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Introduction

The last two lectures focus of random permutations:

Classical questions: look at some statistics, like the number of cycles
(of given length), longest increasing subsequences, . . .
(usually for uniform or Ewens distributions)

a more recent approach: look for a limit theorem for the permutation
itself (interesting for non-uniform models or constrained
permutations).

Today: present the theory of permutons and illustrate it with some results
in the literature.
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First part

The theory of permutons
(Hoppen, Kohayakawa, Moreira, Rath, Sampaio)
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 3 4 2 1 7→ µπ =

Each square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a nice compact Polish space.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 3 4 2 1 7→ µπ =

Each square has weight 1/n (i.e. density n).

Note that µπ is a coupling of two uniform measures (in other words, has
uniform marginals).
→ potential limits also have uniform marginals.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 3 4 2 1 7→ µπ =

Each square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on [0, 1]2 with uniform marginals.

Next few slides: connection with permutation patterns.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation

1 2 3 4 5 6

1

2

3

4

5

6
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Families of permutations avoiding given patterns (called permutation
classes) appear in various domains: sorting algorithms, enumerative
geometry, genomics.
They are widely studied from an enumerative, algorithmic and more
recently probabilistic point of view.
Here we are more interested in numbers of occurrences of τ in σ.

V. Féray (UZH) Patterns and random permutations I Villa Volpi, 2017–09 5 / 23



Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

In other terms: take k elements uniformly at random in σ, the probability
to find a pattern τ is õcc(τ, σ).

This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ

õcc(τ, µ) := Pµ(U1, · · · ,Uk form a pattern τ),

where U1, · · · ,Uk are i.i.d. points with distribution µ.

a 213 pattern

V. Féray (UZH) Patterns and random permutations I Villa Volpi, 2017–09 6 / 23



Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set
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An approximation lemma

Reminder:

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U1, · · · ,Uk form a pattern τ),

In general, õcc(τ, σ) 6= õcc(τ, µσ).
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An approximation lemma

Reminder:

õcc(τ, σ) :=

(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U1, · · · ,Uk form a pattern τ),

In general, õcc(τ, σ) 6= õcc(τ, µσ).

But we have the following approximation lemma:

Lemma
If π and σ are permutations of size k and n, resp., then

| õcc(π, σ)− õcc(π, µσ)| ≤ 1
n

(
k

2

)
.
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Pattern density convergence and permuton convergence

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n))→ õcc(τ, µ).

As a consequence, for a sequence of permutation σ(n) of size tending to
infinity,

µσ(n) → µ ⇔ for all τ, õcc(τ, σ(n))→ õcc(τ, µ).

(In terms of permutations, õcc(τ, σ(n)) is much more concrete!)
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Proof that µ(n) → µ ⇒ ∀τ, õcc(τ, µ(n))→ õcc(τ, µ)

Observe that

õcc(τ, µ) := Pµ(U1, · · · ,Uk form a pattern τ)

=

∫
([0,1]2)k

1
[
u1, · · · , uk form a pattern τ

]
dµ⊗k(u1, · · · , uk)

If µ(n) → µ, then (µ(n))⊗k → µ⊗k and the statement would be immediate
if (u1, · · · , uk) 7→ 1

[
u1, · · · , uk form a pattern τ

]
was continuous.

Its discontinuity set of (u1, · · · , uk) 7→ 1
[
u1, · · · , uk form a pattern τ

]
corresponds to k-uples where (at least) two ui have one of their
coordinates equal.

But since µ has uniform marginals, this set has µ⊗k measure 0. This ends
the proof.
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Proof that ∀τ, õcc(τ, µ(n))→ õcc(τ, µ) ⇒ µ(n) → µ

Claim: for any p, q there exists constants cτp,q such that for all permutons
µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).
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Proof that ∀τ, õcc(τ, µ(n))→ õcc(τ, µ) ⇒ µ(n) → µ

Claim: for any p, q there exists constants cτp,q such that for all permutons
µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).

If the claim holds, then convergence of all õcc(τ, ·) implies moment
convergence, which in turn implies convergence in distribution.

So we only have to prove the claim.
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Proof that ∀τ, õcc(τ, µ(n))→ õcc(τ, µ) ⇒ µ(n) → µ

Claim: for any p, q there exists constants cτp,q such that for all permutons
µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).

Consider U, V1,. . . , Vp, W1,. . . ,Wq i.i.d points with distribution µ and
the probability P

[
∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)

]
.
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µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).

Consider U, V1,. . . , Vp, W1,. . . ,Wq i.i.d points with distribution µ and
the probability P

[
∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)

]
.

On the one hand, conditioning on U = (x , y), we get

P
[
∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)

]
=

∫
[0,1]2

P
[
∀i , x(Vi ) ≤ x ∧ y(Wi ) ≤ y |U

]
dµ(x , y)

=

∫
[0,1]2

xp yq dµ(x , y).
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Proof that ∀τ, õcc(τ, µ(n))→ õcc(τ, µ) ⇒ µ(n) → µ

Claim: for any p, q there exists constants cτp,q such that for all permutons
µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).

Consider U, V1,. . . , Vp, W1,. . . ,Wq i.i.d points with distribution µ and
the probability P

[
∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)

]
.

On the other hand, the event {∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)} can be
written as a huge case disjonction, specifying all the order relations
between x-coordinates and y -coordinates respectively (i.e. specifying the
pattern formed by U, V1,. . . , Vp, W1,. . . , Wq).

Therefore P
[
∀i , x(Vi ) ≤ x(U) ∧ y(Wi ) ≤ y(U)

]
is a linear combination of

õcc(τ, µ).
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Convergent sequence of permutations

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n))→ õcc(τ, µ).

Corollary

Let σ(n) be a sequence of permutation such that õcc(τ, σ(n)) converges for
all τ . Then there exists a permuton µ such that σ(n) → µ.
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Convergent sequence of permutations

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n))→ õcc(τ, µ).

Corollary

Let σ(n) be a sequence of permutation such that õcc(τ, σ(n)) converges for
all τ . Then there exists a permuton µ such that σ(n) → µ.

Exercise: prove the corollary (hint: use compactness).
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Convergent sequence of permutations

We proved:

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n))→ õcc(τ, µ).

Corollary

Let σ(n) be a sequence of permutation such that õcc(τ, σ(n)) converges for
all τ . Then there exists a permuton µ such that σ(n) → µ.

Q: is every permuton µ the limit of some sequence of permutation?

YES, we will see a random construction in the next slide.
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Random permutation model associated with a permuton

Fix a permuton µ.

We define a random permutation σn of size n as the pattern formed by n
i.i.d random points U1, · · · ,Un with distribution µ.

Example: if µ is the uniform measure on [0, 1]2, then σn is a uniform
random permutation of size n.
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Random permutation model associated with a permuton

Fix a permuton µ.

We define a random permutation σn of size n as the pattern formed by n
i.i.d random points U1, · · · ,Un with distribution µ.

For a fixed τ ,

õcc(τ,σn) =

(
n

k

)−1 ∑
i1<...<ik

1
[
Ui1 , . . . ,Uik form a pattern τ

]
.

It is a (normalized) sum of variables with a sparse dependency graphs.

⇒ Easy to prove that it converges almost surely to õcc(τ, µ) (we have
uniform bounds on cumulants, . . . ).

Thus σn converges almost surely to µ, which proves the existence of
sequences of permutations converging to µ.
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Summary

1 Weak convergence of permutons is equivalent to convergence of
pattern densities;

2 If the pattern densities of a sequence of permutation converge, then
there exists a limit permuton.

3 All permutons are limits of some permutation sequence.

→ the space of permutons is the natural space of limiting objects for the
pattern density convergence.

2 is very useful: we do not need to construct the limiting permuton, we
know it exists. Is there an analogue for random permutations?
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Permuton convergence of random permutations

Theorem (BBFGMP, 2017+)

Let σn be a random permutation of size n. The following assertions are
equivalent.
(a) µσn converges in distribution for the weak topology to some random

permuton µ.
(b) The random infinite vector

(
õcc(π,σn)

)
π∈S converges in distribution

in the product topology to some random infinite vector (Λπ)π∈S.
(c) For every π in S, there is a ∆π ≥ 0 such that

E[õcc(π,σn)]
n→∞−−−→ ∆π.

Note: (a)⇔ (b) expected (random version of the previous result),
(b)⇔ (c) might be more surprising (cv in expectation is enough!).
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Why are expectations enough?

Claim: Fix τ1, . . . , τk . There exist constants cρ such that, for all
permutons µ,

k∏
i=1

õcc(τi , µ) =
∑
ρ

cρ õcc(ρ, µ).

Proof of the claim: take i.i.d. random points U1, . . . ,UK with distribution
µ. On the left, we have the probability that the first k1 forms a pattern τ1,
the next k2 forms a pattern k2, . . .

Taking a huge case disjonction depending on the pattern formed by all
these points, this is a linear combination of õcc(ρ, µ).
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V. Féray (UZH) Patterns and random permutations I Villa Volpi, 2017–09 15 / 23



Why are expectations enough?

Claim: Fix τ1, . . . , τk . There exist constants cρ such that, for all
permutons µ,

k∏
i=1
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Why are expectations enough?

Claim: Fix τ1, . . . , τk . There exist constants cρ such that, for all
permutons µ,

k∏
i=1

õcc(τi , µ) =
∑
ρ

cρ õcc(ρ, µ).

Consequence of the claim: if µ is a random permuton, joint moments of
the õcc(τi ,µ) are linear combinations of expectations.

If the expectations converge, then the joint moments converge and we have
(multi-variate) convergence in distribution.
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Analogy with graphons

Permutons are inspired from recent developments in random graph theory

Permutations
Pattern densities

Measure on [0, 1]2

Graphs
Subgraph densities

Functions [0, 1]2 → [0, 1]
up to composition with

a Lebesgue-preserving isomorphism

1

2 3

4

56

7→

(value 1 on gray rectangles)

cv of subgraph densities ⇔ cv of graphon
space of graphons is compact.
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Measure on [0, 1]2

Graphs
Subgraph densities

Functions [0, 1]2 → [0, 1]
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Second part

Some results/conjecture in the permuton
framework
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Limiting permuton for Mallows permutation (Starr, ’09)

Mallows model on Sn: P(σ) ∝ qinv(σ).

Theorem (Starr, ’09)

Let σ(n) be a random permutation taken with the Mallows measure of
parameter qn = 1− β/n. Then µσ(n) converge to the deterministic
permuton with density

u(x , y) =
(β/2) sinh(β/2)(

eβ/4 cosh(β[x − y ]/2)− e−β/4 cosh(β[x + y − 1]/2)
)2 .

β = 10 β = 6 β = 2
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A large deviation principle (Kenyon, Král, Radin, Winkler, ’15)

Definition (entropy of a permuton µ with density g)

H(µ) =

∫
[0,1]2

−g(x , y) log g(x , y)dxdy .

If µ has no density, H(µ) :=∞.

Theorem (Trashorras, ’08, KKRW, ’15)

Let Λ be a set of permutons, Λn the set of permutations π ∈ Sn with
µπ ∈ Λ. Then:

1 If Λ is closed, lim supn→∞
1
n log

|Λn|
n! ≤ supµ∈Λ H(µ);

2 If Λ is open, lim infn→∞ 1
n log

|Λn|
n! ≥ supµ∈Λ H(µ).

Q: which permutons maximize the entropy under some constraints? (such
as fixing some pattern densities)
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A nice picture (Kenyon, Král, Radin, Winkler, ’15)

x-axis: õcc(12, µ)
y -axis: õcc(123, µ)

blue zone: zone
where there exists
a permuton µ with
such pattern densi-
ties.

Displayed permutons
are entropy maximiz-
ers for fixed 12 and
123 densities.

c©KKRW, ’15
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Random minimal factorizations (Angel, Holroyd, Romik,
Virag, ’06)

Consider a uniform random minimal factorization of ω0 := n n-1 . . . 2 1
into transposition: ω0 = τ1 . . . τN (where N =

(n
2

)
).

Q: what do partial porducts τ1 . . . τbcNc look like?

Pictures ( c©AHRV) (n = 500, c = 0, .1, .2, . . . , .9, 1):

There is a conjectural formula for the limiting process in the space of
permutons.
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Uniform random permutations in classes

Reminder: a class of permutations is the set of permutations that avoid
given patterns. Notation: Av(τ1, . . . , τr ).

Recently studied from probabilistic point of view (Bevan, Hoffman, Madras,
Pak, Rizzolo, Svilken, . . . ).

Start with simple classes Av(τ) with τ ∈ S3. Not interesting from a
permuton viewpoint: a uniform permutation in Av(τ) with τ ∈ S3
concentrates on one of the diagonal (pictures c©Hoffman, Rizzolo, Svilken).

Random 231-avoiding permutation Random 321-avoiding permutation
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Limit of separable permutations (BBFGP, ’16)

The class of separable permutations is Av(3142, 2413) (there are equivalent
more natural definitions).

Let σ(n) be a uniform random sepa-
rable permutation of size n.

Theorem (BBFGP,’16)

µσ(n) tends towards a
non-deterministic permuton µ,
linked to the Brownian excursion

(Simulation on the right)

(More on that tomorrow)
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