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Content of this lecture

Study the limit of separable permu-
tations.

Extend the approach to substitution-
closed classes
→ the limit of separable permuta-
tions is in some sense universal.

Tools: yesterday’s convergence criterion + analytic combinatorics.
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Results Separable permutations

Separable permutations

Definition 1
The class of separable permutations is Av(3142, 2413).

Better description: consider the two (associative) operations

⊕[132, 21] =
132

21

= = 13254 	[132, 21] =
132

21
= = 35421

Definition 2
The class of separable permutations is the smallest sets of permutations
containing 1 and stable by ⊕ and ⊖.

Separable permutations pop up in connection with: sorting algorithms,
bootstrap percolation, polynomial interchanges, . . .
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Results Separable permutations

Tree description

Example of a separable permutation (obtained by iterating ⊕ and ⊖
operations:

perm(t, ε) = ⊕
[
⊕

[
⊖ [1, 1, 1], 1

]
, 1,⊖[1, 1]

]
= ⊕

[
⊕ [321, 1], 1, 21

]
= ⊕[3214, 1, 21] = 3214576.

This “construction” of π can be encoded in a tree:
1 2 3

4

+

+

−

−
5

6 7

= 3214576

This tree is not unique! To get uniqueness, impose alternating signs.
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Results Separable permutations

Patterns and trees

The following diagram commutes:
1 2 3

4

+

+

−

−
5

6 7

= 3214576

1

2 3

+

+

123

perm

perm

subtree pattern

Consequence: let σ = perm(T ,S) a permutation. Take k distinct leaves
uniformly at random in T and call (t, ε) the corresponding random signed
subtree. Then

õcc(π, σ) = P(perm(t, ε) = π).
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Results Separable permutations

Convergence of separable permutations

Let σ(n) be a uniform random separable permutation of size n.

Theorem (BBFGP,’16)

µσ(n) tends towards a non-deterministic permuton µ, whose pattern
densities õcc(π,µ) are constructed below.

Fix a pattern π of size k . Let (T ,S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in T and extract the corresponding signed subtree (t, ε). Then

õcc(π,µ) = P
[
perm(t, ε) = π

∣∣(T ,S)
]
.
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densities õcc(π,µ) are constructed below.

Fix a pattern π of size k . Let (T ,S) be the continuous Brownian tree with
i.i.d. balanced signs on its branching points. Take k points uniformly at
random in T and extract the corresponding signed subtree (t, ε). Then

õcc(π,µ) = P
[
perm(t, ε) = π

∣∣(T ,S)
]
.

Intuition: the tree encoding σ(n) converges to T (as many families of
random trees) and the signs of the extracted subtrees are asymptotically
independent.
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µ is called the Brownian separable permuton.

One can also construct directly µ from (T ,S) (Maazoun, ’17+)
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Results Universality classes

Transition

Substitution-closed classes
and universality of

the Brownian separable permuton
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Results Universality classes

Substitution in permutations

Definition

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132 , 21, 1, 12] =

132

12 = = 24387156

21

1

→ we are interested in substitution-closed permutation classes C.
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diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132 , 21, 1, 12] =

132

12 = = 24387156

21

1

→ we are interested in substitution-closed permutation classes C.

Note: ⊕ (resp. ⊖) are substitution in increasing (resp. decreasing)
permutations, so separable permutations form a (the simplest)
substitution-closed class.
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Results Universality classes

Substitution in permutations

Definition

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132 , 21, 1, 12] =

132

12 = = 24387156

21

1

→ we are interested in substitution-closed permutation classes C.

Def: a permutation is simple if it can not be written as substitution of
smaller permutations (∼ n!

e2 permutations of size n).
Then Av(τ1, · · · , τr ) ⇔ τ1, · · · , τr are simple.
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Results Universality classes

Tree representation in substitution closed classes (Albert,
Atkinson, ’05)

As separable permutations, permutations in a substitution closed class C
can be represented by “substitution trees”:

= 24387156

2413

132 - +

The tree is unique (and then called canonical tree) if we require:
no adjacent ⊕ (resp. ⊖) nodes;
permutations labeling the nodes are simple.

→ the set S of simple permutations in C will play a crucial role.
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Results Universality classes

Subtree-pattern equivalence in substitution-closed classes

Again, we have a commutative diagram

= 24387156

2413

132 - +

312

+
= 4123
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Results Universality classes

Universality of the (biased) Brownian separable permuton

Theorem (BBFGMP, ’17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function S(z) =

∑
α∈S z |α|. Assume

RS > 0 and S ′(RS) >
2

(1 + RS)2
− 1. (H1)

For every n ≥ 1, let σn be a uniform permutation in C. The sequence
(µσn)n tends to the biased Brownian separable permuton µ(p) for some
explicit parameter p in [0, 1].

RS : radius of convergence of S(z).
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Theorem (BBFGMP, ’17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function S(z) =

∑
α∈S z |α|. Assume

RS > 0 and S ′(RS) >
2

(1 + RS)2
− 1. (H1)

For every n ≥ 1, let σn be a uniform permutation in C. The sequence
(µσn)n tends to the biased Brownian separable permuton µ(p) for some
explicit parameter p in [0, 1].

Biased Brownian separable permuton µ(p): õcc(π,µ(p)) is as õcc(π,µ),
except that the signs on the branching points of T are + with proba p
(independently from each other).
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Results Universality classes

Universality of the (biased) Brownian separable permuton

Theorem (BBFGMP, ’17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function S(z) =

∑
α∈S z |α|. Assume

RS > 0 and S ′(RS) >
2

(1 + RS)2
− 1. (H1)

For every n ≥ 1, let σn be a uniform permutation in C. The sequence
(µσn)n tends to the biased Brownian separable permuton µ(p) for some
explicit parameter p in [0, 1].

universality phenomenon: the limit only depends on S through a single
parameter p (in practice, always closed to 1/2).
intuition: tree encoding σn tends towards the continuous Brownian
tree.
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Results Universality classes

Pictures

Simulation of biased Brownian permutons for
p=.2 and p=.45

Simulation of a permuta-
tion in the substitution-
closed class with simples
2413, 3142 and 24153.
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Results Universality classes

Other limiting behaviours

1 (Reminder) If S ′(RS) >
2

(1+RS )2
− 1, convergence to µ(p);

2 If S ′(RS) <
2

(1+RS )2
− 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.

3 If S ′(RS) =
2

(1+RS )2
− 1, two subcases:

a. S ′′(RS) < ∞ again, convergence to µ(p);
b. S ′′(RS) = ∞ new nontrivial limits, called “stable permutons”.
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1 (Reminder) If S ′(RS) >
2

(1+RS )2
− 1, convergence to µ(p);

2 If S ′(RS) <
2

(1+RS )2
− 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.

3 If S ′(RS) =
2

(1+RS )2
− 1, two subcases:

a. S ′′(RS) < ∞ again, convergence to µ(p);
b. S ′′(RS) = ∞ new nontrivial limits, called “stable permutons”.

Note: we always assume RS > 0, which exclude only the class of all
permutations.
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Results Universality classes

Other limiting behaviours

1 (Reminder) If S ′(RS) >
2

(1+RS )2
− 1, convergence to µ(p);

2 If S ′(RS) <
2

(1+RS )2
− 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.

3 If S ′(RS) =
2

(1+RS )2
− 1, two subcases:

a. S ′′(RS) < ∞ again, convergence to µ(p);
b. S ′′(RS) = ∞ new nontrivial limits, called “stable permutons”.

Intuition: in case 2, the tree encoding σn has one vertex of very large
degree. In case 3b., it tends towards a stable tree.

(Cases 2, 3a and 3b require additional technical hypotheses.)
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Results Universality classes

Pictures (stable permutons)

Simulation of stable permutons of parameter
δ = 1.1 and δ = 1.5

(Stable permutons depend deeply on the set
of simples; here we assume that a uniform

large random simple permutation is close to
a uniform random permutation)

∅

We do not know
substitution-closed classes

which fits in case 3b.
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Ideas of proofs

Transition

Ideas of proofs
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Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any π,

E
[
õcc(π,σn)

]
→ E

[
õcc(π,ν)

]
,

where ν is the targeted limit random permuton.

On both side,
õcc(π, . . . ) =

∑
t

õcc(t, . . . ),

where the sum runs over substitution trees of π.

→ one can replace π by t above.

The right-hand side is explicit (from the theory of random trees):

Brownian case õcc(t,µ(p)) = 1[t binary]
Catk−1

p#+(t)(1 − p)#−(t);

stable case more complicated formulas (not only binary trees appear).
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Brownian case õcc(t,µ(p)) = 1[t binary]
Catk−1

p#+(t)(1 − p)#−(t);

stable case more complicated formulas (not only binary trees appear).

V. Féray (UZH) Patterns and random permutations II Villa Volpi, 2017–09 16 / 23



Ideas of proofs

Reminder: expectations are enough

Enough to prove that, for any t,

E
[
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Ideas of proofs

How to evaluate E
[
õcc(t,σn)

]
?

Do combinatorics! Recall that permutation in C are uniquely represented by
canonical trees, then

E
[
õcc(t,σn)

]
=

Num(t)
n

Denn
,

with

Denn = #{canonical trees}

Num(t)
n = #


canonical trees with
k marked leaves

inducing a subtree t



To get the asymptotics, we use analytic combinatorics.
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Ideas of proofs

Scratch course in analytic combinatorics

We want to evaluate asymptotically some sequence cn of numbers of
combinatorial objects. Consider the generating function C (z) =

∑
cnzn.

Two steps:

1 write equation for the generating series C (z), based on decomposition
of the objects. Example, for binary trees,

T1 T2

⇒ C (z) = 1 + zC (z)2.

2 Study the behaviour of C (z) near the smallest singularity ρ. Then
getting the asymptotic of cn is automatic: e.g.,

C (z) = A (1 − z
ρ)

β(1 + o(1)) ⇒ cn =
A

ρn
n−(β+1)

Γ(−β)
.

(Under technical additional assumptions.)
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Ideas of proofs

Combinatorial decomposition of canonical trees with marked
leaves inducing a given t

simple
+/S

simple

-/S

2413
+

132

−

t

The white pieces are trees with zero or one marked leaf and some
conditions (to avoid creating adjacent ⊕ by gluing).
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Ideas of proofs

Translating that into equations (1/2)

Equations for the white pieces:
One implicit equation

Tnot⊕ = z +
T 2

not⊕

1 − Tnot⊕
+ S

(
Tnot⊕

1 − Tnot⊕

)
.

Other series are expressed in terms of this one

T =
Tnot⊕

1 − Tnot⊕
;

T+ =
1

1 −WS ′(T )−W − S ′(T )
;

T+
not⊖ =

1
1 +W

T+;

T+
not⊕ = (WS ′(T ) +W + S ′(T ))T+

not⊖

where W = ( 1
1−Tnot⊕

)2 − 1.
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Ideas of proofs

Translating that into equations (2/2)

Equation for Num(t)(z) =
∑

Num(t)
n zn:

Num(t)(z) = zk
∑
Vs

T type of root
∏

v∈Int(t)

Av ,

where

Av =


Occθv (T ) (T ′)d

′
v (T+)d

+
v (T−)d

−
v if v ∈ Vs ,(

1
1−Tnot⊕

)dv+1
(T ′

not⊕)
d ′
v (T+

not⊕)
d+
v (T−

not⊕)
d−
v if v /∈ Vs and θv = ⊕ ,(

1
1−Tnot⊖

)dv+1
(T ′

not⊖)
d ′
v (T+

not⊖)
d+
v (T−

not⊖)
d−
v if v /∈ Vs and θv = ⊖ .
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Ideas of proofs

Second step: singularity analysis

1 Find singularity exponents the singular part of all these series is
cst(1 − z

ρ)
β(1 + o(1)) where β is:

Brownian case stable case degenerate case
simple permutations analytic δ ∈ (1, 2) δ > 1

canonical trees 1/2∗ 1/δ δ

trees with one
marked leaf

−1/2 1
δ − 1 δ − 1

Num(t)(z) −(e + 1)/2 0
∑

v (δ − dv )
−

e: number of edges of t; dv : number of children of v ; x = min(x , 0).

∗: this 1/2 exponent is classical for series defined through analytic
implicit equations.
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Num(t)(z) −(e + 1)/2 0
∑

v (δ − dv )
−

e: number of edges of t; dv : number of children of v ; x = min(x , 0).

2 Identify which trees t appear in the limit (i.e. minimize the exponent
of Num(t)(z)): binary in the Brownian case, all in the stable case,
stars in the degenerate case;

3 Compute constants for such trees. . .
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Ideas of proofs

Conclusion

1 Separable permutations and most (all?) natural substitution classes
share the same one-parameter family of limiting Brownian objects:
biased Brownian separable permuton;

2 We identify other limiting regimes, including one related to stable
trees;

3 Thanks to yesterday’s convergence criterion, the approach is mostly
combinatorial;

4 Perspectives:
construction and properties (like the Hausdorff diemnsion) of the stable
permuton or its pattern densities;
study local convergence of separable permutations/permutations in
substitution-closed classes (what do we see around a random point?)
limits of uniform permutations in other classes/non-uniform model of
random permutations;
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