Patterns and random permutations I

Valentin Féray (joint work with F. Bassino, M. Bouvel, L. Gerin, M. Maazoun and A. Pierrot)

Institut für Mathematik, Universität Zürich

Summer school in Villa Volpi, Lago Maggiore, Aug. 31st - Sep 7th, 2017

The last two lectures focus of random permutations:

- Classical questions: look at some statistics, like the number of cycles (of given length), longest increasing subsequences, ... (usually for uniform or Ewens distributions)
- a more recent approach: look for a limit theorem for the permutation itself (interesting for non-uniform models or constrained permutations).

The last two lectures focus of random permutations:

- Classical questions: look at some statistics, like the number of cycles (of given length), longest increasing subsequences, ... (usually for uniform or Ewens distributions)
- a more recent approach: look for a limit theorem for the permutation itself (interesting for non-uniform models or constrained permutations).

Today: present the theory of permutons and illustrate it with some results in the literature.

The theory of permutons (Hoppen, Kohayakawa, Moreira, Rath, Sampaio)

V. Féray (UZH)

Patterns and random permutations I

Villa Volpi, 2017–09 3 / 23

How to look at large permutations?

A permutation π can be encoded as a probability measure μ_{π} on $[0, 1]^2$.

$$\pi=53421$$
 \mapsto $\mu_{\pi}=$

Each square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence. This defines a nice compact Polish space.

How to look at large permutations?

A permutation π can be encoded as a probability measure μ_{π} on $[0, 1]^2$.

$$\pi=53421$$
 \mapsto $\mu_{\pi}=$

Each square has weight 1/n (i.e. density n).

Note that μ_{π} is a coupling of two uniform measures (in other words, has uniform marginals).

 \rightarrow potential limits also have uniform marginals.

How to look at large permutations?

A permutation π can be encoded as a probability measure μ_{π} on $[0, 1]^2$.

$$\pi=53421$$
 \mapsto $\mu_{\pi}=$

Each square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on $[0,1]^2$ with uniform marginals.

Next few slides: connection with permutation patterns.

Permutation patterns

Definition

An occurrence of a pattern τ in σ is a subsequence $\sigma_{i_1} \dots \sigma_{i_k}$ that is order-isomorphic to τ , *i.e.* $\sigma_{i_s} < \sigma_{i_t} \Leftrightarrow \tau_s < \tau_t$.

Example (occurrences of 213)

245361 82346175

2 3

5

Permutation patterns

Definition

An occurrence of a pattern τ in σ is a subsequence $\sigma_{i_1} \dots \sigma_{i_k}$ that is order-isomorphic to τ , *i.e.* $\sigma_{i_s} < \sigma_{i_t} \Leftrightarrow \tau_s < \tau_t$.

- Families of permutations avoiding given patterns (called permutation classes) appear in various domains: sorting algorithms, enumerative geometry, genomics.
- They are widely studied from an enumerative, algorithmic and more recently probabilistic point of view.
- Here we are more interested in numbers of occurrences of τ in σ .

Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

$$\widetilde{\operatorname{occ}}(\tau,\sigma) := {\binom{n}{k}}^{-1} \cdot \# \left\{ \begin{array}{c} \operatorname{occurrences of} \\ \tau \operatorname{ in } \sigma \end{array} \right\} \in [0,1].$$

In other terms: take k elements uniformly at random in σ , the probability to find a pattern τ is $\widetilde{\operatorname{occ}}(\tau, \sigma)$.

Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

$$\widetilde{\operatorname{occ}}(\tau,\sigma) := {\binom{n}{k}}^{-1} \cdot \# \left\{ \begin{array}{c} \operatorname{occurrences of} \\ \tau \operatorname{ in } \sigma \end{array} \right\} \in [0,1].$$

In other terms: take k elements uniformly at random in σ , the probability to find a pattern τ is $\widetilde{\operatorname{occ}}(\tau, \sigma)$.

This probabilistic interpretation extends to permutons: replacing σ with a permuton μ

$$\widetilde{\operatorname{occ}}(\tau,\mu) := \mathbb{P}^{\mu}(U_1,\cdots,U_k \text{ form a pattern } \tau),$$

where U_1, \dots, U_k are i.i.d. points with distribution μ .

An approximation lemma

Reminder:

$$\widetilde{\operatorname{occ}}(\tau, \sigma) := {\binom{n}{k}}^{-1} \cdot \# \left\{ \begin{array}{c} \operatorname{occurrences of} \\ \tau \text{ in } \sigma \end{array} \right\} \in [0, 1].$$
$$\widetilde{\operatorname{occ}}(\tau, \mu) := \mathbb{P}^{\mu}(U_1, \cdots, U_k \text{ form a pattern } \tau),$$
$$\bigwedge \text{ In general, } \widetilde{\operatorname{occ}}(\tau, \sigma) \neq \widetilde{\operatorname{occ}}(\tau, \mu_{\sigma}).$$

An approximation lemma

Reminder:

But we have the following approximation lemma:

Lemma

If π and σ are permutations of size k and n, resp., then

$$|\operatorname{\widetilde{occ}}(\pi,\sigma) - \operatorname{\widetilde{occ}}(\pi,\mu_{\sigma})| \leq rac{1}{n} \binom{k}{2}.$$

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013) Weak convergence of permutons is equivalent to the pointwise convergence of $\widetilde{occ}(\tau, \cdot)$ for all τ , i.e.

$$\mu^{(n)} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$$

As a consequence, for a sequence of permutation $\sigma^{(n)}$ of size tending to infinity,

$$\mu_{\sigma^{(n)}} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \sigma^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$$

(In terms of permutations, $\widetilde{occ}(\tau, \sigma^{(n)})$ is much more concrete!)

Proof that
$$\mu^{(n)} \to \mu \implies \forall \tau, \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu)$$

$$\widetilde{\operatorname{occ}}(\tau,\mu) := \mathbb{P}^{\mu}(U_1, \cdots, U_k \text{ form a pattern } \tau)$$
$$= \int_{([0,1]^2)^k} \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau] d\mu^{\otimes k}(u_1, \cdots, u_k)$$

Proof that
$$\mu^{(n)} \to \mu \implies \forall \tau, \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu)$$

$$\widetilde{\operatorname{occ}}(\tau,\mu) := \mathbb{P}^{\mu}(U_1, \cdots, U_k \text{ form a pattern } \tau)$$
$$= \int_{([0,1]^2)^k} \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau] d\mu^{\otimes k}(u_1, \cdots, u_k)$$

If $\mu^{(n)} \to \mu$, then $(\mu^{(n)})^{\otimes k} \to \mu^{\otimes k}$ and the statement would be immediate if $(u_1, \cdots, u_k) \mapsto \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau]$ was continuous.

Proof that
$$\mu^{(n)} \to \mu \implies \forall \tau, \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu)$$

$$\widetilde{\operatorname{occ}}(\tau,\mu) := \mathbb{P}^{\mu}(U_1, \cdots, U_k \text{ form a pattern } \tau)$$
$$= \int_{([0,1]^2)^k} \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau] d\mu^{\otimes k}(u_1, \cdots, u_k)$$

If $\mu^{(n)} \to \mu$, then $(\mu^{(n)})^{\otimes k} \to \mu^{\otimes k}$ and the statement would be immediate if $(u_1, \cdots, u_k) \mapsto \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau]$ was continuous.

Its discontinuity set of $(u_1, \dots, u_k) \mapsto \mathbf{1}[u_1, \dots, u_k \text{ form a pattern } \tau]$ corresponds to *k*-uples where (at least) two u_i have one of their coordinates equal.

Proof that
$$\mu^{(n)} \to \mu \implies \forall \tau, \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu)$$

$$\begin{split} \widetilde{\operatorname{occ}}(\tau,\mu) &:= \mathbb{P}^{\mu}(U_1,\cdots,U_k \text{ form a pattern } \tau) \\ &= \int_{([0,1]^2)^k} \mathbf{1} \big[u_1,\cdots,u_k \text{ form a pattern } \tau \big] d\mu^{\otimes k}(u_1,\cdots,u_k) \end{split}$$

If $\mu^{(n)} \to \mu$, then $(\mu^{(n)})^{\otimes k} \to \mu^{\otimes k}$ and the statement would be immediate if $(u_1, \cdots, u_k) \mapsto \mathbf{1}[u_1, \cdots, u_k \text{ form a pattern } \tau]$ was continuous.

Its discontinuity set of $(u_1, \dots, u_k) \mapsto \mathbf{1}[u_1, \dots, u_k \text{ form a pattern } \tau]$ corresponds to *k*-uples where (at least) two u_i have one of their coordinates equal.

But since μ has uniform marginals, this set has $\mu^{\otimes k}$ measure 0. This ends the proof.

Claim: for any p, q there exists constants $c_{p,q}^{\tau}$ such that for all permutons $\mu,$ $\int_{[0,1]^2} x^p y^q d\mu(x,y) = \sum_{\tau} c_{p,q}^{\tau} \operatorname{occ}(\tau,\mu).$

Claim: for any p, q there exists constants $c_{p,q}^{\tau}$ such that for all permutons μ ,

$$\int_{[0,1]^2} x^p y^q \, d\mu(x,y) = \sum_{\tau} c_{p,q}^{\tau} \, \widetilde{\operatorname{occ}}(\tau,\mu).$$

If the claim holds, then convergence of all $\widetilde{\operatorname{occ}}(\tau, \cdot)$ implies moment convergence, which in turn implies convergence in distribution.

So we only have to prove the claim.

Claim: for any p, q there exists constants $c_{p,q}^{\tau}$ such that for all permutons μ ,

$$\int_{[0,1]^2} x^p y^q \, d\mu(x,y) = \sum_{\tau} c_{p,q}^{\tau} \, \widetilde{\operatorname{occ}}(\tau,\mu).$$

Consider $U, V_1, \ldots, V_p, W_1, \ldots, W_q$ i.i.d points with distribution μ and the probability $\mathbb{P}[\forall i, x(V_i) \leq x(U) \land y(W_i) \leq y(U)]$.

Claim: for any p, q there exists constants $c_{p,q}^{\tau}$ such that for all permutons μ ,

$$\int_{[0,1]^2} x^p y^q d\mu(x,y) = \sum_{\tau} c^{\tau}_{p,q} \ \widetilde{\operatorname{occ}}(\tau,\mu).$$

Consider $U, V_1, \ldots, V_p, W_1, \ldots, W_q$ i.i.d points with distribution μ and the probability $\mathbb{P}[\forall i, x(V_i) \leq x(U) \land y(W_i) \leq y(U)]$.

On the one hand, conditioning on U = (x, y), we get

$$\begin{split} \mathbb{P}\big[\forall i, \ x(V_i) \leq x(U) \land y(W_i) \leq y(U)\big] \\ &= \int_{[0,1]^2} \mathbb{P}\big[\forall i, \ x(V_i) \leq x \land y(W_i) \leq y|U\big] d\mu(x,y) \\ &= \int_{[0,1]^2} x^p y^q \, d\mu(x,y). \end{split}$$

Claim: for any p, q there exists constants $c_{p,q}^{\tau}$ such that for all permutons μ ,

$$\int_{[0,1]^2} x^p y^q d\mu(x,y) = \sum_{\tau} c^{\tau}_{p,q} \ \widetilde{\operatorname{occ}}(\tau,\mu).$$

Consider $U, V_1, \ldots, V_p, W_1, \ldots, W_q$ i.i.d points with distribution μ and the probability $\mathbb{P}[\forall i, x(V_i) \leq x(U) \land y(W_i) \leq y(U)]$.

On the other hand, the event $\{\forall i, x(V_i) \leq x(U) \land y(W_i) \leq y(U)\}$ can be written as a huge case disjonction, specifying all the order relations between x-coordinates and y-coordinates respectively (i.e. specifying the pattern formed by $U, V_1, \ldots, V_p, W_1, \ldots, W_q$).

Therefore $\mathbb{P}[\forall i, x(V_i) \leq x(U) \land y(W_i) \leq y(U)]$ is a linear combination of $\widetilde{occ}(\tau, \mu)$.

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013) Weak convergence of permutons is equivalent to the pointwise convergence of $\widetilde{\operatorname{occ}}(\tau, \cdot)$ for all τ , i.e.

 $\mu^{(n)} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013) Weak convergence of permutons is equivalent to the pointwise convergence of $\widetilde{\operatorname{occ}}(\tau, \cdot)$ for all τ , i.e.

$$\mu^{(n)} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$$

Corollary

Let $\sigma^{(n)}$ be a sequence of permutation such that $\widetilde{\operatorname{occ}}(\tau, \sigma^{(n)})$ converges for all τ . Then there exists a permuton μ such that $\sigma^{(n)} \to \mu$.

Exercise: prove the corollary (hint: use compactness).

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013) Weak convergence of permutons is equivalent to the pointwise convergence of $\widetilde{\operatorname{occ}}(\tau, \cdot)$ for all τ , i.e.

$$\mu^{(n)} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$$

Corollary

Let $\sigma^{(n)}$ be a sequence of permutation such that $\widetilde{occ}(\tau, \sigma^{(n)})$ converges for all τ . Then there exists a permuton μ such that $\sigma^{(n)} \rightarrow \mu$.

Q: is every permuton μ the limit of some sequence of permutation?

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013) Weak convergence of permutons is equivalent to the pointwise convergence of $\widetilde{\operatorname{occ}}(\tau, \cdot)$ for all τ , i.e.

$$\mu^{(n)} \to \mu \iff \text{for all } \tau, \ \widetilde{\operatorname{occ}}(\tau, \mu^{(n)}) \to \widetilde{\operatorname{occ}}(\tau, \mu).$$

Corollary

Let $\sigma^{(n)}$ be a sequence of permutation such that $\widetilde{occ}(\tau, \sigma^{(n)})$ converges for all τ . Then there exists a permuton μ such that $\sigma^{(n)} \rightarrow \mu$.

Q: is every permuton μ the limit of some sequence of permutation? YES, we will see a random construction in the next slide.

Fix a permuton μ .

We define a random permutation σ_n of size *n* as the pattern formed by *n* i.i.d random points U_1, \dots, U_n with distribution μ .

Example: if μ is the uniform measure on $[0, 1]^2$, then σ_n is a uniform random permutation of size n.

Fix a permuton μ .

We define a random permutation σ_n of size *n* as the pattern formed by *n* i.i.d random points U_1, \dots, U_n with distribution μ .

For a fixed τ ,

$$\widetilde{\operatorname{occ}}(\tau, \sigma_n) = {\binom{n}{k}}^{-1} \sum_{i_1 < \ldots < i_k} \mathbf{1} [U_{i_1}, \ldots, U_{i_k} \text{ form a pattern } \tau].$$

It is a (normalized) sum of variables with a sparse dependency graphs.

Fix a permuton μ .

We define a random permutation σ_n of size *n* as the pattern formed by *n* i.i.d random points U_1, \dots, U_n with distribution μ .

For a fixed τ ,

$$\widetilde{\operatorname{occ}}(\tau, \sigma_n) = {\binom{n}{k}}^{-1} \sum_{i_1 < \ldots < i_k} \mathbf{1} [U_{i_1}, \ldots, U_{i_k} \text{ form a pattern } \tau].$$

It is a (normalized) sum of variables with a sparse dependency graphs.

 \Rightarrow Easy to prove that it converges almost surely to $\widetilde{\operatorname{occ}}(\tau,\mu)$ (we have uniform bounds on cumulants, ...).

Fix a permuton μ .

We define a random permutation σ_n of size *n* as the pattern formed by *n* i.i.d random points U_1, \dots, U_n with distribution μ .

For a fixed τ ,

$$\widetilde{\operatorname{occ}}(\tau, \sigma_n) = {\binom{n}{k}}^{-1} \sum_{i_1 < \ldots < i_k} \mathbf{1} [U_{i_1}, \ldots, U_{i_k} \text{ form a pattern } \tau].$$

It is a (normalized) sum of variables with a sparse dependency graphs.

 \Rightarrow Easy to prove that it converges almost surely to $\widetilde{\operatorname{occ}}(\tau,\mu)$ (we have uniform bounds on cumulants, ...).

Thus σ_n converges almost surely to μ , which proves the existence of sequences of permutations converging to μ .

- Weak convergence of permutons is equivalent to convergence of pattern densities;
- If the pattern densities of a sequence of permutation converge, then there exists a limit permuton.
- 3 All permutons are limits of some permutation sequence.

 \rightarrow the space of permutons is the natural space of limiting objects for the pattern density convergence.

- Weak convergence of permutons is equivalent to convergence of pattern densities;
- If the pattern densities of a sequence of permutation converge, then there exists a limit permuton.
- In All permutons are limits of some permutation sequence.

 \rightarrow the space of permutons is the natural space of limiting objects for the pattern density convergence.

2 is very useful: we do not need to construct the limiting permuton, we know it exists. Is there an analogue for random permutations?

Permuton convergence of random permutations

Theorem (BBFGMP, 2017+)

Let σ_n be a random permutation of size n. The following assertions are equivalent.

- (a) μ_{σ_n} converges in distribution for the weak topology to some random permuton μ .
- (b) The random infinite vector $(\widetilde{occ}(\pi, \sigma_n))_{\pi \in \mathfrak{S}}$ converges in distribution in the product topology to some random infinite vector $(\Lambda_{\pi})_{\pi \in \mathfrak{S}}$.
- (c) For every π in \mathfrak{S} , there is a $\Delta_{\pi} \geq 0$ such that

$$\mathbb{E}[\widetilde{\operatorname{occ}}(\pi, \sigma_n)] \xrightarrow{n \to \infty} \Delta_{\pi}.$$

Note: (a) \Leftrightarrow (b) expected (random version of the previous result), (b) \Leftrightarrow (c) might be more surprising (cv in expectation is enough!).

Why are expectations enough?

Claim: Fix τ_1, \ldots, τ_k . There exist constants c_ρ such that, for all permutons μ ,

$$\prod_{i=1}^{n} \widetilde{\operatorname{occ}}(\tau_{i}, \mu) = \sum_{\rho} c_{\rho} \widetilde{\operatorname{occ}}(\rho, \mu).$$

Claim: Fix τ_1, \ldots, τ_k . There exist constants c_ρ such that, for all permutons μ ,

$$\prod_{i=1}^{n} \widetilde{\operatorname{occ}}(\tau_{i}, \mu) = \sum_{\rho} c_{\rho} \widetilde{\operatorname{occ}}(\rho, \mu).$$

Proof of the claim: take i.i.d. random points U_1, \ldots, U_K with distribution μ . On the left, we have the probability that the first k_1 forms a pattern τ_1 , the next k_2 forms a pattern k_2, \ldots

Claim: Fix τ_1, \ldots, τ_k . There exist constants c_ρ such that, for all permutons μ ,

$$\prod_{i=1}^{n} \widetilde{\operatorname{occ}}(\tau_{i}, \mu) = \sum_{\rho} c_{\rho} \widetilde{\operatorname{occ}}(\rho, \mu).$$

Proof of the claim: take i.i.d. random points U_1, \ldots, U_K with distribution μ . On the left, we have the probability that the first k_1 forms a pattern τ_1 , the next k_2 forms a pattern k_2, \ldots

Taking a huge case disjonction depending on the pattern formed by all these points, this is a linear combination of $\widetilde{\text{occ}}(\rho, \mu)$.

15 / 23

Why are expectations enough?

Claim: Fix τ_1, \ldots, τ_k . There exist constants c_ρ such that, for all permutons μ ,

$$\prod_{i=1}^{n} \widetilde{\operatorname{occ}}(\tau_{i}, \mu) = \sum_{\rho} c_{\rho} \widetilde{\operatorname{occ}}(\rho, \mu).$$

Consequence of the claim: if μ is a random permuton, joint moments of the $\widetilde{\operatorname{occ}}(\tau_i, \mu)$ are linear combinations of expectations.

Claim: Fix τ_1, \ldots, τ_k . There exist constants c_ρ such that, for all permutons μ ,

$$\prod_{i=1}^{n} \widetilde{\operatorname{occ}}(\tau_{i}, \mu) = \sum_{\rho} c_{\rho} \widetilde{\operatorname{occ}}(\rho, \mu).$$

Consequence of the claim: if μ is a random permuton, joint moments of the $\widetilde{\operatorname{occ}}(\tau_i, \mu)$ are linear combinations of expectations.

If the expectations converge, then the joint moments converge and we have (multi-variate) convergence in distribution.

Permutons are inspired from recent developments in random graph theory

Permutations Pattern densities Graphs Subgraph densities

Permutons are inspired from recent developments in random graph theory

 $\begin{array}{c} \mbox{Permutations}\\ \mbox{Pattern densities}\\ \mbox{Measure on } [0,1]^2 \end{array}$

 $\begin{array}{l} \mbox{Graphs}\\ \mbox{Subgraph densities}\\ \mbox{Functions } [0,1]^2 \rightarrow [0,1] \end{array}$

(value 1 on gray rectangles)

Permutons are inspired from recent developments in random graph theory

 $\begin{array}{c} \mbox{Permutations}\\ \mbox{Pattern densities}\\ \mbox{Measure on } [0,1]^2 \end{array}$

Graphs Subgraph densities Functions $[0,1]^2 \rightarrow [0,1]$ up to composition with a Lebesgue-preserving isomorphism

(value 1 on gray rectangles)

Permutons are inspired from recent developments in random graph theory

Permutations Graphs Pattern densities Subgraph densities Measure on $[0, 1]^2$ Functions $[0,1]^2 \rightarrow [0,1]$ up to composition with a Lebesgue-preserving isomorphism \mapsto

(value 1 on gray rectangles)

- cv of subgraph densities \Leftrightarrow cv of graphon
- space of graphons is compact.

V. Féray (UZH)

Some results/conjecture in the permuton framework

Limiting permuton for Mallows permutation (Starr, '09)

Mallows model on S_n : $\mathbb{P}(\sigma) \propto q^{inv(\sigma)}$.

Theorem (Starr, '09)

Let $\sigma^{(n)}$ be a random permutation taken with the Mallows measure of parameter $q_n = 1 - \beta/n$. Then $\mu_{\sigma^{(n)}}$ converge to the deterministic permuton with density

$$u(x,y) = \frac{(\beta/2)\sinh(\beta/2)}{\left(e^{\beta/4}\cosh(\beta[x-y]/2) - e^{-\beta/4}\cosh(\beta[x+y-1]/2)\right)^2}$$

A large deviation principle (Kenyon, Král, Radin, Winkler, '15)

Definition (entropy of a permuton μ with density g)

$$H(\mu) = \int_{[0,1]^2} -g(x,y) \log g(x,y) dx dy.$$

If μ has no density, $H(\mu) := \infty$.

Theorem (Trashorras, '08, KKRW, '15)

Let Λ be a set of permutons, Λ_n the set of permutations $\pi \in S_n$ with $\mu_{\pi} \in \Lambda$. Then:

- If Λ is closed, $\limsup_{n\to\infty} \frac{1}{n} \log \frac{|\Lambda_n|}{n!} \leq \sup_{\mu\in\Lambda} H(\mu)$;
- $If \Lambda \text{ is open, } \liminf_{n\to\infty} \frac{1}{n} \log \frac{|\Lambda_n|}{n!} \ge \sup_{\mu\in\Lambda} H(\mu).$

19 / 23

A large deviation principle (Kenyon, Král, Radin, Winkler, '15)

Definition (entropy of a permuton μ with density g)

$$H(\mu) = \int_{[0,1]^2} -g(x,y) \log g(x,y) dx dy.$$

If μ has no density, $H(\mu) := \infty$.

Theorem (Trashorras, '08, KKRW, '15)

Let Λ be a set of permutons, Λ_n the set of permutations $\pi \in S_n$ with $\mu_{\pi} \in \Lambda$. Then:

- If Λ is closed, $\limsup_{n\to\infty} \frac{1}{n} \log \frac{|\Lambda_n|}{n!} \leq \sup_{\mu\in\Lambda} H(\mu)$;
- $If \Lambda \text{ is open, } \liminf_{n\to\infty} \frac{1}{n} \log \frac{|\Lambda_n|}{n!} \ge \sup_{\mu\in\Lambda} H(\mu).$

Q: which permutons maximize the entropy under some constraints? (such as fixing some pattern densities)

A nice picture (Kenyon, Král, Radin, Winkler, '15)

x-axis: $\widetilde{occ}(12, \mu)$ y-axis: $\widetilde{occ}(123, \mu)$

blue zone: zone where there exists a permuton μ with such pattern densities.

Displayed permutons are entropy maximizers for fixed 12 and 123 densities.

©KKRW, '15

Random minimal factorizations (Angel, Holroyd, Romik, Virag, '06)

Consider a uniform random minimal factorization of $\omega_0 := n \text{ n-1} \dots 2 \text{ 1}$ into transposition: $\omega_0 = \tau_1 \dots \tau_N$ (where $N = \binom{n}{2}$). Q: what do partial porducts $\tau_1 \dots \tau_{|cN|}$ look like?

Random minimal factorizations (Angel, Holroyd, Romik, Virag, '06)

Consider a uniform random minimal factorization of $\omega_0 := n \text{ n-1} \dots 2 \text{ 1}$ into transposition: $\omega_0 = \tau_1 \dots \tau_N$ (where $N = \binom{n}{2}$). Q: what do partial porducts $\tau_1 \dots \tau_{|cN|}$ look like?

Pictures (\bigcirc AHRV) (n = 500, c = 0, .1, .2, ..., .9, 1):

There is a conjectural formula for the limiting process in the space of permutons.

V. Féray (UZH)

Patterns and random permutations I

Uniform random permutations in classes

Reminder: a class of permutations is the set of permutations that avoid given patterns. Notation: $Av(\tau_1, \ldots, \tau_r)$.

Recently studied from probabilistic point of view (Bevan, Hoffman, Madras, Pak, Rizzolo, Svilken, ...).

Uniform random permutations in classes

Reminder: a class of permutations is the set of permutations that avoid given patterns. Notation: $Av(\tau_1, \ldots, \tau_r)$.

Recently studied from probabilistic point of view (Bevan, Hoffman, Madras, Pak, Rizzolo, Svilken, ...).

Start with simple classes $Av(\tau)$ with $\tau \in S_3$. Not interesting from a permuton viewpoint: a uniform permutation in $Av(\tau)$ with $\tau \in S_3$ concentrates on one of the diagonal (pictures ©Hoffman, Rizzolo, Svilken).

V. Féray (UZH)

Limit of separable permutations (BBFGP, '16)

The class of separable permutations is Av(3142, 2413) (there are equivalent more natural definitions).

Limit of separable permutations (BBFGP, '16)

The class of separable permutations is Av(3142, 2413) (there are equivalent more natural definitions).

Let $\sigma^{(n)}$ be a uniform random separable permutation of size *n*.

Theorem (BBFGP,'16)

 $\mu_{\sigma^{(n)}}$ tends towards a non-deterministic permuton μ , linked to the Brownian excursion

(Simulation on the right)

(More on that tomorrow)

Patterns and random permutations I