Asymptotics for skew standard Young tableaux via bounds for characters

Valentin Féray (joint work with Jehanne Dousse)

Institut für Mathematik, Universität Zürich

Berlin, November 2018

Outline of the talk

Denote $f^{\lambda/\mu}$ the number of standard Young tableaux of skew shape λ/μ .

General question: how does $f^{\lambda/\mu}$ behave when $|\lambda|, |\mu| \to \infty$?

Wide question: answer depends on the "shapes" of λ and μ (do they have large rows/columns? are they balanced?), the relative size of λ and μ .

Outline of the talk

Denote $f^{\lambda/\mu}$ the number of standard Young tableaux of skew shape λ/μ .

General question: how does $f^{\lambda/\mu}$ behave when $|\lambda|, |\mu| \to \infty$?

Wide question: answer depends on the "shapes" of λ and μ (do they have large rows/columns? are they balanced?), the relative size of λ and μ .

2 3 1 4 6 7 8 5 9

Our result: estimates/upper bound for *balanced* diagrams, when $|\mu| \ll |\lambda|$.

Main tool: bounds on symmetric group characters (F., Śniady, '11).

Bounds on $|SYT(\lambda/\mu)|$

Basic definitions

- A partition λ = (λ₁,..., λ_ℓ) of n is a nonincreasing list of nonnegative integers of sum |λ| = n;
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ₁ boxes in the 1st row, λ₂ in the second, and so on...;

 $\lambda = (4,4,3,1)$

Basic definitions

- A partition λ = (λ₁,..., λ_ℓ) of n is a nonincreasing list of nonnegative integers of sum |λ| = n;
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ₁ boxes in the 1st row, λ₂ in the second, and so on...;
- The skew diagram λ/μ is the collection of boxes that are in λ, but not in μ; Convention: n := |λ|, k := |μ|

Basic definitions

- A partition λ = (λ₁,..., λ_ℓ) of n is a nonincreasing list of nonnegative integers of sum |λ| = n;
- It is identified with its Young diagram, formed by left-aligned row of boxes, with λ₁ boxes in the 1st row, λ₂ in the second, and so on...;
- The skew diagram λ/μ is the collection of boxes that are in λ, but not in μ; Convention: n := |λ|, k := |μ|
- A standard Young tableau (SYT) of (skew) shape λ/μ is a filling of λ/μ with integers from 1 to $|\lambda/\mu|$ with increasing rows and columns.
- $f^{\lambda/\mu}$ is the number of SYT of shape λ/μ .

SYT of shape λ/μ

3 / 17

Berlin, 2018-11

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$

Straight tableaux

Theorem (Hook formula, Frame, Robinson, Thrall, '54)

For a straight shape λ ,

$$f^{\lambda} = n! \prod_{\Box \in \lambda} h(\Box)^{-1}$$


```
hook lengths
```

Straight tableaux

Theorem (Hook formula, Frame, Robinson, Thrall, '54)

For a straight shape λ ,

$$f^{\lambda} = n! \prod_{\Box \in \lambda} h(\Box)^{-1}$$

hook lengths

Asymptotics: Let λ be a diagram with at most $L\sqrt{n}$ rows and columns (called *balanced*). Most hook-lengths are of order $\Theta(\sqrt{n})$.

$$\log(f^{\lambda}) = \log(n!) - \frac{1}{2}n\log(n) - \sum_{\Box \in \lambda} \log\left(\frac{h(\Box)}{\sqrt{n}}\right)$$
$$= \frac{1}{2}n\log(n) + \mathcal{O}(n).$$

The O term can be written as an integral over the "limit shape" of λ .

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size *n*:

$$\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$$

(Vershik-Kerov, Logan-Shepp, '77) The limit shape is the one that maximizes the O(n) term in the previous slide.

Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size *n*:

$$\mathbb{P}(\lambda) = \frac{(f^{\lambda})^2}{n!}$$

(Vershik-Kerov, Logan-Shepp, '77) The limit shape is the one that maximizes the O(n) term in the previous slide.

Fix a *straight* shape λ and consider a uniform standard tableau T of shape λ (Romik-Pittel, Biane, Śniady, Sun, ...). Let $T^{(k)}$ be the diagram formed by boxes with entries at most k in T. Then

$$\mathbb{P}(T^{(k)} = \mu) = rac{f^{\lambda/\mu} f^{\mu}}{f^{\lambda}}.$$

 \rightarrow we need the asymptotics of $f^{\lambda/\mu}$.

• (Kerov, Stanley independently): μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i$, $\frac{\lambda'_i}{n} \rightarrow \beta_i$,

$$f^{\lambda/\mu} \sim f^{\lambda} s_{\mu}(oldsymbol{lpha}|-oldsymbol{eta}|\gamma),$$

where $s_{\mu}(\alpha | -\beta | \gamma)$ is a super Schur function (definition later) and $\gamma = 1 - \sum \alpha_i - \sum \beta_i$.

• (Kerov, Stanley independently): μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i$, $\frac{\lambda'_i}{n} \rightarrow \beta_i$,

$$f^{\lambda/\mu} \sim f^\lambda s_\mu(oldsymbollpha| - oldsymboleta|\gamma).$$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have

$$f^{\lambda/\mu} \sim rac{f^{\lambda} f^{\mu}}{|\mu|!}.$$

• (Kerov, Stanley independently): μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i$, $\frac{\lambda'_i}{n} \rightarrow \beta_i$,

$$f^{\lambda/\mu} \sim f^\lambda s_\mu(oldsymbollpha| - oldsymboleta|\gamma).$$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have

$$f^{\lambda/\mu} \sim rac{f^{\lambda} f^{\mu}}{|\mu|!}.$$

(Consequence for a uniform random Young tableau T of shape λ :

$$\mathbb{P}(T^{(k)} = \mu) \sim \frac{(f^{\mu})^2}{|\mu|!}.$$

In words: fixed size truncations are asymptotically Plancherel distributed.)

• (Kerov, Stanley independently): μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i$, $\frac{\lambda'_i}{n} \rightarrow \beta_i$,

$$f^{\lambda/\mu} \sim f^\lambda s_\mu(oldsymbollpha| - oldsymboleta|\gamma).$$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have

$$f^{\lambda/\mu} \sim rac{f^{\lambda} f^{\mu}}{|\mu|!}.$$

• (Morales-Pak-Panova-Tassy): various results for $k, n - k = \Theta(n)$, all of the form

$$\log(f^{\lambda/\mu}) = \frac{1}{2}|\lambda/\mu|\log(|\lambda/\mu|) + \mathcal{O}(n),$$

with description of the \mathcal{O} term.

• (Kerov, Stanley independently): μ fixed, $\frac{\lambda_i}{n} \rightarrow \alpha_i$, $\frac{\lambda'_i}{n} \rightarrow \beta_i$,

$$f^{\lambda/\mu} \sim f^\lambda s_\mu(oldsymbollpha| - oldsymboleta|\gamma).$$

In particular, when $\alpha_i = \beta_i = 0$ for all *i* (no rows or columns of size $\Theta(n)$), we have

$$f^{\lambda/\mu} \sim rac{f^{\lambda} f^{\mu}}{|\mu|!}.$$

• (Morales-Pak-Panova-Tassy): various results for $k, n - k = \Theta(n)$, all of the form

$$\log(f^{\lambda/\mu}) = \frac{1}{2}|\lambda/\mu|\log(|\lambda/\mu|) + \mathcal{O}(n),$$

with description of the \mathcal{O} term.

 \rightarrow we will consider intermediate ranges between μ fixed and $|\mu| = \Theta(\lambda)$.

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$

Our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda/\mu} := k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}}$.

Our results

For simplicity, we assume λ and μ balanced. We set $A_{\lambda/\mu} := k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}}$. Theorem (Dousse, F., '17)

• if
$$k = o(n^{1/3})$$
, then $A_{\lambda/\mu} = 1 + O(k^{3/2}n^{-1/2})$.

2) if
$$k = o(n^{1/2})$$
, then $A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$.

3 if
$$k = \omega(n^{1/2})$$
, then $A_{\lambda/\mu} \le \exp\left[k \log \frac{k^2}{n} + \mathcal{O}(k)\right]$

 $R = \mathcal{O}(f(k, n))$ should be understood as follows: there exists a constant C = C(L) such that $|R| \leq C f(|\mu|, n)$ for any λ and μ with at most $L\sqrt{n}$ (resp. $L\sqrt{|\mu|}$) rows and columns.

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

• Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.

How to get asymptotics for $f^{\lambda/\mu}$?

• No multiplicative formula in general;

For some family of skew-shapes, $f^{\lambda/\mu}$ admits a product formula \rightarrow convenient to see if a bound is sharp/make conjectures, but not to prove bounds...

- Recent "additive" hook formula for skew shapes (Naruse), used in this context by Morales-Pak-Panova-Tassy.
- We will use representation theory instead (as Kerov-Stanley).

V. Féray (UZH)

• Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda} : S_n \to GL(V_{\lambda})$.

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda} : S_n \to GL(V_{\lambda})$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq \bigoplus_{\nu:\,\nu\nearrow\lambda}\rho_{\nu}.$$

 $\nu \nearrow \lambda$ means $\nu \subseteq \lambda$ and $|\nu| = |\lambda| - 1$.

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq \bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu(0),\dots,\nu(r-1)\atop\nu(0)\not\sim\dots\not\sim\lambda}\rho_{\nu(0)}$$

Sequences $\mu = \nu^{(0)} \nearrow \cdots \nearrow \nu^{(r)} = \lambda$ correspond to SYT of shape λ/μ .

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq \bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu^{(0)},\ldots,\nu^{(r-1)}\atop \nu^{(0)} \nearrow \ldots \not > \lambda} \rho_{\nu^{(0)}} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k .

- Young diagrams λ ⊢ n index irreducible representations of the symmetric groups ρ_λ : S_n → GL(V_λ).
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq \bigoplus_{\nu:\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu^{(0)},\ldots,\nu^{(r-1)}\atop \nu^{(0)} \nearrow \ldots \not > \lambda} \rho_{\nu^{(0)}} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k . Corollary (Stanley, '01): $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$. χ^{λ} : character (=trace) of the representation ρ_{λ} .

- Young diagrams $\lambda \vdash n$ index irreducible representations of the symmetric groups $\rho_{\lambda} : S_n \to GL(V_{\lambda})$.
- Branching rule: restricting V_{λ} to $S_{n-1} \subseteq S_n$ we get:

$$\rho_{\lambda}/S_{n-1}\simeq \bigoplus_{\nu:\,\nu\nearrow\lambda}\rho_{\nu}.$$

Iterating the branching rule r = n - k times gives:

$$\rho_{\lambda}/S_{k} \simeq \bigoplus_{\nu^{(0)},\ldots,\nu^{(r-1)}\atop \nu^{(0)} \nearrow \ldots \not\supset \lambda} \rho_{\nu^{(0)}} = \bigoplus_{\mu: |\mu|=k} f^{\lambda/\mu} \rho_{\mu}.$$

i.e. $f^{\lambda/\mu}$ is the multiplicity of ρ_{μ} in the restriction ρ_{λ}/S_k . Corollary (Stanley, '01): $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$. \rightarrow use asymptotic results for character values to get asymptotics for $f^{\lambda/\mu}$.

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?

• (Kerov, Vershik, '81) if $\frac{\lambda_i}{i} \to \alpha_i$ and $\frac{\lambda'_i}{i} \to \beta_i$, then

$$\lim_{n \to \infty} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} = \prod_{c \in C(\sigma), |c| \ge 2} \left(\sum_{i} \alpha_i^{|c|} - \sum_{i} (-\beta_i)^{|c|} \right)$$

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?

• (Kerov, Vershik, '81) if $\frac{\lambda_i}{i} \to \alpha_i$ and $\frac{\lambda'_i}{i} \to \beta_i$, then

$$\lim_{n \to \infty} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} = \prod_{c \in C(\sigma), |c| \ge 2} \left(\sum_{i} \alpha_{i}^{|c|} - \sum_{i} (-\beta_{i})^{|c|} \right)$$
$$=: p_{\rho(\sigma)}(\alpha | -\beta | \gamma),$$

where $\rho(\sigma)$ is the cycle-type of σ and $p_k(\alpha | -\beta | \gamma) := \sum_i \alpha_i^k - \sum_i (-\beta_i)^k + \delta_{k,1}\gamma$.

(In particular $p_1(\alpha | -\beta | \gamma) = 1$ since $\gamma := 1 - \sum_i \alpha_i - \sum_i \beta_i$.)

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?

• (Kerov, Vershik, '81) if $\frac{\lambda_i}{i} \to \alpha_i$ and $\frac{\lambda'_i}{i} \to \beta_i$, then

$$\lim_{n \to \infty} \frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} = \prod_{c \in C(\sigma), |c| \ge 2} \left(\sum_{i} \alpha_{i}^{|c|} - \sum_{i} (-\beta_{i})^{|c|} \right)$$
$$=: p_{\rho(\sigma)}(\alpha | -\beta | \gamma).$$

Consequence:

$$\lim_{n\to\infty}\frac{f^{\lambda/\mu}}{f^{\lambda}}=\frac{1}{k!}\sum_{\sigma\in S_k}\chi^{\mu}(\sigma)p_{\rho(\sigma)}(\alpha|-\beta|\gamma)=:s_{\mu}(\alpha|-\beta|\gamma)$$

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

- Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?
 - (Biane, '98) if λ is balanced,

$$rac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\sim {\it Cn}^{-|\sigma|/2},$$

where $|\sigma|$ is the number of transpositions needed to factorize σ (sometimes called absolute or reflection length).

(If σ is in S_m , then $m - |\sigma|$ is the number of cycles of σ .)

We start from $f^{\lambda/\mu} = \frac{1}{k!} \sum_{\sigma \in S_k} \chi^{\lambda}(\sigma) \chi^{\mu}(\sigma)$.

If k is fixed, the number of terms in the sum is fixed and $\chi^{\mu}(\sigma)$ is fixed.

Q: what is the asymptotics of $\chi^{\lambda}(\sigma)$, for fixed σ and $n = |\lambda| \to \infty$?

• (Biane, '98) if λ is balanced,

$$rac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\sim Cn^{-|\sigma|/2}.$$

Consequence (the term $\sigma = id$ dominates asymptotically):

$$\frac{f^{\lambda/\mu}}{f^{\lambda}} = \frac{f^{\mu}}{k!} + \mathcal{O}(n^{-1/2})$$

Bounds on symmetric group characters

When k also grows to $+\infty$, we need bounds on characters on varying σ .

Theorem (F.-Śniady, '11)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}$$

 $r(\nu)$, $c(\nu)$: numbers of rows and columns of ν , respectively.

.

Bounds on symmetric group characters

When k also grows to $+\infty$, we need bounds on characters on varying σ .

Theorem (F.-Śniady, '11)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}$$

When ν is balanced, there are two regimes:

• if
$$|\sigma| = \mathcal{O}(\sqrt{m})$$
, then $\frac{\chi^{\nu}(\sigma)}{f^{\nu}} = \mathcal{O}(m^{-|\sigma|/2})$;
• if $|\sigma| = \omega(\sqrt{m})$, then $\frac{\chi^{\nu}(\sigma)}{f^{\nu}} = \mathcal{O}((|\sigma|/m)^{-|\sigma|})$.

V. Féray (UZH)

.

Bounds on symmetric group characters

When k also grows to $+\infty$, we need bounds on characters on varying σ .

Theorem (F.-Śniady, '11)

There exists a constant a > 1, such that for every partition $\nu \vdash m$ and every permutation $\sigma \in S_m$,

$$\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right| \leq \left[a \max\left(\frac{r(\nu)}{m}, \frac{c(\nu)}{m}, \frac{|\sigma|}{m}\right)\right]^{|\sigma|}$$

• For fixed $|\sigma|$, the bound is optimal up to a multiplicative constant.

 For large |σ|, it's very bad: LHS is known to be at most 1, while the RHS grows exponentially in m.

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$$
 for $k = o(n^{1/2})$

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}ig(k^{3/2}n^{-1/2}ig)
ight]$$
 for $k=o(n^{1/2})$

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and apply the previous bound on characters.

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]$$
 for $k=o(n^{1/2})$

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and apply the previous bound on characters.

- We have $|\sigma| \le k = o(n^{1/2})$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) = \mathcal{O}(n^{-|\sigma|/2});$
- for $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, we need to split the sum into 2 parts, depending on whether $|\sigma| \leq \sqrt{k}$ or not.

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]$$
 for $k = o(n^{1/2})$

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and apply the previous bound on characters.

- We have $|\sigma| \le k = o(n^{1/2})$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) = \mathcal{O}(n^{-|\sigma|/2});$
- for $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, we need to split the sum into 2 parts, depending on whether $|\sigma| \leq \sqrt{k}$ or not.

$$A_{\lambda/\mu} = S_1 + S_2 ext{ with } egin{array}{l} |S_1| \leq \sum\limits_{|\sigma| \leq \sqrt{k}} \left(rac{aL}{\sqrt{n}}
ight)^{|\sigma|} \left(rac{aL}{\sqrt{k}}
ight)^{|\sigma|}; \ |S_2| \leq \sum\limits_{|\sigma| > \sqrt{k}} \left(rac{aL}{\sqrt{n}}
ight)^{|\sigma|} \left(rac{a|\sigma|}{k}
ight)^{|\sigma|}. \end{cases}$$

V. Féray (UZH)

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]$$
 for $k = o(n^{1/2})$

$$A_{\lambda/\mu} = k! \frac{f^{\lambda/\mu}}{f^{\lambda} f^{\mu}} = \sum_{\sigma \in S_k} \left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}} \right) \left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}} \right)$$

and apply the previous bound on characters.

- We have $|\sigma| \le k = o(n^{1/2})$, so we always have $\left(\frac{\chi^{\lambda}(\sigma)}{f^{\lambda}}\right) = \mathcal{O}(n^{-|\sigma|/2});$
- for $\left(\frac{\chi^{\mu}(\sigma)}{f^{\mu}}\right)$, we need to split the sum into 2 parts, depending on whether $|\sigma| \leq \sqrt{k}$ or not.

$$A_{\lambda/\mu} = S_1 + S_2 \text{ with } \begin{cases} |S_1| \leq \sum_{|\sigma| \leq \sqrt{k}} \left(\frac{aL}{\sqrt{n}}\right)^{|\sigma|} \left(\frac{aL}{\sqrt{k}}\right)^{|\sigma|};\\ |S_2| \leq \sum_{|\sigma| > \sqrt{k}} \left(\frac{aL}{\sqrt{n}}\right)^{|\sigma|} \left(\frac{a|\sigma|}{k}\right)^{|\sigma|}. \end{cases}$$

We need to control the number of σ with a given value of $|\sigma|$.

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right]$$
 for $k = o(n^{1/2})$

Lemma (F., Śniady, '11) For all $k, i \in \mathbb{N}$, we have

$$\# \{ \sigma \in S_k : |\sigma| = i \} \le \frac{k^{2i}}{i!}.$$

Proof:

$$\# \{ \sigma \in S_k : |\sigma| = i \} = [x^i](x+1)\cdots((k-1)x+1)$$

$$\leq [x^i](kx+1)^k = \binom{k}{i}k^i \leq \frac{k^{2i}}{i!}. \quad \Box$$

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)
ight]$$
 for $k = o(n^{1/2})$

Lemma (F., Śniady, '11) For all $k, i \in \mathbb{N}$, we have

$$\# \{ \sigma \in S_k : |\sigma| = i \} \le \frac{k^{2i}}{i!}.$$

We therefore have

$$|S_1| \le \sum_{i=0}^{\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^i \left(\frac{aL}{\sqrt{k}}\right)^i$$

This is a truncated sum of an exponential series $\exp(Ck^{3/2}n^{-1/2})$.

Proof that
$$A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}
ight)
ight]$$
 for $k = o(n^{1/2})$

Lemma (F., Śniady, '11) For all $k, i \in \mathbb{N}$, we have

$$\# \{ \sigma \in S_k : |\sigma| = i \} \le \frac{k^{2i}}{i!}.$$

We therefore have

$$|S_1| \le \sum_{i=0}^{\sqrt{k}} \frac{k^{2i}}{i!} \left(\frac{aL}{\sqrt{n}}\right)^i \left(\frac{aL}{\sqrt{k}}\right)^i$$

This is a truncated sum of an exponential series $\exp(Ck^{3/2}n^{-1/2})$.

Similarly, S_2 can be bound by the sum of a convergent geometric series $\sum_{i>\sqrt{k}} (C'kn^{-1/2})^i \approx (C'kn^{-1/2})^{\sqrt{k}}$.

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$

Improving the bounds?

• We proved: when $k = o(n^{1/2})$, $A_{\lambda/\mu} \le \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right].$

Moreover, we can find families of shapes λ/μ with $k = n^{\alpha}$, (for various $\alpha \in (0, 1/2)$) for which $\log(A_{\lambda/\mu})$ is of order $\Theta(k^{3/2}n^{-1/2})$. \rightarrow This bound is "sharp".

Improving the bounds?

• We proved: when $k = o(n^{1/2})$, $A_{\lambda/\mu} \leq \exp\left[\mathcal{O}\left(k^{3/2}n^{-1/2}\right)\right].$

Moreover, we can find families of shapes λ/μ with $k = n^{\alpha}$, (for various $\alpha \in (0, 1/2)$) for which $\log(A_{\lambda/\mu})$ is of order $\Theta(k^{3/2}n^{-1/2})$. \rightarrow This bound is "sharp".

• When $k = \omega(n^{1/2})$, we proved $A_{\lambda/\mu} \le \exp\left[k \log \frac{k^2}{n} + \mathcal{O}(k)\right]$. Experimentally, $\log(A_{\lambda/\mu})$ is again at most of order $\Theta(k^{3/2}n^{-1/2})$.

Conjecture (Dousse, F., '17)

There exists C = C(L) such that for any balanced λ and μ , we have $\exp\left[-C k^{3/2} n^{-1/2}\right] \leq A_{\lambda/\mu} \leq \exp\left[C k^{3/2} n^{-1/2}\right],$

- For $k = o(n^{1/3})$, this corresponds to our result;
- For $k = o(n^{1/2})$, we only have the upper bound;
- For k = ω(n^{1/2}), we only have a weaker upper bound (and no lower bound).

Limits of the character approach

• Not suited for lower bounds;

Limits of the character approach

- Not suited for lower bounds;
- Assume $k = \omega(n^{1/2})$. Call $U_{\mathsf{R}}(\sigma, \nu)$ (resp. $U_{\mathsf{LS}}(\sigma, \nu)$ and $U_{\mathsf{FS}}(\sigma, \nu)$) the upper bounds of Roichman (resp. Larsen-Shalev and F.-Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

$$U_{\mathsf{best}}(\sigma,
u) = \min \left(U_{\mathsf{R}}(\sigma,
u), U_{\mathsf{LS}}(\sigma,
u), U_{\mathsf{FS}}(\sigma,
u)
ight),$$

i.e. we consider always the best available upper bound.

Limits of the character approach

- Not suited for lower bounds;
- Assume $k = \omega(n^{1/2})$. Call $U_{\mathsf{R}}(\sigma, \nu)$ (resp. $U_{\mathsf{LS}}(\sigma, \nu)$ and $U_{\mathsf{FS}}(\sigma, \nu)$) the upper bounds of Roichman (resp. Larsen-Shalev and F.-Śniady) for $\left|\frac{\chi^{\nu}(\sigma)}{f^{\nu}}\right|$ and set

$$U_{\mathsf{best}}(\sigma,
u) = \min \big(U_{\mathsf{R}}(\sigma,
u), U_{\mathsf{LS}}(\sigma,
u), U_{\mathsf{FS}}(\sigma,
u) \big),$$

i.e. we consider always the best available upper bound.

Proposition (Dousse, F.,'17)

$$\sum_{\sigma \in S_k} U_{best}(\sigma, \lambda) U_{best}(\sigma, \mu) \geq \exp\left[k \log \frac{k^2}{n} + \mathcal{O}(k)\right]$$

 \rightarrow even combining various bounds from the literature does not improve our result.

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$

Symmetric shapes

Conjecture (Dousse, F.)

There exists C = C(L) such that for any balanced λ and μ with either $\lambda' = \lambda$ or $\mu' = \mu$, we have

$$\expig[-\mathit{Ck}^2\mathit{n}^{-1}ig] \leq \mathsf{A}_{\lambda/\mu} \leq \expig[\mathit{Ck}^2\mathit{n}^{-1}ig].$$

- Surprising from a combinatorial point of view; why does the symmetry of λ or μ change something?
- We can prove it for fixed k, but not even for $k = o(n^{1/3})$. It would require sharper bounds on self-conjugate characters.

Symmetric shapes

Conjecture (Dousse, F.)

There exists C = C(L) such that for any balanced λ and μ with either $\lambda' = \lambda$ or $\mu' = \mu$, we have

$$\expig[-\mathit{Ck}^2\mathit{n}^{-1}ig] \leq \mathsf{A}_{\lambda/\mu} \leq \expig[\mathit{Ck}^2\mathit{n}^{-1}ig].$$

- Surprising from a combinatorial point of view; why does the symmetry of λ or μ change something?
- We can prove it for fixed k, but not even for $k = o(n^{1/3})$. It would require sharper bounds on self-conjugate characters.

Thank you for your attention!

V. Féray (UZH)

Bounds on $|SYT(\lambda/\mu)|$