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Outline of the talk

Denote f λ/µ the number of standard Young tableaux
of skew shape λ/µ.

General question: how does f λ/µ behave when
|λ|, |µ| → ∞?

Wide question: answer depends on the “shapes” of λ
and µ (do they have large rows/columns? are they
balanced?), the relative size of λ and µ.
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Our result: estimates/upper bound for balanced diagrams, when |µ| ≪ |λ|.

Main tool: bounds on symmetric group characters (F., Śniady, ’11).
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Basic definitions
A partition λ = (λ1, . . . , λℓ) of n is a
nonincreasing list of nonnegative integers of
sum |λ| = n;

It is identified with its Young diagram, formed
by left-aligned row of boxes, with λ1 boxes in
the 1st row, λ2 in the second, and so on. . . ;

The skew diagram λ/µ is the collection of
boxes that are in λ, but not in µ;
Convention: n := |λ|, k := |µ|

A standard Young tableau (SYT) of (skew)
shape λ/µ is a filling of λ/µ with integers from
1 to |λ/µ| with increasing rows and columns.

f λ/µ is the number of SYT of shape λ/µ.

λ = (4, 4, 3, 1)

λ/µ = (4, 4, 3, 1)/(2, 2, 1)

2 5
3 7

1 6
4

SYT of shape λ/µ
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Straight tableaux

Theorem (Hook formula, Frame, Robinson, Thrall,
’54)

For a straight shape λ,

f λ = n!
∏
□∈λ

h(□)−1

6 4 3 1

4 2 1

1

hook lengths

Asymptotics: Let λ be a diagram with at most L
√
n rows and columns

(called balanced). Most hook-lengths are of order Θ(
√
n).

log(f λ) = log(n!)− 1
2n log(n)−

∑
□∈λ

log
(
h(□)√

n

)
= 1

2n log(n) +O(n).

The O term can be written as an integral over the “limit shape” of λ.
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Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

P(λ) =
(f λ)2

n!

(Vershik-Kerov, Logan-Shepp, ’77) The limit shape is the one that
maximizes the O(n) term in the previous slide.
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Motivation from discrete probability theory

Plancherel measure on the set of Young diagrams of size n:

P(λ) =
(f λ)2

n!

(Vershik-Kerov, Logan-Shepp, ’77) The limit shape is the one that
maximizes the O(n) term in the previous slide.

Fix a straight shape λ and consider a uniform standard tableau T of shape
λ (Romik-Pittel, Biane, Śniady, Sun, . . . ). Let T (k) be the diagram formed
by boxes with entries at most k in T . Then

P(T (k) = µ) =
f λ/µf µ

f λ
.

→ we need the asymptotics of f λ/µ.
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Asymptotics for |f λ/µ|: previous results

(Kerov, Stanley independently): µ fixed, λi
n → αi ,

λ′
i
n → βi ,

f λ/µ ∼ f λsµ(α| − β|γ),

where sµ(α| − β|γ) is a super Schur function (definition later) and
γ = 1 −

∑
αi −

∑
βi .

f λ/µ ∼ f λf µ

|µ|! .

(Consequence for a uniform random Young tableau T of shape λ:

P(T (k) = µ) ∼ (f µ)2

|µ|! .

In words: fixed size truncations are asymptotically Plancherel
distributed.)

→ we will consider intermediate ranges between µ fixed and |µ| = Θ(λ).
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(Morales-Pak-Panova-Tassy): various results for k, n − k = Θ(n), all
of the form

log(f λ/µ) = 1
2 |λ/µ| log(|λ/µ|) +O(n),
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Our results

For simplicity, we assume λ and µ balanced. We set Aλ/µ := k! f
λ/µ

f λf µ
.

Theorem (Dousse, F., ’17)

1 if k = o(n1/3), then Aλ/µ = 1 +O
(
k3/2n−1/2

)
.

2 if k = o(n1/2), then Aλ/µ ≤ exp
[
O
(
k3/2n−1/2

)]
.

3 if k = ω(n1/2), then Aλ/µ ≤ exp
[
k log k2

n +O(k)
]
.

R = O(f (k, n)) should be understood as follows: there exists a constant
C = C (L) such that |R| ≤ C f (|µ|, n) for any λ and µ with at most L

√
n

(resp. L
√

|µ|) rows and columns.
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How to get asymptotics for f λ/µ?

No multiplicative formula in general;
For some family of skew-shapes, f λ/µ admits a product formula
→ convenient to see if a bound is sharp/make conjectures, but not to
prove bounds. . .

Recent “additive” hook formula for skew shapes (Naruse), used in this
context by Morales-Pak-Panova-Tassy.

We will use representation theory instead (as Kerov-Stanley).
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Branching rule and f λ/µ

Young diagrams λ ⊢ n index irreducible representations of the
symmetric groups ρλ : Sn → GL(Vλ).

Branching rule: restricting Vλ to Sn−1 ⊆ Sn we get:

ρλ /Sn−1 ≃
⊕

ν: ν↗λ

ρν .

ν ↗ λ means ν ⊆ λ and |ν| = |λ| − 1.

ρλ /Sk ≃
⊕

ν(0),...,ν(r−1)

ν(0)↗···↗λ

ρν(0)

=
⊕

µ: |µ|=k

f λ/µρµ.

Corollary (Stanley, ’01): f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).
χλ: character (=trace) of the representation ρλ.
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symmetric groups ρλ : Sn → GL(Vλ).
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i.e. f λ/µ is the multiplicity of ρµ in the restriction ρλ /Sk .

Corollary (Stanley, ’01): f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).
→ use asymptotic results for character values to get asymptotics for f λ/µ.
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).

If k is fixed, the number of terms in the sum is fixed and χµ(σ) is fixed.

Q: what is the asymptotics of χλ(σ), for fixed σ and n = |λ| → ∞?

(Kerov, Vershik, ’81) if λi
i → αi and λ′

i
i → βi , then

lim
n→∞

χλ(σ)

f λ
=

∏
c∈C(σ),|c|≥2

(∑
i

α
|c|
i −

∑
i

(−βi )
|c|

)

=: pρ(σ)(α| − β|γ),
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c∈C(σ),|c|≥2

(∑
i

α
|c|
i −

∑
i

(−βi )
|c|

)
=: pρ(σ)(α| − β|γ),

where ρ(σ) is the cycle-type of σ
and pk(α| − β|γ) :=

∑
i α

k
i −

∑
i (−βi )

k + δk,1γ.

(In particular p1(α| − β|γ) = 1 since γ := 1 −
∑

i αi −
∑

i βi .)
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c∈C(σ),|c|≥2

(∑
i

α
|c|
i −

∑
i

(−βi )
|c|

)
=: pρ(σ)(α| − β|γ).

Consequence:

lim
n→∞

f λ/µ

f λ
=

1
k!

∑
σ∈Sk

χµ(σ)pρ(σ)(α| − β|γ) =: sµ(α| − β|γ).
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Warm up: fixed k asymptotics (Kerov-Stanley)

We start from f λ/µ = 1
k!

∑
σ∈Sk χ

λ(σ)χµ(σ).

If k is fixed, the number of terms in the sum is fixed and χµ(σ) is fixed.

Q: what is the asymptotics of χλ(σ), for fixed σ and n = |λ| → ∞?

(Biane, ’98) if λ is balanced,

χλ(σ)

f λ
∼ Cn−|σ|/2,

where |σ| is the number of transpositions needed to factorize σ
(sometimes called absolute or reflection length).

(If σ is in Sm, then m − |σ| is the number of cycles of σ.)
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k!

∑
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λ(σ)χµ(σ).

If k is fixed, the number of terms in the sum is fixed and χµ(σ) is fixed.

Q: what is the asymptotics of χλ(σ), for fixed σ and n = |λ| → ∞?

(Biane, ’98) if λ is balanced,

χλ(σ)

f λ
∼ Cn−|σ|/2.

Consequence (the term σ = id dominates asymptotically):

f λ/µ

f λ
=

f µ

k!
+O

(
n−1/2)
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Bounds on symmetric group characters

When k also grows to +∞, we need bounds on characters on varying σ.

Theorem (F.-Śniady, ’11)

There exists a constant a > 1, such that for every partition ν ⊢ m and
every permutation σ ∈ Sm,∣∣∣∣χν(σ)

f ν

∣∣∣∣ ≤ [amax
(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.

r(ν), c(ν): numbers of rows and columns of ν, respectively.
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Bounds on symmetric group characters

When k also grows to +∞, we need bounds on characters on varying σ.

Theorem (F.-Śniady, ’11)

There exists a constant a > 1, such that for every partition ν ⊢ m and
every permutation σ ∈ Sm,∣∣∣∣χν(σ)

f ν

∣∣∣∣ ≤ [amax
(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.

When ν is balanced, there are two regimes:
if |σ| = O(

√
m), then χν(σ)

f ν = O
(
m−|σ|/2);

if |σ| = ω(
√
m), then χν(σ)

f ν = O
(
(|σ|/m)−|σ|).
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Bounds on symmetric group characters

When k also grows to +∞, we need bounds on characters on varying σ.

Theorem (F.-Śniady, ’11)

There exists a constant a > 1, such that for every partition ν ⊢ m and
every permutation σ ∈ Sm,∣∣∣∣χν(σ)

f ν

∣∣∣∣ ≤ [amax
(
r(ν)

m
,
c(ν)

m
,
|σ|
m

)]|σ|
.

For fixed |σ|, the bound is optimal up to a multiplicative constant.
For large |σ|, it’s very bad: LHS is known to be at most 1, while the
RHS grows exponentially in m.
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Proof that Aλ/µ ≤ exp
[
O
(
k3/2n−1/2

)]
for k = o(n1/2)

We start from

Aλ/µ = k!
f λ/µ

f λf µ
=
∑
σ∈Sk

(
χλ(σ)

f λ

)(
χµ(σ)

f µ

)
and apply the previous bound on characters.

We have |σ| ≤ k = o(n1/2), so we always have
(
χλ(σ)
f λ

)
= O(n−|σ|/2);

for
(
χµ(σ)
f µ

)
, we need to split the sum into 2 parts, depending on

whether |σ| ≤
√
k or not.

Aλ/µ = S1 + S2 with


|S1| ≤

∑
|σ|≤

√
k

(
aL√
n

)|σ| (
aL√
k

)|σ|
;

|S2| ≤
∑

|σ|>
√
k

(
aL√
n

)|σ| (a|σ|
k

)|σ|
.

We need to control the number of σ with a given value of |σ|.
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Proof that Aλ/µ ≤ exp
[
O
(
k3/2n−1/2

)]
for k = o(n1/2)

Lemma (F., Śniady, ’11)

For all k, i ∈ N, we have

# {σ ∈ Sk : |σ| = i} ≤ k2i

i !
.

Proof:

# {σ ∈ Sk : |σ| = i} = [x i ](x + 1) · · · ((k − 1)x + 1)

≤ [x i ](kx + 1)k =

(
k

i

)
k i ≤ k2i

i !
.
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# {σ ∈ Sk : |σ| = i} ≤ k2i
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.

We therefore have

|S1| ≤

√
k∑

i=0

k2i

i !

(
aL√
n

)i ( aL√
k

)i

This is a truncated sum of an exponential series exp(Ck3/2n−1/2).

Similarly, S2 can be bound by the sum of a convergent geometric series∑
i>

√
k(C

′kn−1/2)i ≈ (C ′kn−1/2)
√
k .
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Improving the bounds?

We proved: when k = o(n1/2),

Aλ/µ ≤ exp
[
O
(
k3/2n−1/2

)]
.

Moreover, we can find families of shapes λ/µ with k = nα, (for
various α ∈ (0, 1/2)) for which log(Aλ/µ) is of order Θ(k3/2n−1/2).
→ This bound is “sharp”.

When k = ω(n1/2), we proved Aλ/µ ≤ exp
[
k log k2

n +O(k)
]
.

Experimentally, log(Aλ/µ) is again at most of order Θ(k3/2n−1/2).
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Improving the bounds?

Conjecture (Dousse, F. ,’17)

There exists C = C (L) such that for any balanced λ and µ, we have

exp
[
− C k3/2n−1/2] ≤ Aλ/µ ≤ exp

[
C k3/2n−1/2],

For k = o(n1/3), this corresponds to our result;
For k = o(n1/2), we only have the upper bound;
For k = ω(n1/2), we only have a weaker upper bound (and no lower
bound).

V. Féray (UZH) Bounds on | SYT(λ/µ)| Berlin, 2018–11 15 / 17



Limits of the character approach

Not suited for lower bounds;

Assume k = ω(n1/2). Call UR(σ, ν) (resp. ULS(σ, ν) and UFŚ(σ, ν))
the upper bounds of Roichman (resp. Larsen-Shalev and F.-Śniady)
for
∣∣∣χν(σ)

f ν

∣∣∣ and set

Ubest(σ, ν) = min
(
UR(σ, ν),ULS(σ, ν),UFŚ(σ, ν)

)
,

i.e. we consider always the best available upper bound.

Proposition (Dousse, F.,’17)∑
σ∈Sk

Ubest(σ, λ)Ubest(σ, µ) ≥ exp
[
k log k2

n +O(k)
]

→ even combining various bounds from the literature does not
improve our result.
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Symmetric shapes

Conjecture (Dousse, F.)

There exists C = C (L) such that for any balanced λ and µ with either
λ′ = λ or µ′ = µ, we have

exp
[
− Ck2n−1] ≤ Aλ/µ ≤ exp

[
Ck2n−1].

Surprising from a combinatorial point of view; why does the symmetry
of λ or µ change something?

We can prove it for fixed k , but not even for k = o(n1/3).
It would require sharper bounds on self-conjugate characters.

Thank you for your attention!
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