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Background on (Jack) symmetric functions

Symmetric functions

partitions: (4, 3, 1) ↔ .

monomial symmetric functions

m(2,1)(x1, x2, . . . ) = x2
1 x2 + x2

2x1 + x2
1x3 + x2

3 x1 + . . .

power-sum symmetric functions

p(2,1)(x1, x2, . . . ) = (x2
1 + x2

2 + . . . )(x1 + x2 + . . . ).

Schur symmetric functions

s(2,1)(x1, x2, . . . ) = m(2,1)(x1, x2, . . . ) + 2m(13)(x1, x2, . . . ).

(defined as sum over tableaux, quotient of determinants or from
representation theory)
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Background on (Jack) symmetric functions

A characterization of Schur symmetric functions

Hall scalar product is defined by 〈pµ, pν〉 := zµδµ,ν .

Proposition

The basis (sλ) is the unique family of symmetric functions with the
following properties:

1 triangularity: sλ =
∑

ν�dλ
cλνmν ;

2 orthogonality: 〈sλ, sµ〉 = 0 if λ 6= µ;
3 normalization: 〈sλ, sλ〉 = 1 and [m(1n)]sλ > 0.

zµ: standard numerical factor;

dominance order: ν �d λ if and only if |ν| = |λ| and

for all i , ν1 + · · ·+ νi ≤ λ1 + · · · + λi .
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Background on (Jack) symmetric functions

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

ℓ(µ): length (number of parts) of the partition µ.
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Background on (Jack) symmetric functions

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

Definition

Jack polynomials J
(α)
λ is the unique family of symmetric functions with the

following properties:

1 triangularity: J
(α)
λ =

∑

ν�dλ
cλνmν ;

2 orthogonality: 〈J(α)λ , J
(α)
µ 〉 = 0 if λ 6= µ;

3 normalization:
[

m(1|λ|)

]

J
(α)
λ = 1.
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Background on (Jack) symmetric functions

Jack polynomials

Consider the following deformation of Hall scalar product:

〈pµ, pν〉α = αℓ(µ)zµδµ,ν

Definition

Jack polynomials J
(α)
λ is the unique family of symmetric functions with the

following properties:

1 triangularity: J
(α)
λ =

∑

ν�dλ
cλνmν ;

2 orthogonality: 〈J(α)λ , J
(α)
µ 〉 = 0 if λ 6= µ;

3 normalization:
[

m(1|λ|)

]

J
(α)
λ = 1.

Specialization: J
(1)
λ = Hλsλ.

Hλ: combinatorial factor (product of hooks of λ).
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Hanlon’s conjecture

Transition

Hanlon’s conjecture
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Hanlon’s conjecture In terms of permutations and pair-partitions

A formula for Schur functions

Choose a filling T0 of a Young
diagram λ.

Example:

λ = (2, 2), T0 =
2 4

1 3 .
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Hanlon’s conjecture In terms of permutations and pair-partitions

A formula for Schur functions

Choose a filling T0 of a Young
diagram λ. Define

RS(T0) = row stabilizer of T0 ;

CS(T0) = column stabilizer of T0.

Example:

λ = (2, 2), T0 =
2 4

1 3 .

RS(T0) = {id, (1 3), (2 4), (1 3)(2 4)}
CS(T0) = {id, (1 2), (3 4), (1 2)(3 4)}
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Hanlon’s conjecture In terms of permutations and pair-partitions

A formula for Schur functions

Choose a filling T0 of a Young
diagram λ. Define

RS(T0) = row stabilizer of T0 ;

CS(T0) = column stabilizer of T0.

Example:

λ = (2, 2), T0 =
2 4

1 3 .

RS(T0) = {id, (1 3), (2 4), (1 3)(2 4)}
CS(T0) = {id, (1 2), (3 4), (1 2)(3 4)}

Proposition (folklore? Hanlon, 1988?)

Hλsλ =
∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ) ptype(στ)

(type = cycle-type)
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Hanlon’s conjecture In terms of permutations and pair-partitions

Hanlon’s conjecture

Conjecture (Hanlon, 1988)

There exists a weight function (σ, τ) 7→ w(σ, τ) (that fulfills some
technical conditions) such that

J
(α)
λ =

∑

σ∈RS(T0)
τ∈CS(T0)

αw(σ,τ)ε(τ) ptype(στ)
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Hanlon’s conjecture In terms of permutations and pair-partitions

The case α = 2

Definition

A pair-partition of 2n is a partition of [2n] = {1, . . . , 2n} into 2-element
sets.

Let λ be a Young diagram and T0 a fixed filling of 2λ.
Denote:

RS
(2)(T0) = set of pair-partitions that match elements in the same

row.
CS

(2)(T0) = set of pair-partitions that match elements in column
2i + 1 with elements in column 2i + 2.

Let λ = (2, 1) and T0 =
5 6
1 2 3 4 . Then

RS
(2)(T0) = {12|34|56, 13|24|56, 14|23|56}

CS
(2)(T0) = {12|34|56, 16|34|25}
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Hanlon’s conjecture In terms of permutations and pair-partitions

The case α = 2

Theorem (F., Śniady, 2011)

J
(2)
λ =

∑

S1∈RS
(2)(T0)

S2∈CS
(2)(T0)

ε(2)(S2) ptype(S1,S2)

Type of a pair of pair-partitions:

S1 = 12|34|56;
S2 = 13|24|56.

.

. .

1

2

3

4 5 6

type(S1,S2) = (2, 1).
ε(2)(T ): analog of the sign of permutations.
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Hanlon’s conjecture In terms of permutations and pair-partitions

Transition

For α = 2, rather than adding a weight, it is more natural to work with
different combinatorial objects: pair-partitions instead of permutations.

We will see that both formulas (for α = 1 and α = 2) have
interpretations in terms of graphs embedded in surfaces.
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Hanlon’s conjecture Reformulation in terms of maps

Pair of permutations and graphs embedded in surfaces

Classical bijection between

Sk × Sk ⇐⇒
{

union of bicolored
labeled oriented maps

}

.
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Hanlon’s conjecture Reformulation in terms of maps

Pair of permutations and graphs embedded in surfaces

Classical bijection between

Sk × Sk ⇐⇒
{

union of bicolored
labeled oriented maps

}

.

3

4

4

5 51

2

map = connected graph embedded in a surface (up to isomorphism with a
technical condition).
oriented (map) = in an oriented surfaces.
labeled = edges labeled from 1 to k .
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Hanlon’s conjecture Reformulation in terms of maps

Pair of permutations and graphs embedded in surfaces

Classical bijection between

Sk × Sk ⇐⇒
{

union of bicolored
labeled oriented maps

}

.

σ = (1 5 2)(3 4)
τ = (1 2 3 5 4) ←→ 3

4

4

5 51

2
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Hanlon’s conjecture Reformulation in terms of maps

Pair of permutations and graphs embedded in surfaces

Classical bijection between

Sk × Sk ⇐⇒
{

union of bicolored
labeled oriented maps

}

.

σ = (1 5 2)(3 4)
τ = (1 2 3 5 4)

στ = (1)(2 4 5 3)
←→ 3

4

4

5 51

2

cycle-type of σ ↔ white vertex degree distribution of the map(s);

cycle-type of τ ↔ black vertex degree distribution of the map(s);

cycle-type of the product στ ↔ face degree distribution of the map(s).

V. Féray (Zurich) (I-Math, UZH)Jack and maps FPSAC 2015 12 / 34



Hanlon’s conjecture Reformulation in terms of maps

Proposition (folklore? Hanlon, 1988?) reformulated

Hλsλ =
∑

M

(−1)k−|V•(M)|pface-type(M),

where the sum runs over union of oriented labeled bicolored maps M with
V◦(M) ≤ Rows(T ) and V•(M) ≤ Cols(T ).

≤: refinement of set-partitions. (face-type = face degree distribution).
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Hanlon’s conjecture Reformulation in terms of maps

Proposition (folklore? Hanlon, 1988?) reformulated

Hλsλ =
∑

M

(−1)k−|V•(M)|pface-type(M),

where the sum runs over union of oriented labeled bicolored maps M with
V◦(M) ≤ Rows(T ) and V•(M) ≤ Cols(T ).

≤: refinement of set-partitions. (face-type = face degree distribution).

The case α = 2 admits a similar reformulation, since there is a bijection
between union of bicolored labeled non-oriented maps and triples of
pair-partitions.

non-oriented maps = connected graph embedded in non-oriented surface.
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Hanlon’s conjecture Reformulation in terms of maps

Maps on non-oriented surfaces and triple of pair-partitions

A map on the Klein bottle.

S0 = 1, 2|3, 4|5, 6|7, 8|9, 10|11, 12|13, 14|15, 16;
S1 = 1, 15|2, 3|4, 14|13, 16|5, 7|6, 10|8, 11|9, 12;
S2 = 1, 10|2, 7|8, 13|9, 14|3, 5|4, 12|6, 15|11, 16.
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Goulden-Jackson’s conjecture

Transition

Goulden-Jackson’s conjecture
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Goulden-Jackson’s conjecture α = 1

Frobenius counting formula

Theorem (Frobenius counting formula)

Let µ, ν and ρ be partitions of n. Let C ρ
µ,ν the number of pairs (σ, τ) such

that

σ and τ have cycle-type µ and ν, respectively;

σ τ has cycle-type ρ.

Then

|C ρ
µ,ν | =

n!

zµ zν zρ

∑

λ⊢n
Hλ χ

λ
µ χ

λ
ν χ

λ
ρ .

χλ
µ: irreducible character value of symmetric groups.

This is a classical result of representation theory.
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Goulden-Jackson’s conjecture α = 1

Frobenius counting formula

Theorem (Frobenius counting formula)

Let µ, ν and ρ be partitions of n. Let C ρ
µ,ν the number of pairs (σ, τ) such

that

σ and τ have cycle-type µ and ν, respectively;

σ τ has cycle-type ρ.

Then

|C ρ
µ,ν | =

n!

zµ zν zρ

∑

λ⊢n
Hλ χ

λ
µ χ

λ
ν χ

λ
ρ .

Recall that sλ =
∑

µ χ
λ
µ
pµ
zµ

. Consider three disjoint infinite alphabets x, y

and z. Then Frobenius formula can be written as
∑

λ⊢n
Hλ sλ(x)sλ(y)sλ(z) =

∑

µ,ν,ρ⊢n

|C ρ
µ,ν |
n!

pµ(x)pν(y)pρ(z).
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Goulden-Jackson’s conjecture α = 1

Frobenius counting formula and oriented maps

∑

λ⊢n
Hλsλ(x)sλ(y)sλ(z) =

∑

µ,ν,ρ⊢n

|C ρ
µ,ν |
n!

pµ(x)pν(y)pρ(z).

But |C ρ
µ,ν | counts union of bicolored oriented maps with (vertex/face)

degree distributions µ, ν and ρ.
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Goulden-Jackson’s conjecture α = 1

Frobenius counting formula and oriented maps

∑

λ⊢n
Hλsλ(x)sλ(y)sλ(z) =

∑

µ,ν,ρ⊢n

|C ρ
µ,ν |
n!

pµ(x)pν(y)pρ(z).

But |C ρ
µ,ν | counts union of bicolored oriented maps with (vertex/face)

degree distributions µ, ν and ρ.

If n is odd and ν = (2n/2), we count bicolored maps with white vertices of
degree 2. The latter are in easy bijection with (monocolored) maps

7→
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Goulden-Jackson’s conjecture α = 1

Frobenius counting formula and oriented maps

∑

λ⊢n
Hλsλ(x)sλ(y)sλ(z) =

∑

µ,ν,ρ⊢n

|C ρ
µ,ν |
n!

pµ(x)pν(y)pρ(z).

But |C ρ
µ,ν | counts union of bicolored oriented maps with (vertex/face)

degree distributions µ, ν and ρ.

We would prefer to count connected objects rather than unions!

log





∑

n≥0

tn
∑

λ⊢n
Hλsλ(x)sλ(y)sλ(z)



 =
∑

n≥1

tn

n!

(

∑

µ,ν,ρ

bµ,ν,ρ pµ(x)pν(y)pρ(z)

)

,

where bµ,ν,ρ counts bicolored oriented maps with (vertex/face) degree
distributions µ, ν and ρ.
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Goulden-Jackson’s conjecture α = 2

The case α = 2

Theorem (Goulden, Jackson, 1996)

log







∑

n≥0
λ⊢n

tn
J
(2)
λ (x)J

(2)
λ (y)J

(2)
λ (z)

〈

J
(2)
λ , J

(2)
λ

〉

2






=
∑

n≥1

tn

n!

(

∑

µ,ν,ρ

b(2)µ,ν,ρ pµ(x)pν(y)pρ(z)

)

,

where b
(2)
µ,ν,ρ counts bicolored labeled non-oriented maps with (vertex/face)

degree distributions µ, ν and ρ.
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The case α = 2

Theorem (Goulden, Jackson, 1996)
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
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,
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(2)
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degree distributions µ, ν and ρ.
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Goulden-Jackson’s conjecture General α

And for a generic value of α?

Define b
(α)
µ,ν,ρ by

log







∑

n≥0
λ⊢n

tn
J
(α)
λ (x)J

(α)
λ (y)J

(α)
λ (z)

〈

J
(α)
λ , J

(α)
λ

〉

α






=
∑

n≥1

tn

n!

(

∑

µ,ν,ρ

b(α)µ,ν,ρ pµ(x)pν(y)pρ(z)

)

.

Conjecture (Goulden-Jackson, 1996)

1 b
(α)
µ,ν,ρ is a polynomial with nonnegative coefficient in β := α− 1;

2 More precisely, there exists a statistics w(M) with nonnegative integer
values such that

b(α)µ,ν,ρ =
∑

M

(α− 1)w(M),

where the sum runs over bicolored labeled non-oriented maps with
(vertex/face) degree distributions µ, ν and ρ.
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Goulden-Jackson’s conjecture General α

Some results on Goulden-Jackson’s conjecture

1 Brown-Jackson (2007)/Lacroix (2009)/Kanunnikov-Vassilieva (2014):
different special cases using different weights.
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Goulden-Jackson’s conjecture General α

Some results on Goulden-Jackson’s conjecture

1 Brown-Jackson (2007)/Lacroix (2009)/Kanunnikov-Vassilieva (2014):
different special cases using different weights.

2 Dołęga-Féray (in preparation): b
(α)
µ,ν,ρ is a polynomial in α.
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Lassalle’s conjecture

Transition

Lassale’s conjecture
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Lassalle’s conjecture

The case α = 1

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition µ of k without parts equal to 1,
[

pµ1n−k

]

(Hλsλ) =
(−1)k

k!

∑

M

(−1)|V◦(M)|NM(λ),

where the sum runs over union of bicolored labeled oriented maps of
face-type µ and NM(λ) is defined below.
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Lassalle’s conjecture

The case α = 1

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition µ of k without parts equal to 1,
[

pµ1n−k

]

(Hλsλ) =
(−1)k

k!

∑

M

(−1)|V◦(M)|NM(λ),

where the sum runs over union of bicolored labeled oriented maps of
face-type µ and NM(λ) is defined below.

Young diagram λ

7→

Graph Gλ
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Lassalle’s conjecture

The case α = 1

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition µ of k without parts equal to 1,
[

pµ1n−k

]

(Hλsλ) =
(−1)k

k!

∑

M

(−1)|V◦(M)|NM(λ),

where the sum runs over union of bicolored labeled oriented maps of
face-type µ and NM(λ) is defined below.

Young diagram λ

7→

Graph Gλ
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Lassalle’s conjecture

The case α = 1

Theorem (F., Śniady 2011, Conjecture of Stanley)

For any partition µ of k without parts equal to 1,
[

pµ1n−k

]

(Hλsλ) =
(−1)k

k!

∑

M

(−1)|V◦(M)|NM(λ),

where the sum runs over union of bicolored labeled oriented maps of
face-type µ and NM(λ) is defined below.

Young diagram λ

7→

Graph Gλ

Then NM(λ) counts bicolored graph homomorphisms from M to Gλ.
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Lassalle’s conjecture

The case α = 2

Theorem (F., Śniady, 2011)

For any partition µ of k ,

[

pµ1n−k

]

(J
(2)
λ ) =

(−1)k

(2k)!

∑

M

(−2)|V◦(M)|NM(λ),

where the sum runs over union of bicolored labeled non-oriented maps of
face-type µ.

V. Féray (Zurich) (I-Math, UZH)Jack and maps FPSAC 2015 23 / 34



Lassalle’s conjecture

Lassalle’s conjecture

Conjecture (Lassalle, 2009/F., Dołęga, Śniady, 2014)

To each M, we can associate a polynomial wtM(γ) with nonnegative
coefficients such that:

(−1)ℓ(π)(2k!)

2ℓ(µ)
√
α
k−ℓ(µ)

[

pµ1n−k

]

(J
(α)
λ ) =

∑

M

(−1)|V•(G)|
wtM

(

1− α√
α

)

N
(α)
M (λ),

where the sum runs over union of bicolored labeled non-oriented maps of
face-type µ and

N
(α)
M (λ) :=

(

1√
α

)|V•(M)|
(√

α
)|V◦(M)|

NM(λ).
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Lassalle’s conjecture

Partial results

Lassalle 2009, F., Dołęga, Śniady, 2014: a weight that works for
multirectangular Young diagram λ.

F., Dołęga, 2015: polynomiality in γ = 1−α√
α

.
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Lassalle’s conjecture

Partial results

Lassalle 2009, F., Dołęga, Śniady, 2014: a weight that works for
multirectangular Young diagram λ.

F., Dołęga, 2015: polynomiality in γ = 1−α√
α

.

But our weight is not valid for a general partition λ from µ = (9).
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Link between the conjectures

Transition

Link between the conjectures
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Link between the conjectures

Hanlon and Lassalle’s conjecture

In the case α = 1 and α = 2 the formulas for
[

pµ1n−k

]

(J
(α)
λ ) (special cases

of Lassalle’s conjecture) are deduced from the formulas for J(α)λ (Hanlon’s
formula and its analogue).

But a priori no implication for general α (not even a unified way to deal
with α = 1 and α = 2).
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Link between the conjectures

Goulden-Jackson’s and Lassalle’s conjecture

Even in the case α = 1 and α = 2, we do not know how to start from one
result to prove the other.
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Link between the conjectures

Goulden-Jackson’s and Lassalle’s conjecture

Even in the case α = 1 and α = 2, we do not know how to start from one
result to prove the other.

Yet, the weights solving particular cases are similar.

A recent example:

Śniady found a formula for top-degree terms (for some unusual
gradation) in Lassalle’s conjecture (two weeks ago on arXiv);

Then Dołęga proved a similar formula for top-degree terms in
Goulden-Jackson conjecture (in preparation).
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Proof of one result

Transition

Proof of one result
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Proof of one result

A representation-theory free proof of Hanlon’s formula for

Schur functions

We want to prove:

Proposition (folklore? Hanlon, 1988?)

For any partition λ of k , there exists a constant Cλ such that

sλ = Cλ

∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ) ptype(στ).

Call tλ the sum in the right hand-side. It is enough to show:
1 triangularity: tλ =

∑

ν�dλ
cλνmν .

2 orthogonality: 〈tλ, tµ〉 = 0 if λ 6= µ.
3 tλ 6= 0.

3 is trivial, let us show 1 and 2.
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Proof of triangularity: tλ =

∑

ν�dλ
c
λ
ν nν (1/2)

By definition,
tλ =

∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ) ptype(στ).

We should write this in monomial basis
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Proof of triangularity: tλ =

∑

ν�dλ
c
λ
ν nν (1/2)

By definition,
tλ =

∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ) ptype(στ).

We should write this in monomial basis

tλ =
∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ)





∑

π≥C(στ)

mtype(π)



 ,

where the sum runs over set partitions π that are coarser than στ .
type(π): sizes of the blocks of π in nonincreasing order.
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Proof of triangularity: tλ =

∑

ν�dλ
c
λ
ν nν (1/2)

By definition,
tλ =

∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ) ptype(στ).

We should write this in monomial basis

tλ =
∑

σ∈RS(T0)
τ∈CS(T0)

ε(τ)





∑

π≥C(στ)

mtype(π)



 ,

where the sum runs over set partitions π that are coarser than στ .
type(π): sizes of the blocks of π in nonincreasing order.
Thus,

tλ =
∑

π

mtype(π)









∑

σ∈RS(T0),τ∈CS(T0)
C(στ)≤π

ε(τ)









.
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Proof of triangularity: tλ =

∑

ν≤λ c
λ
νmν (2/2)

tλ =
∑

π

mtype(π)









∑

σ∈RS(T0),τ∈CS(T0)
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


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Proof of one result

Proof of triangularity: tλ =

∑

ν≤λ c
λ
νmν (2/2)

tλ =
∑

π

mtype(π)









∑

σ∈RS(T0),τ∈CS(T0)
C(στ)≤π

ε(τ)









.

Lemma

If type(π) 6�d λ, then there exists i and j in the same column of T0 (which
has shape λ) and in the same block of π.
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Proof of one result

Proof of triangularity: tλ =

∑

ν≤λ c
λ
νmν (2/2)

tλ =
∑

π

mtype(π)









∑

σ∈RS(T0),τ∈CS(T0)
C(στ)≤π

ε(τ)









.

Lemma

If type(π) 6�d λ, then there exists i and j in the same column of T0 (which
has shape λ) and in the same block of π.

Now τ ↔ τ (i , j) is a sign-reversing involution that shows








∑

σ∈RS(T0),τ∈CS(T0)
C(στ)≤π

ε(τ)









= 0.

→ only set-partitions π with type(π) �d λ have a non-zero summand.
This proves triangularity.
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Proof of one result

Proof of orthogonality

〈tλ, tµ〉 =
∑

σ∈RS(Tλ)
τ∈CS(Tλ)

∑

σ′∈RS(Tµ)
τ ′∈CS(Tµ)

ε(τ) ε(τ ′) ztype(στ)[type(στ) = type(σ′τ ′)]

V. Féray (Zurich) (I-Math, UZH)Jack and maps FPSAC 2015 33 / 34



Proof of one result

Proof of orthogonality

〈tλ, tµ〉 =
∑

σ∈RS(Tλ)
τ∈CS(Tλ)

∑

σ′∈RS(Tµ)
τ ′∈CS(Tµ)

ε(τ) ε(τ ′) [στ = σ′τ ′]

V. Féray (Zurich) (I-Math, UZH)Jack and maps FPSAC 2015 33 / 34



Proof of one result

Proof of orthogonality

〈tλ, tµ〉 =
∑

σ∈RS(Tλ)
τ∈CS(Tλ)

∑

σ′∈RS(Tµ)
τ ′∈CS(Tµ)

ε(τ) ε(τ ′) [στ = σ′τ ′]

Lemma

If µ 6�d λ, then there exists i and j in the same column of Tλ (which has
shape λ) and in the same row of Tµ.
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Proof of orthogonality

〈tλ, tµ〉 =
∑

σ∈RS(Tλ)
τ∈CS(Tλ)

∑

σ′∈RS(Tµ)
τ ′∈CS(Tµ)

ε(τ) ε(τ ′) [στ = σ′τ ′]

Lemma

If µ 6�d λ, then there exists i and j in the same column of Tλ (which has
shape λ) and in the same row of Tµ.

In this case the following sign-reversing involution proves that 〈tλ, tµ〉 = 0.

(τ, σ′)↔
(

(i , j) τ, σ′ (i , j)
)

V. Féray (Zurich) (I-Math, UZH)Jack and maps FPSAC 2015 33 / 34



Proof of one result

Proof of orthogonality

〈tλ, tµ〉 =
∑

σ∈RS(Tλ)
τ∈CS(Tλ)

∑

σ′∈RS(Tµ)
τ ′∈CS(Tµ)

ε(τ) ε(τ ′) [στ = σ′τ ′]

Lemma

If µ 6�d λ, then there exists i and j in the same column of Tλ (which has
shape λ) and in the same row of Tµ.

In this case the following sign-reversing involution proves that 〈tλ, tµ〉 = 0.

(τ, σ′)↔
(

(i , j) τ, σ′ (i , j)
)

Thus 〈tλ, tµ〉 = 0 unless µ �d λ.
By symmetry 〈tλ, tµ〉 = 0 unless µ = λ.
We have proved orthogonality.
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Conclusion

Conclusion

A similar elementary proof works in the case α = 2;
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If you’re lucky, you may solve Lassalle’s conjecture for this value of α.

Then it is possible that the same kind of formula gives an answer to
Goulden-Jackson conjecture.

Any guess? Weight on non-orientable surface? Sum index set depending on
α?
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Conclusion

Conclusion

A similar elementary proof works in the case α = 2;

If you guess the answers for other value of α, you may be able to find
an analogue of Hanlon’s formula for this value of α.

If you’re lucky, you may solve Lassalle’s conjecture for this value of α.

Then it is possible that the same kind of formula gives an answer to
Goulden-Jackson conjecture.

Any guess? Weight on non-orientable surface? Sum index set depending on
α?

Probably some nice combinatorial/algebraic framework hidden behind all
this. . .
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