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N
Outline of the talk

Denote f*/# the number of standard Young tableaux
of skew shape \/ .

General question: how does f** behave when 2|3]

[Al, [pe| — 007 111416]
7.8

Wide question: answer depends on the “shapes” of \ 1519

and p (do they have large rows/columns? are they
balanced?), the relative size of A and p.
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Outline of the talk

Denote f# the number of standard Young tableaux
of skew shape \/ .

General question: how does f** behave when 2|3]

Al |p| — 007 111416]
7.8

Wide question: answer depends on the “shapes” of \ 1519

and p (do they have large rows/columns? are they
balanced?), the relative size of A and p.

Our result: estimates/upper bound for balanced diagrams, when |u| < |A|.

Main tool: bounds on symmetric group characters (F., Sniady, '11).
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Basic definitions

@ A partition A = (A1,...,\¢) of nis a
nonincreasing list of nonnegative integers of
sum |A| = n;

@ It is identified with its Young diagram, formed
by left-aligned row of boxes, with A; boxes in
the 1st row, \> in the second, and so on. . .;

A=(4,4,31)
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Basic definitions

@ A partition A = (A1,...,\¢) of nis a
nonincreasing list of nonnegative integers of
sum |A| = n;

@ It is identified with its Young diagram, formed A= (4,4,3,1)
by left-aligned row of boxes, with A; boxes in T
the 1st row, \> in the second, and so on. . .;

@ The skew diagram \/pu is the collection of
boxes that are in A, but not in y; L]

Convention: n:= ||, k := |u| M= (4,4,3,1)/(2,2,1)
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Basic definitions

@ A partition A = (A1,...,\¢) of nis a
nonincreasing list of nonnegative integers of
sum |A| = n;

@ It is identified with its Young diagram, formed A= (4,4,3,1)
by left-aligned row of boxes, with A; boxes in T
the 1st row, \> in the second, and so on. . .;

@ The skew diagram \/pu is the collection of

boxes that are in A, but not in y; L]

Convention: n:= ||, k := |u| M= (4,4,3,1)/(2,2,1)
@ A standard Young tableau (SYT) of (skew) 2|5

shape \/p is a filling of A/ with integers from 37

1 to |A/u| with increasing rows and columns. 116

4]

o 1 is the number of SYT of shape \/p. SYT of shape A/
Bounds on | SYT(\/p)| Berlin, 2018-11 3/17



|
Straight tableaux

Theorem (Hook formula, Frame, Robinson, Thrall,
'54)
For a straight shape X,

A =n [] H(O)!

Cex hook lengths
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|
Straight tableaux

Theorem (Hook formula, Frame, Robinson, Thrall,
'54)

For a straight shape X,
A =n [] H(O)!

Cex hook lengths

v

Asymptotics: Let A be a diagram with at most L+/n rows and columns
(called balanced). Most hook-lengths are of order ©(1/n).

Iog(fA) = log(n!) — %nlog(n) — E log (—h\(/Dﬁ))
e
= 1nlog(n) + O(n).

The O term can be written as an integral over the “limit shape” of \.
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|
Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:
(f)\)2
n!
(Vershik-Kerov, Logan-Shepp, '77) The limit shape is the one that
maximizes the O(n) term in the previous slide.

P(\) =
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|
Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:
(f)\)2
n!

P(\) =

(Vershik-Kerov, Logan-Shepp, '77) The limit shape is the one that
maximizes the O(n) term in the previous slide.

Fix a straight shape \ and consider a uniform standard tableau T of shape
A (Romik-Pittel, Biane, Sniady, Sun, ...). Let T(K) be the diagram formed
by boxes with entries at most k in T. Then

N B FR

— we need the asymptotics of /4,
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Asymptotics for [f*#|: previous results
o (Kerov, Stanley independently): u fixed, % — aj, %7 — Bi,
A~ (el - Bly),

where s, (a| — B|v) is a super Schur function (definition later) and

y=1-=> ai—> 5.
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Asymptotics for [f*#|: previous results

o (Kerov, Stanley independently): u fixed, % — aj, %7 — Bi,
P~ (el - Bl).

In particular, when o; = 8; = 0 for all / (no rows or columns of size
©(n)), we have
VI AP
-
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Asymptotics for [f*#|: previous results

A

n

A~ Py (al = B1).

o (Kerov, Stanley independently): p fixed, 22 — «, /\7: — Bi,

In particular, when o; = 8; = 0 for all / (no rows or columns of size
©(n)), we have
VI AP
-

(Consequence for a uniform random Young tableau T of shape A:

(k) — ) ~ ()2
POT = 1) ~

In words: fixed size truncations are asymptotically Plancherel

distributed.)
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Asymptotics for [f*#|: previous results

o (Kerov, Stanley independently): u fixed, Ay o, ; — Bi,
. Py (ol - B1).

In particular, when o; = 8; = 0 for all / (no rows or columns of size

©(n)), we have i P
]t

@ (Morales-Pak-Panova-Tassy): various results for k, n — k = ©(n), all
of the form

log(F/*) = 3|/l log(|1A\/ul) + O(n),
with description of the O term.
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Asymptotics for [f*#|: previous results

o (Kerov, Stanley independently): u fixed, Ay o, ; — Bi,
. Py (ol - B1).

In particular, when o; = 8; = 0 for all / (no rows or columns of size

©(n)), we have
M1~ I
!

@ (Morales-Pak-Panova-Tassy): various results for k, n — k = ©(n), all
of the form

log(F/*) = 3|/l log(|1A\/ul) + O(n),
with description of the O term.

— we will consider intermediate ranges between i fixed and |u| = ©()).
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Our results

A 1

For simplicity, we assume A and y balanced. We set Ay, := k! 7.
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Our results

A 1

For simplicity, we assume A and y balanced. We set Ay, := k! 7.

Theorem (Dousse, F., '17)
© ifk = o(n'/3), then Ay, =1+ 0k,

@ if k= o(n'/?), then Ay, < exp [O(k3/2n_1/ 2)} .

Q if k = w(n'/?), then Axjp < exp [k log k—nz + O(k)].

R = O(f(k, n)) should be understood as follows: there exists a constant
C = C(L) such that |R| < C f(|ul, n) for any X and p with at most Ly/n

(resp. L+/|p|) rows and columns.
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|
How to get asymptotics for £/#7?

@ No multiplicative formula in general;
For some family of skew-shapes, f*/* admits a product formula
— convenient to see if a bound is sharp/make conjectures, but not to
prove bounds. ..
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|
How to get asymptotics for £/#7?

@ No multiplicative formula in general;
For some family of skew-shapes, f*/* admits a product formula
— convenient to see if a bound is sharp/make conjectures, but not to
prove bounds. ..

@ Recent “additive” hook formula for skew shapes (Naruse), used in this
context by Morales-Pak-Panova-Tassy.
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|
How to get asymptotics for £/#7?

@ No multiplicative formula in general;
For some family of skew-shapes, f*/* admits a product formula
— convenient to see if a bound is sharp/make conjectures, but not to
prove bounds. ..

@ Recent “additive” hook formula for skew shapes (Naruse), used in this
context by Morales-Pak-Panova-Tassy.

@ We will use representation theory instead (as Kerov-Stanley).

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 8 /17



Branching rule and FA u

@ Young diagrams \ - n index irreducible representations of the
symmetric groups py : S, — GL(V)).
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Branching rule and FA u

@ Young diagrams \ - n index irreducible representations of the
symmetric groups py : S, — GL(V)).
@ Branching rule: restricting V) to S,_1 C S,, we get:
P /Sn—l =~ @ Puv-
viv SA
v /*Ameansv C Aand |v| = |\ — 1.

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 9 /17



-
Branching rule and f/#
@ Young diagrams \ - n index irreducible representations of the

symmetric groups py : S, — GL(V)).
@ Branching rule: restricting V) to S,_1 C S,, we get:

pA/Sn—lg @ Puv-
viv SA

Iterating the branching rule r = n — k times gives:

/S~ B ro

AAAAA

Sequences p = (0 ... (1) = X correspond to SYT of shape A p.
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Branching rule and FA u

@ Young diagrams \ - n index irreducible representations of the
symmetric groups py : S, — GL(V)).
@ Branching rule: restricting V) to S,_1 C S,, we get:
P /Sn—l =~ @ Puv-
viv SA
Iterating the branching rule r = n — k times gives:

/S~ B o= P

v(0) . (r=1) W |u|=k

AAAAA

i.e. fMH is the multiplicity of p,, in the restriction py /Sk.
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Branching rule and FA u

@ Young diagrams \ - n index irreducible representations of the
symmetric groups py : S, — GL(V)).
@ Branching rule: restricting V) to S,_1 C S,, we get:
P /Sn—l =~ @ Puv-
viv SA
Iterating the branching rule r = n — k times gives:

/S~ B o= P

v(0) . (r=1) W |u|=k

AAAAA

i.e. fMH is the multiplicity of p,, in the restriction py /Sk.

Corollary (Stanley, '01): V¢ =L Y oes, Mo )xH (o).
x*: character (=trace) of the representation pj.
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Branching rule and FA u

@ Young diagrams \ - n index irreducible representations of the
symmetric groups py : S, — GL(V)).
@ Branching rule: restricting V) to S,_1 C S,, we get:
P /Sn—l =~ @ Puv-
viv SA
Iterating the branching rule r = n — k times gives:

/S~ B o= P

v(0) . (r=1) W |u|=k

AAAAA

i.e. fMH is the multiplicity of p,, in the restriction py /Sk.

Corollary (Stanley, '01): V¢ =L Y oes, Mo )xH (o).
—» use asymptotic results for character values to get asymptotics for /.

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 9 /17



|
Warm up: fixed k asymptotics (Kerov-Stanley)

We start from /1 = L Zoesk Mao)x* (o).
If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed.

Q: what is the asymptotics of x*(), for fixed o and n = |A\| = 00?
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from fA/# = k. desk MNo)xH(a).

If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed

Q: what is the asymptotics of x*(¢), for ﬁxed o and n= |\ — c0?

o (Kerov, Vershik, '81) if = ’\ — a; and 2 N Bi, then

11 (Z alél — Zi:(_ﬁf)lc|>

ceC(o),|c|>2 i

i X'(0)

n—oco fA
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from fA/# = k. zgesk MNo)xH(a).

If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed

Q: what is the asymptotics of x*(¢), for ﬁxed o and n= |\ — c0?

o (Kerov, Vershik, '81) if = ’\ — a; and 2 N Bi, then

Il (zar YL
ceC(o)fel=2 \ 7 i

= pp(o‘)(a| - /8|7)7
where p(o) is the cycle-type of o

and pi(e| = Bly) == X af = Xi(=B1)* + dk 1.
(In particular pi(a| — Bly) =1since y:=1->".aj — > . i)

i X'(0)

n—oco fA
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from fA/# = k. zgesk MNo)xH(a).

If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed

Q: what is the asymptotics of x*(¢), for ﬁxed o and n= |\ — c0?
o (Kerov, Vershik, '81) if = ’\ — a; and 2

—> Bi, then
A
Jim * f(>\0) 11 (Z ol - Z(—/Bi)|c|>
ceC(o)ylc[>2 \ i i
= pp(a)(a| - /8|7)
Consequence:
o
Tim = S @bl — B1) = su(el — Bl).

TES)
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from fA/# = k. zgesk MNo)xH(a).

If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed
Q: what is the asymptotics of x*(), for fixed o and n = |A\| = 00?
o (Biane, '98) if A is balanced,
A

X (U) —lol|/2

B~ Cnlol/2,

where |o| is the number of transpositions needed to factorize o
(sometimes called absolute or reflection length).

(If o is in Sy, then m — |o| is the number of cycles of ¢.)
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from fA/# = k. desk MNo)xH(a).

If k is fixed, the number of terms in the sum is fixed and x*(o) is fixed

Q: what is the asymptotics of x*(), for fixed o and n = |A\| = 00?
o (Biane, '98) if A is balanced,
A
X (J) —l|o|/2
o Cn—lol/2,
Consequence (the term o = id dominates asymptotically):
A fR

=g tom?)

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11

10 / 17



Bounds on symmetric group characters

When k also grows to 400, we need bounds on characters on varying o.

Theorem (F.-Sniady, '11)

There exists a constant a > 1, such that for every partition v = m and
every permutation o € S,

‘XV(J) - [a i (rs;/)7 cf:)’|;|>]|a|.

fv m m

r(v), c¢(v): numbers of rows and columns of v, respectively.
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Bounds on symmetric group characters

When k also grows to 400, we need bounds on characters on varying o.

Theorem (F.-Sniady, '11)

There exists a constant a > 1, such that for every partition v = m and
every permutation o € S,

£ (12,5021

When v is balanced, there are two regimes:
o if |o| = O(y/m), then XA2) — O(m~I1/2);
o if [o] = w(v/m), then X7 = O((|o| /m)~I71).
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Bounds on symmetric group characters

When k also grows to 400, we need bounds on characters on varying o.

Theorem (F.-Sniady, '11)

There exists a constant a > 1, such that for every partition v = m and
every permutation o € S,

‘XV(J) - [a i (rf;/)7 cf:)’|;|>]lal.

fv m m

@ For fixed |o|, the bound is optimal up to a multiplicative constant.

e For large |o|, it's very bad: LHS is known to be at most 1, while the
RHS grows exponentially in m.
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|
Proof that A/, < exp [O (k3/2n_1/2)} for k = o(n'/?)

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 12 /17



|
Proof that A/, < exp [O <k3/2n_1/2)} for k = o(n'/?)

We start from

s - 2 () (%)

TES)

and apply the previous bound on characters.
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|
Proof that A/, < exp [O (k3/2n_1/2>} for k = o(n'/?)

We start from

s - 2 () (%)

TES)

and apply the previous bound on characters.
o We have |o| < k = o(n'/?), so we always have (%) = O(n91/2);

o for (—Xﬁ”)>, we need to split the sum into 2 parts, depending on

whether |o| < vk or not.
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|
Proof that A/, < exp [O (k3/2n_1/2>} for k = o(n'/?)

We start from
A

YRS (xi&ﬂ) <X?f)>

TES)

Ayjp = k!

and apply the previous bound on characters.
o We have |o| < k = o(n'/?), so we always have (XA(U)) = O(nlo1/2);

2
o for (—X”(”)>, we need to split the sum into 2 parts, depending on

fr
whether |o| < vk or not.
o] ||
sis 2 (8 ()"
lo|<Vk

s\l alo\ 1]
si= 2, (3) ()"

3

AA/# = 51 + S with

=]
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|
Proof that A/, < exp [O (k3/2n_1/2>} for k = o(n'/?)

We start from
FAh

YRS (x?&cﬁ) <Xuf57)>

TES)

Ax/u = K!

and apply the previous bound on characters.
o We have |o| < k = o(n'/?), so we always have (%) = O(n91/2);

o for (%) we need to split the sum into 2 parts, depending on
whether |o| < vk or not.

sis v (4)(8)"

1S1< 2 (aL)‘ ‘(alo\)“"

2| > K .
lo|>V'k v

We need to control the number of o with a given value of |o|.

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 12 /17
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Proof that A/, < exp [O (k3/2n_1/2)} for k = o(n'/?)

Lemma (F., Sniady, '11)
For all k,i € N, we have

Proof:
#{oeSc:|o|=i}= [x"](x+1)-~((k—1)x+1)

) . 2i
< [x'](kx + l)k = (l/() k' < kl—l (]

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11

13 / 17
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Proof that A/, < exp [O (k3/2n_1/2)} for k = o(n'/?)

Lemma (F., Sniady, '11)
For all k,i € N, we have

We therefore have
vk

\5|S§_;k2|(f><\/[i>

This is a truncated sum of an exponential series exp(Ck3/2n=1/2).
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|
Proof that A/, < exp [O <k3/2n_1/2)} for k = o(n'/?)

Lemma (F., Sniady, '11)
For all k,i € N, we have

k2i
#{oe S |lo|=i} < —.

i

We therefore have
vk

\5|S§k2|<f><\/[i>

This is a truncated sum of an exponential series exp(Ck3/2n=1/2).

Similarly, S; can be bound by the sum of a convergent geometric series
S o v (CTkn=Y2)i a2 (CTkn1/2)VE, O

V. Féray (UZH) Bounds on | SYT(\/u)| Berlin, 2018-11 13 /17



Improving the bounds?

o We proved: when k = o(n'/?),

Ar/u < exp [O(k3/2n_1/2>}
Moreover, we can find families of shapes A/ with k = n®, (for

various a € (0,1/2)) for which log(A,/,) is of order O(k3/2p=1/2),
— This bound is “sharp”.
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Improving the bounds?

o We proved: when k = o(n'/?),

Ar/u < exp [O(k3/2n_1/2>}
Moreover, we can find families of shapes A/ with k = n®, (for

various a € (0,1/2)) for which log(A,/,) is of order O(k3/2p=1/2),
— This bound is “sharp”.

o When k = w(n'/?), we proved Ay < exp klogk—n2 + O(k)].
Experimentally, log(A,/,,) is again at most of order O(k3/2n=1/2),
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Improving the bounds?

Conjecture (Dousse, F. ,'17)
There exists C = C(L) such that for any balanced A and p, we have
exp [— Ck3/2n_1/2] <Ay S exp [C k3/2n_1/2],

o For k = o(n'/3), this corresponds to our result;
o For k = o(n'/?), we only have the upper bound;

o For k = w(n%/?), we only have a weaker upper bound (and no lower
bound).
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Limits of the character approach

@ Not suited for lower bounds;
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Limits of the character approach

@ Not suited for lower bounds;
o Assume k = w(n'/?). Call Ur(a,v) (resp. Us(o,v) and Ugg(o,v))
the upper bounds of Roichman (resp. Larsen-Shalev and F.-Sniady)

for ‘Xuf(f)‘ and set

Upest(c, v) = min (Ur(o, v), Uis(o,v), Ugs(o,v)),

i.e. we consider always the best available upper bound.

16 / 17
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Limits of the character approach

@ Not suited for lower bounds;

o Assume k = w(n'/?). Call Ur(a,v) (resp. Us(o,v) and Ugg(o,v))
the upper bounds of Roichman (resp. Larsen-Shalev and F.-Sniady)
for ‘Xuf(f)‘ and set

Upest(c, v) = min (Ur(o, v), Uis(o,v), Ugs(o,v)),

i.e. we consider always the best available upper bound.

Proposition (Dousse, F.,'17)
Z Ubest(07 )‘) Ubest(aa M) Z exp [k |Og sz + O(k)]

TES)

— even combining various bounds from the literature does not
improve our result.
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Symmetric shapes

Conjecture (Dousse, F.)
There exists C = C(L) such that for any balanced A and p with either
N = Xor i/ = p, we have

exp [ — Ckznfl] < Ay S exp [Ckznfl].

@ Surprising from a combinatorial point of view; why does the symmetry
of X or pu change something?

@ We can prove it for fixed k, but not even for k = o(n'/3).
It would require sharper bounds on self-conjugate characters.
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Symmetric shapes

Conjecture (Dousse, F.)
There exists C = C(L) such that for any balanced A and p with either
N = Xor i/ = p, we have

exp [ — Ckznfl] < Ay S exp [Ckznfl].

@ Surprising from a combinatorial point of view; why does the symmetry
of X or pu change something?

@ We can prove it for fixed k, but not even for k = o(n'/3).
It would require sharper bounds on self-conjugate characters.

Thank you for your attention!
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