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Content of the four lectures

Two (mostly independent) parts

Lectures 1 and 2 mod-¢ convergence, probabilistic estimates and
dependency graphs;

Lectures 3 and 4 some recent work on random permutations: permutons,
uniform permutations in classes.
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CLT and mod-¢ convergence
Central limit theorem (CLT) and beyond

@ Standard CLT: renormalized sum of i.i.d. variables with finite variance
tends towards a Gaussian distribution.

@ Many relaxation of the i.i.d. hypothesis: CLT for Markov chains,

martingales, mixing processes, m-dependent sequence, “associated”
random variables. . .
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CLT and mod-¢ convergence
Central limit theorem (CLT) and beyond

@ Standard CLT: renormalized sum of i.i.d. variables with finite variance
tends towards a Gaussian distribution.

@ Many relaxation of the i.i.d. hypothesis: CLT for Markov chains,
martingales, mixing processes, m-dependent sequence, “associated”
random variables. . .

o We often have companion theorems: deviation principles,
concentration inequalities, local limit theorem, speed of
convergence. . .

But the companion theorems need extra effort to prove.
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CLT and mod-¢ convergence
Central limit theorem (CLT) and beyond

@ Standard CLT: renormalized sum of i.i.d. variables with finite variance
tends towards a Gaussian distribution.

@ Many relaxation of the i.i.d. hypothesis: CLT for Markov chains,
martingales, mixing processes, m-dependent sequence, “associated”
random variables. . .

o We often have companion theorems: deviation principles,
concentration inequalities, local limit theorem, speed of
convergence. . .

But the companion theorems need extra effort to prove.
Philosophy: Mod-¢ is a universality class beyond the CLT, which implies
some companion theorems.
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Mod-¢ convergence: definition
Setting:
@ D a domain of C containing 0.

@ ¢ infinite divisible distribution with Laplace transform exp(n(z)) on D.

Definition (Nikeghbali, Kowalski)

A sequence of real r.v. (X,) converges mod-¢ on D with parameter
t, — oo and limiting function ¥ if, locally uniformly on D,

exp(—ta1)(2)) E(e”) = 9(2), (1)

Informal interpretation:

e X, = t, independent copies of ¢ + perturbation encoded in .
@ instead of renormalizing the variables as in CLT, we renormalized the
Fourier/Laplace transform to get access to the next term.
(this notion has some similarity with Hwang's quasi-powers.)
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SR e i
Mod-¢ convergence implies a CLT

Proposition

If (Xn) converges mod-¢ on D with parameter t,, then

Xn — tnn/(o)
ta"(0)

Proof: easy, use the mod-¢ estimate to show that E(e¢Y") converges
. . 2
pointwise to e /2,

Y, = —d N(O, ].).

Philosophy: Many classical ways of proving CLTs can be adapted to prove
mod-¢ convergence.

(In particular, in all examples in the next few slides, the CLT is a
well-known result.)
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Introduction Outline

Outline of today's talk

@ Introduction: CLT and mod-¢ convergence

© Examples of mod-¢ convergence sequences
@ How to prove mod-¢ convergence

© Companion theorems
@ Speed of convergence
@ Deviation and normality zone
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How to prove mod-¢ convergence
Examples with an explicit generating function (1/3)

We start with a trivial example.
Let Y1, Y2,... bei.id. with law ¢ and W, a sequence of r.v., independent
from the Y, whose Laplace transform converges to that of W on D.
Set X, = W, + 3.7, Yi. Then
E(e?n) = ") E(e?r) = ") (B(e*Y) + o(1)).

Thus X, converges mod-¢ with parameters t, = n and limiting function

(z) = E(e?V).
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How to prove mod-¢ convergence
Examples with an explicit generating function (2/3)

Let X, be the number of cycles in a uniform random permutation.

n 7 n =1
e = [T (1+ 1) - omed [T

i=1 i=1 € I

where H, =37 1 2 =logn+~+0O(n71).
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How to prove mod-¢ convergence
Examples with an explicit generating function (2/3)

Let X, be the number of cycles in a uniform random permutation.

n n z_1
e? —1 2 1+ &=
Ef] = ] <1 + & ) IC) |
i=1 i=1 €7
where H, = > ; % = logn+ v+ O(n~1). The product on the right-hand
side converges locally uniformly on C to an infinite product, which turns
out to be related to the I' function,

1
I(e?)

Xo7 o—(e*—1) log n @-yTT Lt
E[e* ] e ¢ o8N _y ev\e H .

e‘—1
7

—1

i=1 € 7/

z

locally uniformly, i.e., one has mod-Poisson convergence on C with
parameters t, = log n and limiting function 1/T(e*).
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Examples with an explicit generating function (3/3)

Other examples with explicit generating functions:

o log(| det(ld —U,)|) where U, is an unitary Haar-distributed random
matrices. It converges mod-Gaussian on {Re(z)>-1} with parameter

'°§ = and limiting function W1(z) = G(Gl(tii/f))z (G is the G-Barnes

function).
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How to prove mod-¢ convergence
Examples with an explicit generating function (3/3)

Other examples with explicit generating functions:

o log(| det(ld —U,)|) where U, is an unitary Haar-distributed random
matrices. It converges mod-Gaussian on {Re(z)>-1} with parameter

'°§ = and limiting function W1(z) = G(Gl(tii/f))z (G is the G-Barnes

function).

o Let M, be a GUE matrix. Then |det(M,)| — E(| det(M,)|) converges
mod-Gaussian on {|z| < 1} with parameter t, ~ % log(n) and same
limiting function W;(z) (Déring, Eichelsbacher, 2013).
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How to prove mod-¢ convergence
Examples with an explicit generating function (3/3)

Other examples with explicit generating functions:

log(| det(ld —U,)|) where U, is an unitary Haar-distributed random
matrices. It converges mod-Gaussian on {Re(z)>-1} with parameter

'°§ = and limiting function W1(z) = G(Gl(%i/f))z (G is the G-Barnes
function).

Let M, be a GUE matrix. Then |det(M,)| — E(|det(M,)|) converges
mod-Gaussian on {|z| < 1} with parameter t, ~ % log(n) and same
limiting function W;(z) (Déring, Eichelsbacher, 2013).

¢ is the winding number of a
Brownian motion starting at 1.
It “converges mod-Cauchy on /R"

with parameter % and limiting

function W2(i¢) = rrcliyy-
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Examples with an explicit bivariate generating function
(overview)

Number w(k) of prime divisors of the integer k
w(k)

S = )

k>1 p

Q, = w(k), for a uniform random positive integer k < n.
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Examples with an explicit bivariate generating function
(overview)

Number w(k) of prime divisors of the integer k

ezo.)(k) eZ
> ()

p

Q, = w(k), for a uniform random positive integer k < n.

Number of ascents A, in a random permutation of size n

B(en)en = <1
>

z _ at(ei—1)°
1 e e
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Examples with an explicit bivariate generating function
(overview)

Number w(k) of prime divisors of the integer k

ezo.)(k)
>

V4
= H <1 + se_s> . Q, converges mod-Poisson
= 5 p )

(I-p
Q, = w(k), for a uniform random positive integer k < n.

Number of ascents A, in a random permutation of size n

ZE(eZA")t” et Ap "converges mod-U([0, 1])"

z _ at(ei—1)°
1 e e

In both cases one can extract the Laplace transform of Q, or A, by a path
integral and study asymptotics.
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A central limit theorem due to Harper

Theorem (Harper, 1967)
Let X, be a N-valued random variable such that P,(t) = E(t*") has
nonpositive real roots. Assume Var(X,) — oco. Then

Xn —E(Xn)

Var(Xn) —d N(O, ].).

Example: X, is the number of blocks of a uniform random set-partitions.
(One can prove that

P,,(t)et = cstnt%(Pn_l(t)et)

and apply Rolle's theorem inductively.)
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Mod-Gaussian convergence in Harper's theorem

Theorem (FMN, 2016)

Let X,, be a N-valued random variable such that P 2(t) = E(t%) is a
polynomial with nonpositive real roots. Denote o2 = Var(X,) and
L3 = k3(X,) the second and third cumulants oan and assume

1< Ly <oy < L2,

Xn—E(X . . 2
Then "Li(") converges mod-Gaussian on C with parameters t, = % and
n n

limiting function ¢ = exp(z3/6).

v

Idea of proof: X, write as a sum of N, Bernoulli variables By (of unknown
parameters). Thus

zX,, H E sz

and we do Taylor expansions on the right—hand side.
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Mod-Gaussian convergence in Harper's theorem

Theorem (FMN, 2016)

Let X, be a N-valued random variable such that P,(t) = E(t*") is a
polynomial with nonpositive real roots. Denote o2 = Var(X,) and

L3 = k3(X,) the second and third cumulants of X, and assume

1< Ly <oy < L2,

Then X"*H(X") converges mod-Gaussian on C with parameters t, = CZ—E and
limiting function 1 = exp(z3/6). '

Example: X, is the number of blocks of a uniform random set-partitions.
(The third cumulant estimate is not trivial.)

V. Féray (UZH) Mod-¢ convergence | Villa Volpi, 2017-09 12 / 24



How to prove mod-¢ convergence
Adapting the method of moments (1/3)

Instead of moments we use cumulants x,(X,). If X is a random variable,
its cumulants are the coefficients of

2 k(n)
log E[e™] = Z (X) z".

|
—
First cumulants:
r1(X) == E(X),

Ka(X) == Var(X, Y) = E(X?) — E(X)?
r3(X) == E(X3) = 3E(X?)E(X) + 2E(X)3.

Fact: Y, converge in distribution to N'(0,1) if Var(Y,) — 1 and all other
cumulants tend to 0.
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How to prove mod-¢ convergence
Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S,) admits a uniform control on cumulants with DNA
(Dp, Ny, A) and limits o2 and L if D,, = o(N,), N, — +o0o and
Vr>2, |(S,)| < N, (2D,) L =2 AT

(3)
_ 2 2. K (Sn)
- (Un) —“n—o00 0, 7/\/” (Dn)2

— Ln _>n—>OO L.
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How to prove mod-¢ convergence
Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S,) admits a uniform control on cumulants with DNA
(Dp, Ny, A) and limits o2 and L if D,, = o(N,), N, — +o0o and

Vr>2, |(S,)| < N, (2D,) L =2 AT

)(S,) G)(S,)
K n) _ 2 2. K n) _
N.D, (0n)" = ns00 05 W =Ly —psoo L
Proposition
Take (S,) admits a uniform control on cumulants with 0> > 0. Then,
n E n . B 1
= 517[5]2 converges mod-Gaussian on C, with t, = (o,)? (%)é
(Nn)3(Dn)3 ’

and limiting function v (z) = exp(%).

4
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How to prove mod-¢ convergence
Adapting the method of moments (2/3)

Definition (uniform control on cumulants)

A sequence (S,) admits a uniform control on cumulants with DNA
(Dp, Ny, A) and limits o2 and L if D,, = o(N,), N, — +o0o and

Vr>2, |(S,)| < N, (2D,) L =2 AT

2 "5(3)(5n)

= (Un)2 —7n—o0 05 W =Ly —psoo L

Remark

Uniform bounds on cumulants have been studied (in more generality) by
Saulis and StatuleviCius (1991) (see Déring-Eichelsbacher 2012, 2013, for
numerous applications).

In this context, we don't have new theoretical results, but new examples.

y
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Adapting the method of moments (3/3): a new example

If F=(VE,EfF)and G = (Vg, Eg) are finite graphs, a copy of F in G is a
map v : Vg — Vg such that

Ve ={x,y} € Er, {4(x),¥(y)} € Eq.

Proposition
The number of copies of a fixed F in G(n, p) (p fixed) admits a uniform
control on cumulants with DNA (nlVel=2 nlVel 1) and o2 > 0.

(behind this: dependency graphs, more on that and more examples
tomorrow!)
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Companion theorems

Transition
Reminder: if X, converges mod-¢, then Y, = % converges to a
nT]
standard Gaussian, i.e., for a fixed y,
lim P(Y, >y) = 1 Ooe_"2/2du =: Far(y) (CLT)
am nZ=Y N , PN )-

Main questions
Speed of convergence What is the error term (uniformly in y) in (CLT)?

Deviation probability What if y — co? The limit is 0 but can we give an
equivalent?
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(TN ENTNRGECI S Speed of convergence

A first bound for the speed of convergence

Proposition (FMN, 2016)

Let X, converges mod-¢ on a domain D containing iR. Assume ¢
non-lattice. Then

W+ —TO  py o),

"\ F —
Va0 6y/t(n"(0)? "

for explicit functions Fi(y) and F»(y) (Gaussian integrals).

P(Y,>y) = Fnly) +

In particular, the error term in (CLT) is O(t;l/z) and it is optimal if

'(0) # 0 or " (0) # 0.

— Tight bound for log(det(ld —U,)), but not for triangle count (see
later). . .
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(TN ENTNRGECI S Speed of convergence

Bound on speed of convergence: ideas of proof

(Close to Feller, 1971, for the i.i.d. case.)

Standard tool in this context: Berry's inequality for centered variables

1T () —&*(¢)
F(y)— G < = —2r =2 2 dl 4+ ——.
F-emi< [ |FE c+ 20
F and G are distribution functions; f* and g* the Fourier transform of the
corresponding laws; m a bound on the density g.

24m
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[T ETIH RIS Speed of convergence

Bound on speed of convergence: ideas of proof

(Close to Feller, 1971, for the i.i.d. case.)

Standard tool in this context: Berry's inequality for centered variables

T * % m
A=< 2 [ |FOZED e 20

F and G are distribution functions; f* and g* the Fourier transform of the
corresponding laws; m a bound on the density g.

Take Fy(y) =P(Y, > y) and

o VO 0 s N
@””i/m(L% OIS 3)>“)d'
1/2

The mod-¢ estimate allows you to control the integral for T = At,
(For ( < tH/?, *(¢) ~ g*(C), for ¢ =~ t+/?, both terms are small.)

Make n tends to infinity and then A.
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(TN ENTNRGECI S Speed of convergence

Speed of convergence for triangles in random graphs

Let T, be the number of copies of F = K3 in G(n, p).
o Our bound gives an error term O(n~1/3).

e With a result of Rinott (1994), we can get O(n™ 1) (see also
Krokowski, Reichenbachs and Thaele, 2015).
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(TN ENTNRGECI S Speed of convergence

Speed of convergence for triangles in random graphs

Let T, be the number of copies of F = K3 in G(n, p).
o Our bound gives an error term O(n~1/3).

e With a result of Rinott (1994), we can get O(n™ 1) (see also
Krokowski, Reichenbachs and Thaele, 2015).

Question

Can we improve our bounds in this case?
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(TN ENTNRGECI S Speed of convergence

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivic¢ius, 1991, FMN, 2017)

Let (S,) be a sequence with a uniform control on cumulants with DNA
(Dp, Ny, A) with o2 > 0.

(In particular, |k()(S,)| < N, (2D,) 1 r'=2 Ar.)

Then the error term in (CLT) is O(t 73/2 = O(\/Dn/Ny,).

In case of triangles, we get O(n1) as Rinott (1994) or Krokowski,
Reichenbachs and Thaele (2015).
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(TN ENTNRGECI S Speed of convergence

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivic¢ius, 1991, FMN, 2017)

Let (S,) be a sequence with a uniform control on cumulants with DNA
(Dp, Ny, A) with o2 > 0.

(In particular, |k()(S,)| < N, (2D,) 1 r'=2 Ar.)

Then the error term in (CLT) is O(t 73/2 = O(\/Dn/Ny,).

In case of triangles, we get O(n1) as Rinott (1994) or Krokowski,
Reichenbachs and Thaele (2015).

Proof: again Berry's inequality

Fo) -6l < 1 [ [FOE9) g 20

T™J-T

but we have a better control on f*({) and thus we can choose T = t3/2.
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(TN ENTNRGECI S Speed of convergence

A better bound from uniform control on cumulants

Proposition (Saulis, Statelivic¢ius, 1991, FMN, 2017)

Let (S,) be a sequence with a uniform control on cumulants with DNA
(Dp, Ny, A) with o2 > 0.

(In particular, |k(7(S,)| < N, (2D,) 1 r"=2 A".)

Then the error term in (CLT) is O( ,,_3/2) = O(\/Dn/Ny).

In case of triangles, we get O(n~1) as Rinott (1994) or Krokowski,
Reichenbachs and Thaele (2015).

Our statement is a bit more general: holds in the context of mod-stable
convergence with additional control of the Laplace transform.

Example: winding number ; of a Brownian motion converges to a Cauchy
law after renormalization at speed O(t, 1) = O((log n)™1).
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ZE ] G e
Deviation probability

Theorem (FMN, 2016)

Assume X, converges mod-¢ (¢ non-lattice) on a strip {|Re(z)| < C}. Let
x, bounded by C with x, > t,,_l/z. Then

B (X — ta7(0) > toxa) ~mirne SPEIFOD) ey y1 4 o)),

"7 b/ 27t ()

Here F(x) = sup,ecr(hx — n(h)) is the Legendre Fenchel transform of 7
and hy, is the maximizer for F(x,).
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ZE ] G e
Deviation probability

Theorem (FMN, 2016)

Assume X, converges mod-¢ (¢ non-lattice) on a strip {|Re(z)| < C}. Let
xn bounded by C with x, > t, ~1/2 Then

P(Xo = £ (0) = tox) ~ooe — 22O 3 o))

"7 b/ 27t ()

Standard proof strategy: applying speed of convergence result to the
exponentially tilted variables X,;:

Ehu
©x,(h)
X, also converge mod-¢: its Laplace transform is simply

o E[e(z+h) Xn
E[ern] = [E[ehxn] ]

P[X, € du] = P[X, € du].
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(TN ELTNRGI I EI  Deviation and normality zone

Deviation probability

Theorem (FMN, 2016)
Assume X, converges mod-¢ (¢ non-lattice) on a strip {|Re(z)| < C}. Let
x, bounded by C with x, > t,,_l/z. Then

P(Xn — ton'(0) > t,,x,,) exp(—tnF(xn))

"7 b/ 27t ()

(hn)(1 + o(1)).

Similar result for lattice distributions ¢: replace h in denominator by e — 1.
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(TN ELTNRGI I EI  Deviation and normality zone

Normality zone

Definition
We say that Y), has a normality zone o(a,) if (CLT) gives an equivalent of
the tail probability for y = o(a,) but not for y = O(ap).

Proposition
Let X, converges mod-¢ on a strip {|Re(z)| < C}.

Then the normality zone of% is o $/2—1/m), where m > 3 is

minimal such that n{™ £ 0.

If ¢ is Gaussian, m = oo by convention, but we need to assume that ¢ £ 1.

Additionally, we know the correction at the edge of the normality zone.
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(TN ELTNRGI I EI  Deviation and normality zone

Some explicit results

@ Let T, be the number of copies of F = K3 in G(n, p). Then
_ _8p) 3
]P)[T" 2 n3p3 + n2(v - 3P3)] ~ gpf;r(\l/z ) eXp(_36p5‘/(21—p) + 32§7np88?i—p)2)
for 1 < v = 0(n?/3).
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Companion theorems Deviation and normality zone

Some explicit results

@ Let T, be the number of copies of F = K3 in G(n, p). Then

9p5(1— v2 7-8p) V3
]P’[T,, > n3pd + n2(v — 3p3)] ~ P( 29) exp(—36p5(1_p) + 324(1np8F8—p)2)

TV
for 1 < v = 0(n?/3).
@ Let A, be the number of ascents in a random permutation of size n.

1 1 1 1 2 4
pla, >0t /0t :Mexp L ro
12 V21 2 120(n+1)

for any positive y with y = o(n%).
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Companion theorems Deviation and normality zone

Some explicit results

@ Let T, be the number of copies of F = K3 in G(n, p). Then
_ _8p) V3
]P)[Tn > "3P3 + n2(v - 3P3)] ~ 9p5;(‘1/2 p) eXp(—36p5V(21_p) + 324(17np88F(Ji—p)2)
for 1 < v = 0(n?/3).
@ Let A, be the number of ascents in a random permutation of size n.

1 1 1 1 2 4
pla, >0t /0t :Mexp L ro
12 V21 2 120(n+1)

for any positive y with y = o(n%).
@ Let U, be Haar distributed in the unitary group U(n), one has: for
(logn) 12 < x, < 1,

G(1+ %) 1

x3
G(1+xn) xpn4 /mlogn

P,||det(ld—U,)| > n? | =
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Companion theorems Deviation and normality zone

Some explicit results

@ Let T, be the number of copies of F = K3 in G(n, p). Then
_ _8p) V3
]P)[Tn > "3P3 + n2(v - 3P3)] ~ 9p5;(‘1/2 p) eXp(—36p5V(21_p) + 324(17np88F(Ji—p)2)
for 1 < v = 0(n?/3).
@ Let A, be the number of ascents in a random permutation of size n.

1 1 1 1 2 4
pla, >0t /0t :Mexp L ro
12 V21 2 120(n+1)

for any positive y with y = o(n%).
@ Let U, be Haar distributed in the unitary group U(n), one has: for
(logn) 12 < x, < 1,

G(1+ %) 1
x3
G(1+xn) xpn4 /mlogn

(We also have estimates for negative deviations in all cases.)
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P,||det(ld—U,)| > n? | =



[ENOCRVITS Tomorrow

Conclusion

Future work:
@ Concentration estimates, local limit theorems. . .

@ Prove mod-¢ convergence in other contexts where the CLT is known:
martingales, Stein exchangeable pairs, linear statistics of determinental
processes, Mixing processes . . .

Tomorrow: many examples of bounds on cumulants coming from
dependency graphs, including subgraph counts/Ising model/symmetric
simple exclusion process.
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