course in analytic combinatorics

We want to evaluate asymptotically some sequence ¢, of numbers of

combinatorial objects. Consider the generating function C(z) =) cpz,.
Two steps:

@ write equation for the generating series C(z), based on decomposition
of the objects. Example, for binary trees,

n o\

= C(z) =1+ zC(2)*.

@ Study the behaviour of C(z) near the smallest singularity p. Then
getting the asymptotic of ¢, is automatic: e.g.,

C(z)=A(1-2)°(1+o(1 _A
()= A=+ o) = &= T

(Under technical additional assumptions.)
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Ideas of proofs

Combinatorial decomposition of canonical trees with marked
leaves inducing a given t

The white pieces are trees with zero or one marked leaf and some
conditions (to avoid creating adjacent @ by gluing).
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Translating that into equations (1/2)

Equations for the white pieces:

@ One implicit equation

T2 T,
Tnot@ —z4 not® + 5 <1 not® > .

]- - Tnot@ - Tnot@
@ Other series are expressed in terms of this one
T — Tnot@ ,
1 - Tnot@
T+ — 1 .
1-WS(T)—W-S/(T)’
1
T+ — T+.
noto 1 + W !
Toie = (WS (T) + W+ S(T)TLo
where W = (ﬁy -1
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Translating that into equations (2/2)

Equation for Num(®(z) = 3" Num{? z":

Num(t)(z) _ Zk Z Ttype of root H A,
Vs vEInt(t)

Oceq, (T) (T)#(TH)* (T7)* ifveVs,
dy+1 , o
A= ()T (LU T (T ) v g Veand 6, = .
(71 )dVH(T' YW (TE )V (T ifvg Veand 6, =0
l_Tnote noto noto noto S 14
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Ideas of proofs

Second step: singularity analysis

@ Find singularity exponents the singular part of all these series is
cst(l — i)ﬁ(l + o(1)) where 3 is:

Brownian case | stable case | degenerate case
simple permutations analytic 0€(1,2) 0>1
canonical trees 1/2* 1/6 )
trees with one 1
marked leaf —1/2 s 1 0-1
Num()(z) —(e+1)/2 0 S0 —dy)”

e: number of edges of t; d,: number of children of v; x = min(x,0).

*: this 1/2 exponent is classical for series defined through analytic
implicit equations.
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Ideas of proofs

Second step: singularity analysis

© Find singularity exponents the singular part of all these series is
cst(1 — %)5(1 + o(1)) where S is:

Brownian case | stable case | degenerate case

simple permutations analytic 0€(1,2) 0>1
canonical trees 1/2* 1/6 )
trees with one 1
marked leaf —1/2 s 1 0-1
Num()(z) —(e+1)/2 0 S0 —dy)”

e: number of edges of t; d,: number of children of v; x = min(x, 0).

@ Identify which trees t appear in the limit (i.e. minimize the exponent
of Num(?)(z)): binary in the Brownian case, all in the stable case,
stars in the degenerate case;
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Ideas of proofs

Second step: singularity analysis

© Find singularity exponents the singular part of all these series is
cst(1 — %)5(1 + o(1)) where S is:

Brownian case | stable case | degenerate case

simple permutations analytic 0€(1,2) 0>1
canonical trees 1/2* 1/6 )
trees with one 1
marked leaf —1/2 s 1 0-1
Num()(z) —(e+1)/2 0 S0 —dy)”

e: number of edges of t; d,: number of children of v; x = min(x, 0).

@ Identify which trees t appear in the limit (i.e. minimize the exponent
of Num(?)(z)): binary in the Brownian case, all in the stable case,
stars in the degenerate case;

© Compute constants for such trees. ..
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Conclusion
@ Separable permutations and most (all?) natural substitution classes

share the same one-parameter family of limiting Brownian objects:
biased Brownian separable permuton;
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Ideas of proofs

Conclusion

@ Separable permutations and most (all?) natural substitution classes
share the same one-parameter family of limiting Brownian objects:
biased Brownian separable permuton;

@ We identify other limiting regimes, including one related to stable
trees;
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Ideas of proofs

Conclusion

@ Separable permutations and most (all?) natural substitution classes
share the same one-parameter family of limiting Brownian objects:
biased Brownian separable permuton;

@ We identify other limiting regimes, including one related to stable
trees;

© Thanks to yesterday's convergence criterion, the approach is mostly
combinatorial;
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Ideas of proofs

Conclusion

@ Separable permutations and most (all?) natural substitution classes
share the same one-parameter family of limiting Brownian objects:
biased Brownian separable permuton;

@ We identify other limiting regimes, including one related to stable
trees;

© Thanks to yesterday's convergence criterion, the approach is mostly
combinatorial;

@ Perspectives:
o construction and properties (like the Hausdorff diemnsion) of the stable
permuton or its pattern densities;
o study local convergence of separable permutations/permutations in
substitution-closed classes (what do we see around a random point?)
e limits of uniform permutations in other classes/non-uniform model of
random permutations;
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