Jack symmetric functions and graphs on surfaces

Valentin Féray

Institut für Mathematik, Universität Zürich

27th Conference on *Formal Power Series and Algebraic Combinatorics* Daejeon, South Korea, July 7th, 2015

Outline of the talk

- Background on (Jack) symmetric functions
- 2 Hanlon's conjecture
- Goulden-Jackson's conjecture
- 4 Lassalle's conjecture
- 5 Link between the conjectures
- 6 Proof of one result

Symmetric functions

• partitions: $(4,3,1) \leftrightarrow$

monomial symmetric functions

$$m_{(2,1)}(x_1, x_2, \dots) = x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + x_3^2 x_1 + \dots$$

• power-sum symmetric functions

$$p_{(2,1)}(x_1, x_2, \dots) = (x_1^2 + x_2^2 + \dots)(x_1 + x_2 + \dots).$$

Schur symmetric functions

$$s_{(2,1)}(x_1, x_2, \dots) = m_{(2,1)}(x_1, x_2, \dots) + 2m_{(1^3)}(x_1, x_2, \dots).$$

(defined as sum over tableaux, quotient of determinants or from representation theory)

V. Féray (Zurich)

A characterization of Schur symmetric functions

Hall scalar product is defined by $\langle p_{\mu}, p_{\nu} \rangle := z_{\mu} \delta_{\mu,\nu}$.

Proposition

The basis (s_{λ}) is the unique family of symmetric functions with the following properties:

 z_{μ} : standard numerical factor;

dominance order: $\nu \preceq_d \lambda$ if and only if $|\nu| = |\lambda|$ and

for all
$$i$$
, $\nu_1 + \dots + \nu_i \leq \lambda_1 + \dots + \lambda_i$.

0.

Jack polynomials

Consider the following deformation of Hall scalar product:

$$\langle p_{\mu}, p_{\nu} \rangle_{lpha} = lpha^{\ell(\mu)} z_{\mu} \delta_{\mu,
u}$$

 $\ell(\mu)$: length (number of parts) of the partition μ .

Jack polynomials

Consider the following deformation of Hall scalar product:

$$\langle \boldsymbol{p}_{\mu}, \boldsymbol{p}_{\nu} \rangle_{\alpha} = \alpha^{\ell(\mu)} \boldsymbol{z}_{\mu} \delta_{\mu,\nu}$$

Definition

Jack polynomials $J_{\lambda}^{(\alpha)}$ is the unique family of symmetric functions with the following properties:

• triangularity:
$$J_{\lambda}^{(\alpha)} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} m_{\nu};$$

② orthogonality:
$$\langle J_{\lambda}^{(\alpha)}, J_{\mu}^{(\alpha)} \rangle = 0$$
 if $\lambda \neq \mu$;

3 normalization:
$$[m_{(1^{|\lambda|})}]J_{\lambda}^{(\alpha)} = 1.$$

Jack polynomials

Consider the following deformation of Hall scalar product:

$$\langle \boldsymbol{p}_{\mu}, \boldsymbol{p}_{\nu} \rangle_{\alpha} = \alpha^{\ell(\mu)} \boldsymbol{z}_{\mu} \delta_{\mu,\nu}$$

Definition

Jack polynomials $J_{\lambda}^{(\alpha)}$ is the unique family of symmetric functions with the following properties:

• triangularity:
$$J_{\lambda}^{(lpha)} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} m_{\nu};$$

② orthogonality:
$$\langle J_{\lambda}^{(lpha)}, J_{\mu}^{(lpha)}
angle = 0$$
 if $\lambda
eq \mu$;

• normalization: $[m_{(1^{|\lambda|})}] J_{\lambda}^{(\alpha)} = 1.$

Specialization: $J_{\lambda}^{(1)} = H_{\lambda}s_{\lambda}$. H_{λ} : combinatorial factor (product of hooks of λ).

Transition

Hanlon's conjecture

A formula for Schur functions

Choose a filling T_0 of a Young diagram λ .

Example:

$$\lambda = (2, 2), \quad T_0 = \frac{24}{13}.$$

A formula for Schur functions

Choose a filling T_0 of a Young diagram λ . Define

 $\operatorname{RS}(T_0) = \operatorname{row} \operatorname{stabilizer} \operatorname{of} T_0$;

 $CS(T_0) = column stabilizer of T_0.$

$$\lambda = (2,2), \quad T_0 = \frac{24}{13}$$

$$RS(T_0) = \{ id, (1 3), (2 4), (1 3)(2 4) \}$$
$$CS(T_0) = \{ id, (1 2), (3 4), (1 2)(3 4) \}$$

A formula for Schur functions

Choose a filling T_0 of a Young diagram λ . Define

 $RS(T_0) = row stabilizer of T_0;$

 $CS(T_0) = column stabilizer of T_0.$

$$\lambda = (2,2), \quad T_0 = \frac{2}{13}$$

$$RS(T_0) = \{ id, (1 3), (2 4), (1 3)(2 4) \}$$
$$CS(T_0) = \{ id, (1 2), (3 4), (1 2)(3 4) \}$$

Proposition (folklore? Hanlon, 1988?)

$$H_{\lambda} s_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0) \\ \tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \, p_{\mathsf{type}(\sigma\tau)}$$

(type = cycle-type)

Hanlon's conjecture

Conjecture (Hanlon, 1988)

There exists a weight function $(\sigma, \tau) \mapsto w(\sigma, \tau)$ (that fulfills some technical conditions) such that

$$J_{\lambda}^{(\alpha)} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0)\\\tau \in \mathrm{CS}(T_0)}} \alpha^{w(\sigma,\tau)} \varepsilon(\tau) \, p_{\mathsf{type}(\sigma\tau)}$$

Hanlon's conjecture

Conjecture (Hanlon, 1988)

There exists a weight function $(\sigma, \tau) \mapsto w(\sigma, \tau)$ (that fulfills some technical conditions) such that

$$J_{\lambda}^{(\alpha)} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0)\\\tau \in \mathrm{CS}(T_0)}} \alpha^{w(\sigma,\tau)} \varepsilon(\tau) \, p_{\mathsf{type}(\sigma\tau)}$$

The case $\alpha = 2$

Definition

A pair-partition of 2n is a partition of $[2n] = \{1, ..., 2n\}$ into 2-element sets.

Let λ be a Young diagram and \mathcal{T}_0 a fixed filling of $2\lambda.$ Denote:

- RS⁽²⁾(T₀) = set of pair-partitions that match elements in the same row.
- $CS^{(2)}(T_0) = set of pair-partitions that match elements in column <math>2i + 1$ with elements in column 2i + 2.

Let $\lambda = (2, 1)$ and $T_0 = \frac{56}{1234}$. Then

 $\begin{aligned} &\operatorname{RS}^{(2)}(\mathcal{T}_0) = \{12|34|56, \ 13|24|56, \ 14|23|56\} \\ &\operatorname{CS}^{(2)}(\mathcal{T}_0) = \{12|34|56, \ 16|34|25\} \end{aligned}$

The case $\alpha = 2$

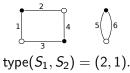
Theorem (F., Śniady, 2011)

$$J_{\lambda}^{(2)} = \sum_{\substack{S_1 \in \mathrm{RS}^{(2)}(T_0) \\ S_2 \in \mathrm{CS}^{(2)}(T_0)}} \varepsilon^{(2)}(S_2) \, p_{\mathrm{type}(S_1, S_2)}$$

Type of a pair of pair-partitions:

$$S_1 = 12|34|56;$$

 $S_2 = 13|24|56.$



 $\varepsilon^{(2)}(T)$: analog of the sign of permutations.

Transition

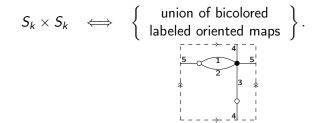
- For α = 2, rather than adding a weight, it is more natural to work with different combinatorial objects: pair-partitions instead of permutations.
- We will see that both formulas (for $\alpha = 1$ and $\alpha = 2$) have interpretations in terms of graphs embedded in surfaces.

Classical bijection between

$$S_k imes S_k \iff$$

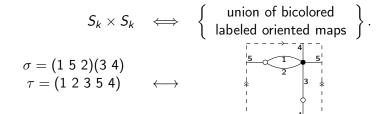
 $\left\{ \begin{array}{l} \text{union of bicolored} \\ \text{labeled oriented maps} \end{array} \right\}.$

Classical bijection between

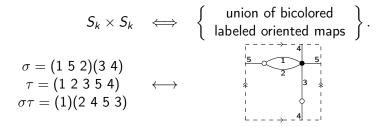


map = connected graph embedded in a surface (up to isomorphism with a technical condition). oriented (map) = in an oriented surfaces. labeled = edges labeled from 1 to k.

Classical bijection between



Classical bijection between



• cycle-type of $\sigma \leftrightarrow$ white vertex degree distribution of the map(s);

- cycle-type of $\tau \leftrightarrow$ black vertex degree distribution of the map(s);
- cycle-type of the product $\sigma \tau \leftrightarrow$ face degree distribution of the map(s).

Proposition (folklore? Hanlon, 1988?) reformulated

$$H_{\lambda}s_{\lambda} = \sum_{M} (-1)^{k-|V_{\bullet}(M)|} p_{\mathsf{face-type}(M)},$$

where the sum runs over union of oriented labeled bicolored maps M with $V_{\circ}(M) \leq \text{Rows}(T)$ and $V_{\bullet}(M) \leq \text{Cols}(T)$.

 \leq : refinement of set-partitions. (face-type = face degree distribution).

Proposition (folklore? Hanlon, 1988?) reformulated

$$H_{\lambda}s_{\lambda} = \sum_{M} (-1)^{k-|V_{\bullet}(M)|} p_{\mathsf{face-type}(M)},$$

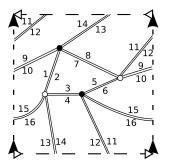
where the sum runs over union of oriented labeled bicolored maps M with $V_{\circ}(M) \leq \text{Rows}(T)$ and $V_{\bullet}(M) \leq \text{Cols}(T)$.

 \leq : refinement of set-partitions. (face-type = face degree distribution).

The case $\alpha = 2$ admits a similar reformulation, since there is a bijection between union of bicolored labeled non-oriented maps and triples of pair-partitions.

non-oriented maps = connected graph embedded in non-oriented surface.

Maps on non-oriented surfaces and triple of pair-partitions



A map on the Klein bottle.

- $S_0 = 1, 2|3, 4|5, 6|7, 8|9, 10|11, 12|13, 14|15, 16;$
- $S_1 = 1, 15|2, 3|4, 14|13, 16|5, 7|6, 10|8, 11|9, 12;$
- $S_2 = 1, 10|2, 7|8, 13|9, 14|3, 5|4, 12|6, 15|11, 16.$

Transition

Goulden-Jackson's conjecture

Frobenius counting formula

Theorem (Frobenius counting formula)

Let μ , ν and ρ be partitions of *n*. Let $C^{\rho}_{\mu,\nu}$ the number of pairs (σ,τ) such that

- σ and τ have cycle-type μ and $\nu,$ respectively;
- $\sigma \tau$ has cycle-type ρ .

Then

$$|C^{\rho}_{\mu,\nu}| = \frac{n!}{z_{\mu} z_{\nu} z_{\rho}} \sum_{\lambda \vdash n} H_{\lambda} \chi^{\lambda}_{\mu} \chi^{\lambda}_{\nu} \chi^{\lambda}_{\rho}.$$

 χ^{λ}_{μ} : irreducible character value of symmetric groups.

This is a classical result of representation theory.

Frobenius counting formula

Theorem (Frobenius counting formula)

Let μ , ν and ρ be partitions of *n*. Let $C^{\rho}_{\mu,\nu}$ the number of pairs (σ, τ) such that

- σ and τ have cycle-type μ and $\nu,$ respectively;
- $\sigma \tau$ has cycle-type ρ .

Then

$$|C^{\rho}_{\mu,\nu}| = \frac{n!}{z_{\mu} \, z_{\nu} \, z_{\rho}} \sum_{\lambda \vdash n} H_{\lambda} \, \chi^{\lambda}_{\mu} \, \chi^{\lambda}_{\nu} \, \chi^{\lambda}_{\rho}.$$

Recall that $s_{\lambda} = \sum_{\mu} \chi_{\mu}^{\lambda} \frac{p_{\mu}}{z_{\mu}}$. Consider three disjoint infinite alphabets x, y and z. Then Frobenius formula can be written as

$$\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) s_{\lambda}(\mathbf{z}) = \sum_{\mu,\nu,\rho \vdash n} \frac{|C_{\mu,\nu}^{\rho}|}{n!} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z}).$$

V. Féray (Zurich)

Frobenius counting formula and oriented maps

$$\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) s_{\lambda}(\mathbf{z}) = \sum_{\mu, \nu, \rho \vdash n} \frac{|C_{\mu, \nu}^{\rho}|}{n!} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z}).$$

But $|C^{\rho}_{\mu,\nu}|$ counts union of bicolored oriented maps with (vertex/face) degree distributions μ , ν and ρ .

Frobenius counting formula and oriented maps

$$\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) s_{\lambda}(\mathbf{z}) = \sum_{\mu, \nu, \rho \vdash n} \frac{|C_{\mu, \nu}^{\rho}|}{n!} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z}).$$

But $|C^{\rho}_{\mu,\nu}|$ counts union of bicolored oriented maps with (vertex/face) degree distributions μ , ν and ρ .

If *n* is odd and $\nu = (2^{n/2})$, we count bicolored maps with white vertices of degree 2. The latter are in easy bijection with (monocolored) maps

Frobenius counting formula and oriented maps

$$\sum_{\lambda \vdash n} H_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) s_{\lambda}(\mathbf{z}) = \sum_{\mu, \nu, \rho \vdash n} \frac{|C_{\mu, \nu}^{\rho}|}{n!} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z}).$$

But $|C^{\rho}_{\mu,\nu}|$ counts union of bicolored oriented maps with (vertex/face) degree distributions μ , ν and ρ .

We would prefer to count connected objects rather than unions!

$$\log\left(\sum_{n\geq 0} t^n \sum_{\lambda\vdash n} H_\lambda s_\lambda(\mathbf{x}) s_\lambda(\mathbf{y}) s_\lambda(\mathbf{z})\right) = \sum_{n\geq 1} \frac{t^n}{n!} \left(\sum_{\mu,\nu,\rho} b_{\mu,\nu,\rho} p_\mu(\mathbf{x}) p_\nu(\mathbf{y}) p_\rho(\mathbf{z})\right)$$

where $b_{\mu,\nu,\rho}$ counts bicolored oriented maps with (vertex/face) degree distributions μ , ν and ρ .

V. Féray (Zurich)

The case $\alpha = 2$

Theorem (Goulden, Jackson, 1996)

$$\log\left(\sum_{\substack{n\geq 0\\\lambda\vdash n}} t^n \frac{J_{\lambda}^{(2)}(\mathbf{x})J_{\lambda}^{(2)}(\mathbf{y})J_{\lambda}^{(2)}(\mathbf{z})}{\langle J_{\lambda}^{(2)}, J_{\lambda}^{(2)} \rangle_2}\right) = \sum_{n\geq 1} \frac{t^n}{n!} \left(\sum_{\mu,\nu,\rho} b_{\mu,\nu,\rho}^{(2)} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z})\right)$$

where $b_{\mu,\nu,\rho}^{(2)}$ counts bicolored labeled non-oriented maps with (vertex/face) degree distributions μ , ν and ρ .

The case $\alpha = 2$

Theorem (Goulden, Jackson, 1996)

$$\log\left(\sum_{\substack{n\geq 0\\\lambda\vdash n}} t^n \frac{J_{\lambda}^{(2)}(\mathbf{x})J_{\lambda}^{(2)}(\mathbf{y})J_{\lambda}^{(2)}(\mathbf{z})}{\langle J_{\lambda}^{(2)}, J_{\lambda}^{(2)} \rangle_2}\right) = \sum_{n\geq 1} \frac{t^n}{n!} \left(\sum_{\mu,\nu,\rho} b_{\mu,\nu,\rho}^{(2)} p_{\mu}(\mathbf{x}) p_{\nu}(\mathbf{y}) p_{\rho}(\mathbf{z})\right)$$

where $b_{\mu,\nu,\rho}^{(2)}$ counts bicolored labeled non-oriented maps with (vertex/face) degree distributions μ , ν and ρ .

And for a generic value of α ?

Define $b^{(lpha)}_{\mu,
u,
ho}$ by

$$\log\left(\sum_{\substack{n\geq 0\\\lambda\vdash n}} t^n \frac{J_{\lambda}^{(\alpha)}(\mathsf{x}) J_{\lambda}^{(\alpha)}(\mathsf{y}) J_{\lambda}^{(\alpha)}(\mathsf{z})}{\left\langle J_{\lambda}^{(\alpha)}, J_{\lambda}^{(\alpha)} \right\rangle_{\alpha}}\right) = \sum_{n\geq 1} \frac{t^n}{n!} \left(\sum_{\mu,\nu,\rho} b_{\mu,\nu,\rho}^{(\alpha)} p_{\mu}(\mathsf{x}) p_{\nu}(\mathsf{y}) p_{\rho}(\mathsf{z})\right)$$

Conjecture (Goulden-Jackson, 1996)

- **9** $b^{(\alpha)}_{\mu,\nu,\rho}$ is a polynomial with nonnegative coefficient in $\beta := \alpha 1$;
- **2** More precisely, there exists a statistics w(M) with nonnegative integer values such that

$$b^{(lpha)}_{\mu,
u,
ho}=\sum_M (lpha-1)^{w(M)},$$

where the sum runs over bicolored labeled non-oriented maps with (vertex/face) degree distributions μ , ν and ρ .

Some results on Goulden-Jackson's conjecture

Brown-Jackson (2007)/Lacroix (2009)/Kanunnikov-Vassilieva (2014): different special cases using different weights.

Some results on Goulden-Jackson's conjecture

- Brown-Jackson (2007)/Lacroix (2009)/Kanunnikov-Vassilieva (2014): different special cases using different weights.
- **2** Dołęga-Féray (in preparation): $b_{\mu,\nu,\rho}^{(\alpha)}$ is a polynomial in α .

Transition

Lassale's conjecture

The case $\alpha = 1$

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition μ of k without parts equal to 1,

$$\left[p_{\mu 1^{n-k}}
ight](\mathcal{H}_{\lambda}s_{\lambda})=rac{(-1)^k}{k!}\sum_M(-1)^{|V_\circ(M)|}\mathcal{N}_M(\lambda),$$

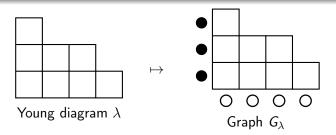
where the sum runs over union of bicolored labeled oriented maps of face-type μ and $N_M(\lambda)$ is defined below.

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition μ of k without parts equal to 1,

$$\left[p_{\mu 1^{n-k}}
ight](\mathcal{H}_{\lambda}s_{\lambda})=rac{(-1)^k}{k!}\sum_M(-1)^{|V_\circ(M)|}\mathcal{N}_M(\lambda),$$

where the sum runs over union of bicolored labeled oriented maps of face-type μ and $N_M(\lambda)$ is defined below.

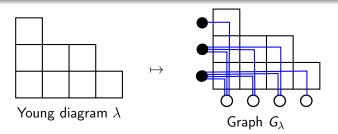


Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition μ of k without parts equal to 1,

$$\left[p_{\mu 1^{n-k}}
ight](\mathcal{H}_{\lambda}s_{\lambda})=rac{(-1)^k}{k!}\sum_M(-1)^{|V_\circ(M)|}\mathcal{N}_M(\lambda),$$

where the sum runs over union of bicolored labeled oriented maps of face-type μ and $N_M(\lambda)$ is defined below.

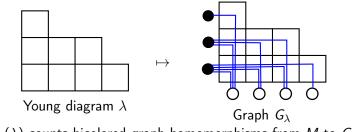


Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition μ of k without parts equal to 1,

$$\left[p_{\mu 1^{n-k}}
ight](\mathcal{H}_{\lambda}s_{\lambda})=rac{(-1)^k}{k!}\sum_M(-1)^{|V_\circ(M)|}\mathcal{N}_M(\lambda),$$

where the sum runs over union of bicolored labeled oriented maps of face-type μ and $N_M(\lambda)$ is defined below.



Then $N_M(\lambda)$ counts bicolored graph homomorphisms from M to G_{λ} .

V. Féray (Zurich)

Theorem (F., Śniady, 2011)

For any partition μ of k,

$$ig[p_{\mu 1^{n-k}} ig] (J_{\lambda}^{(2)}) = rac{(-1)^k}{(2k)!} \sum_M (-2)^{|V_\circ(M)|} N_M(\lambda),$$

where the sum runs over union of bicolored labeled non-oriented maps of face-type $\mu.$

Lassalle's conjecture

Conjecture (Lassalle, 2009/F., Dołęga, Śniady, 2014)

To each M, we can associate a polynomial $wt_M(\gamma)$ with nonnegative coefficients such that:

$$\frac{(-1)^{\ell(\pi)}(2k!)}{2^{\ell(\mu)}\sqrt{\alpha}^{k-\ell(\mu)}} \big[p_{\mu 1^{n-k}} \big] (J_{\lambda}^{(\alpha)}) = \sum_{M} (-1)^{|V_{\bullet}(G)|} wt_{M} \left(\frac{1-\alpha}{\sqrt{\alpha}}\right) N_{M}^{(\alpha)}(\lambda),$$

where the sum runs over union of bicolored labeled non-oriented maps of face-type $\boldsymbol{\mu}$ and

$$N_M^{(\alpha)}(\lambda) := \left(\frac{1}{\sqrt{lpha}}\right)^{|V_{\bullet}(M)|} (\sqrt{lpha})^{|V_{\circ}(M)|} N_M(\lambda).$$

Partial results

- Lassalle 2009, F., Dołęga, Śniady, 2014: a weight that works for multirectangular Young diagram λ .
- F., Dołęga, 2015: polynomiality in $\gamma = \frac{1-\alpha}{\sqrt{\alpha}}$.

Partial results

- Lassalle 2009, F., Dołęga, Śniady, 2014: a weight that works for multirectangular Young diagram λ .
- F., Dołęga, 2015: polynomiality in $\gamma = \frac{1-\alpha}{\sqrt{\alpha}}$.

But our weight is not valid for a general partition λ from $\mu = (9)$.

Transition

Link between the conjectures

Hanlon and Lassalle's conjecture

In the case $\alpha = 1$ and $\alpha = 2$ the formulas for $[p_{\mu 1^{n-k}}](J_{\lambda}^{(\alpha)})$ (special cases of Lassalle's conjecture) are deduced from the formulas for $J_{\lambda}^{(\alpha)}$ (Hanlon's formula and its analogue).

But a priori no implication for general α (not even a unified way to deal with $\alpha = 1$ and $\alpha = 2$).

Goulden-Jackson's and Lassalle's conjecture

Even in the case $\alpha = 1$ and $\alpha = 2$, we do not know how to start from one result to prove the other.

Goulden-Jackson's and Lassalle's conjecture

Even in the case $\alpha = 1$ and $\alpha = 2$, we do not know how to start from one result to prove the other.

Yet, the weights solving particular cases are similar.

A recent example:

- Śniady found a formula for top-degree terms (for some unusual gradation) in Lassalle's conjecture (two weeks ago on arXiv);
- Then Dołęga proved a similar formula for top-degree terms in Goulden-Jackson conjecture (in preparation).

Transition

Proof of one result

A representation-theory free proof of Hanlon's formula for Schur functions

We want to prove:

Proposition (folklore? Hanlon, 1988?)

For any partition λ of k, there exists a constant C_{λ} such that

$$s_{\lambda} = C_{\lambda} \sum_{\substack{\sigma \in \mathrm{RS}(T_0) \\ \tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \, p_{\mathrm{type}(\sigma \tau)}.$$

Call t_{λ} the sum in the right hand-side. It is enough to show:

• triangularity:
$$t_{\lambda} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} m_{\nu}$$
.

2 orthogonality:
$$\langle t_{\lambda}, t_{\mu} \rangle = 0$$
 if $\lambda \neq \mu$.

3 is trivial, let us show 1 and 2.

Proof of triangularity: $t_{\lambda} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} n_{\nu} (1/2)$

By definition,

$$t_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(\mathcal{T}_{0}) \\ \tau \in \mathrm{CS}(\mathcal{T}_{0})}} \varepsilon(\tau) \, p_{\mathrm{type}(\sigma\tau)}.$$

We should write this in monomial basis

Proof of triangularity: $t_{\lambda} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} n_{\nu} (1/2)$

By definition,

$$t_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0)\\\tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \, p_{\mathrm{type}(\sigma\tau)}.$$

We should write this in monomial basis

$$t_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0) \\ \tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \left(\sum_{\pi \ge C(\sigma\tau)} m_{\mathrm{type}(\pi)} \right),$$

where the sum runs over set partitions π that are coarser than $\sigma\tau$. type(π): sizes of the blocks of π in nonincreasing order.

Proof of triangularity: $t_{\lambda} = \sum_{\nu \preceq_d \lambda} c_{\nu}^{\lambda} n_{\nu} (1/2)$

By definition,

$$t_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0)\\\tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \, p_{\mathrm{type}(\sigma\tau)}.$$

We should write this in monomial basis

$$t_{\lambda} = \sum_{\substack{\sigma \in \mathrm{RS}(T_0) \\ \tau \in \mathrm{CS}(T_0)}} \varepsilon(\tau) \left(\sum_{\pi \ge C(\sigma\tau)} m_{\mathrm{type}(\pi)} \right),$$

where the sum runs over set partitions π that are coarser than $\sigma\tau$. $type(\pi)$: sizes of the blocks of π in nonincreasing order. Thus,

$$t_{\lambda} = \sum_{\pi} m_{\text{type}(\pi)} \left[\sum_{\substack{\sigma \in \text{RS}(T_0), \tau \in \text{CS}(T_0) \\ C(\sigma\tau) \leq \pi}} \varepsilon(\tau) \right]$$

Proof of triangularity:
$$t_{\lambda} = \sum_{\nu \leq \lambda} c_{\nu}^{\lambda} m_{\nu} (2/2)$$

 $t_{\lambda} = \sum_{\pi} m_{\text{type}(\pi)} \left[\sum_{\substack{\sigma \in \text{RS}(T_0), \tau \in \text{CS}(T_0) \\ C(\sigma\tau) \leq \pi}} \varepsilon(\tau) \right].$

Proof of triangularity:
$$t_{\lambda} = \sum_{\nu \leq \lambda} c_{\nu}^{\lambda} m_{\nu} (2/2)$$

 $t_{\lambda} = \sum_{\pi} m_{\text{type}(\pi)} \left[\sum_{\substack{\sigma \in \text{RS}(T_0), \tau \in \text{CS}(T_0) \\ C(\sigma\tau) \leq \pi}} \varepsilon(\tau) \right].$

Lemma

If type(π) $\not\preceq_d \lambda$, then there exists *i* and *j* in the same column of T_0 (which has shape λ) and in the same block of π .

Proof of triangularity:
$$t_{\lambda} = \sum_{\nu \leq \lambda} c_{\nu}^{\lambda} m_{\nu} (2/2)$$

 $t_{\lambda} = \sum_{\pi} m_{\text{type}(\pi)} \left[\sum_{\substack{\sigma \in \text{RS}(T_0), \tau \in \text{CS}(T_0) \\ C(\sigma\tau) \leq \pi}} \varepsilon(\tau) \right].$

Lemma

If type(π) $\not\preceq_d \lambda$, then there exists *i* and *j* in the same column of T_0 (which has shape λ) and in the same block of π .

Now $\tau \leftrightarrow \tau (i,j)$ is a sign-reversing involution that shows

$$\left|\sum_{\substack{\sigma \in \mathrm{RS}(T_0), \tau \in \mathrm{CS}(T_0)\\ C(\sigma\tau) \leq \pi}} \varepsilon(\tau)\right| = 0.$$

 \rightarrow only set-partitions π with type $(\pi) \preceq_d \lambda$ have a non-zero summand. This proves triangularity.

V. Féray (Zurich)

FPSAC 2015 32 / 34

$$\langle t_{\lambda}, t_{\mu} \rangle = \sum_{\substack{\sigma \in \mathrm{RS}(T_{\lambda}) \\ \tau \in \mathrm{CS}(T_{\lambda}) \\ \tau' \in \mathrm{CS}(T_{\mu})}} \sum_{\substack{\varepsilon(\tau) \\ \varepsilon(\tau') \\ \varepsilon(\tau')$$

$$\langle t_{\lambda}, t_{\mu}
angle = \sum_{\substack{\sigma \in \mathrm{RS}(\mathcal{T}_{\lambda}) \ \sigma' \in \mathrm{RS}(\mathcal{T}_{\mu}) \\ \tau \in \mathrm{CS}(\mathcal{T}_{\lambda}) \ \tau' \in \mathrm{CS}(\mathcal{T}_{\mu})}} \varepsilon(\tau) \, \varepsilon(\tau') \, [\sigma \tau = \sigma' \tau']$$

$$\langle t_{\lambda}, t_{\mu}
angle = \sum_{\substack{\sigma \in \mathrm{RS}(T_{\lambda}) \ \sigma' \in \mathrm{RS}(T_{\mu}) \\ \tau \in \mathrm{CS}(T_{\lambda}) \ \tau' \in \mathrm{CS}(T_{\mu})}} \sum_{\varepsilon(\tau) \varepsilon(\tau') [\sigma \tau = \sigma' \tau']}$$

Lemma

If $\mu \not\preceq_d \lambda$, then there exists *i* and *j* in the same column of T_{λ} (which has shape λ) and in the same row of T_{μ} .

$$\langle t_{\lambda}, t_{\mu}
angle = \sum_{\substack{\sigma \in \mathrm{RS}(\mathcal{T}_{\lambda}) \ \sigma' \in \mathrm{RS}(\mathcal{T}_{\mu}) \\ au \in \mathrm{CS}(\mathcal{T}_{\lambda}) \ \tau' \in \mathrm{CS}(\mathcal{T}_{\mu})}} \varepsilon(\tau) \, \varepsilon(\tau') \, [\sigma \tau = \sigma' \tau']$$

Lemma

If $\mu \not\preceq_d \lambda$, then there exists *i* and *j* in the same column of T_{λ} (which has shape λ) and in the same row of T_{μ} .

In this case the following sign-reversing involution proves that $\langle t_{\lambda}, t_{\mu} \rangle = 0$.

$$(\tau, \sigma') \leftrightarrow ((i, j) \tau, \sigma'(i, j))$$

$$\langle t_{\lambda}, t_{\mu}
angle = \sum_{\substack{\sigma \in \mathrm{RS}(\mathcal{T}_{\lambda}) \ \sigma' \in \mathrm{RS}(\mathcal{T}_{\mu}) \\ \tau \in \mathrm{CS}(\mathcal{T}_{\lambda}) \ \tau' \in \mathrm{CS}(\mathcal{T}_{\mu})}} \varepsilon(\tau) \, \varepsilon(\tau') \, [\sigma \tau = \sigma' \tau']$$

Lemma

If $\mu \not\preceq_d \lambda$, then there exists *i* and *j* in the same column of T_{λ} (which has shape λ) and in the same row of T_{μ} .

In this case the following sign-reversing involution proves that $\langle t_{\lambda}, t_{\mu} \rangle = 0$.

$$(\tau, \sigma') \leftrightarrow ((i, j) \tau, \sigma'(i, j))$$

Thus $\langle t_{\lambda}, t_{\mu} \rangle = 0$ unless $\mu \preceq_{d} \lambda$. By symmetry $\langle t_{\lambda}, t_{\mu} \rangle = 0$ unless $\mu = \lambda$. We have proved orthogonality.

• A similar elementary proof works in the case $\alpha = 2$;

- A similar elementary proof works in the case $\alpha = 2$;
- If you guess the answers for other value of α , you may be able to find an analogue of Hanlon's formula for this value of α .

- A similar elementary proof works in the case $\alpha = 2$;
- If you guess the answers for other value of α , you may be able to find an analogue of Hanlon's formula for this value of α .
- If you're lucky, you may solve Lassalle's conjecture for this value of α .

- A similar elementary proof works in the case $\alpha = 2$;
- If you guess the answers for other value of α , you may be able to find an analogue of Hanlon's formula for this value of α .
- If you're lucky, you may solve Lassalle's conjecture for this value of α .
- Then it is possible that the same kind of formula gives an answer to Goulden-Jackson conjecture.

- A similar elementary proof works in the case $\alpha = 2$;
- If you guess the answers for other value of α , you may be able to find an analogue of Hanlon's formula for this value of α .
- If you're lucky, you may solve Lassalle's conjecture for this value of α .
- Then it is possible that the same kind of formula gives an answer to Goulden-Jackson conjecture.

Any guess? Weight on non-orientable surface? Sum index set depending on $\alpha?$

- A similar elementary proof works in the case $\alpha = 2$;
- If you guess the answers for other value of α , you may be able to find an analogue of Hanlon's formula for this value of α .
- If you're lucky, you may solve Lassalle's conjecture for this value of α .
- Then it is possible that the same kind of formula gives an answer to Goulden-Jackson conjecture.

Any guess? Weight on non-orientable surface? Sum index set depending on α ?

Probably some nice combinatorial/algebraic framework hidden behind all this...