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Up-down chains

Let S=⋃
n≥1Sn be a combinatorial class, with |S1| = 1. An updown chain

is a Markov chain pn = p↑np
↓
n+1 on Sn consisting of

an up-step p↑n from Sn to Sn+1 (typically adding/duplicating an
element);
a down-step p↓n+1 from Sn+1 to Sn+1 (typically deleting a random
element).

In this talk: stationary distribution, mixing time (in terms of separation
distance) and scaling limit.

Motivations: tractable dynamic models, construction of diffusions on
infinite-dimensional space states, Stein method.
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Example 1: trees (Aldous, 2000)

up step down step

up step: choose a uniform random edge, and attach to it a new leaf.
down step: erase a uniform random leaf (and the corresponding edge
and branching point).

V. Féray (CNRS, IECL) Up-down chains ALÉA, 2024–10 3 / 16



Example 2: partitions (Petrov 2009)

up step

(4, 3, 1)

(4, 4, 1) with proba 3−α
8+θ

(4, 3, 1, 1) with proba θ+3α
8+θ

down step

(4, 2, 1, 1) with proba 3
9

up step: increase a part of size i with probability (i −α)/(n+θ), and
create a new part with probability (θ+α`)/(n+θ), where ` is the
number of parts.
(For θ = 1, α= 0, this is a step of the Chinese Restaurant Process.)
down step: remove a uniform random element (i.e. each part of size i
decreases with probability i/(n+1)).
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Example 2: partitions (Petrov 2009)

up step

(4, 3, 1)

(4, 4, 1) with proba 3−α
8+θ

(4, 3, 1, 1) with proba θ+3α
8+θ

down step

(4, 2, 1, 1) with proba 3
9

→ many variants in the literature:
Involving Schur functions, z-measures on partitions/Thoma simplex
(Borodin–Olshanski 2009), and Jack polynomials (Olshanski 2010);
Strict partitions (Petrov 2010);
Ordered version on integer compositions (Rivera-Lopez–Rizzolo 2022).
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Example 3: permutations/graphs

Upstep : duplicate a uniform random element/vertex.

With probability p ∈ (0,1),{
the "twin" elements are in increasing order (permutation case);
the two "twin" vertices are connected with probability p (graph case).

.
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Example 3: permutations/graphs

one step of
the Markov chain

one step of
the Markov chain

Downstep: delete a uniform random element/vertex
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Example 3: permutations/graphs – simulation

Simulation of the up-down chain on permutations. Here, we take q = 1/2,
n= 1,000, and we plot the permutation after m steps, where
m ∈ {0, . . . ,50} ·2,000.
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Key assumption: the commutation relation

Let p↑n ∈M (Sn×Sn+1) be the up transition matrix, i.e. p↑n(τ,σ) is the
probability to find σ when duplicating a uniform random point in τ.

Let p↓n+1 ∈M (Sn+1×Sn) be the down transition matrix, i.e. p↓n+1(σ,τ)
is the probability to find τ when deleting a uniform random point in σ.

Assumption (C)

For any n≥ 2, we have

p↑np
↓
n+1 =βn p↓np↑n−1+ (1−βn) IdSn ,

Assumption (C) is fulfilled in the previous examples
(with βn = n(2n−7)

(n+1)(2n−5) , n(n−1+θ)
(n+1)(n+θ) , n−1

n+1 respectively).

(Intuition: adding and removing an element in different places commute,
adding and removing an element in the same place gives IdSn .)
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Stationary distribution

Proposition (general case)

Assume (C). For s ∈Sn, let Mn(s)= p↑1p
↑
2 . . .p↑n−1(s1,s), where s1 is the

unique element of S1.
Then Mn is the unique stationary measure of pn.

Proposition (alternative description in the permutation case)

For each k ≥ 1, let σk ,σ′
k ,σ′′

k be independent random permutations with
law Mk . Then, if I is uniform in {1, . . . ,n−1}

Law(σn)= p Law(σ′
I ⊕σ′′

(n−I ))+ (1−p)Law(σ′
I ªσ′′

(n−I )).

σ′I

σ′I
σ′′(n−I)

σ′′(n−I)

σ′I ⊕ σ′′(n−I) = σ′I 	 σ′′(n−I) =

We call σn the recursive separable permutation.
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Convergence to the stationary distribution - simulation

Left: Simulation of the stationary distribution (n= 1000), the colored
square emphasizes the recursive structure of the limit.
Right: Simulation of the up-down chain on permutations after 250000
steps (n= 1000, p = 1/2).
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Separation distance (exact formula)

Definition (separation distance, Aldous–Diaconis, ’87)

Let (X (m))m≥0 be a Markov chain on a finite space S with stationary
distribution M

∆(m) := max
x ,y∈S

M(y) 6=0

1− Px
(
X (m)= y

)
M(y)

.

It is a standard way to quantify speed of convergence for Markov chains.

Assumption (S1): for each n≥ 1, there exist rn 6= sn in Sn which are at
distance n−1.
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distribution M

∆(m) := max
x ,y∈S
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1− Px
(
X (m)= y

)
M(y)

.

Assumption (S1): for each n≥ 1, there exist rn 6= sn in Sn which are at
distance n−1.
(Fulfilled in the partition and permutation examples

rn = sn = . . . rn = sn = )
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Separation distance (exact formula)

Definition (separation distance, Aldous–Diaconis, ’87)

Let (X (m))m≥0 be a Markov chain on a finite space S with stationary
distribution M

∆(m) := max
x ,y∈S

M(y) 6=0

1− Px
(
X (m)= y

)
M(y)

.

Assumption (S1): for each n≥ 1, there exist rn 6= sn in Sn which are at
distance n−1.
Proposition (F.–Rivera-Lopez, ’25, based on Fulman, ’09)

Assume (C) and (S1). Then, if ∆n is the separation distance of Xn,

∆n(m)=
n−1∑
i=0

(
1− ci

cn

)m ∏
0≤j≤n−1

j 6=i

cj

cj −ci
,

where cn = (β1 . . .βn)−1, cn =Θ(n2) in the examples.
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Density functions and eigenvalues of pn

For τ in Sk and σ in Sn, with k ≤ n

dτ(σ)= (p↓n . . .p↓
k+1)(σ,τ).

In words, dτ(σ) is the probability to obtain τ when deleting n−k uniform
random elements in σ, or the “proportion of τ” in σ.

Proposition (F., Rivera-Lopez, ’25)
Under assumption (C), seeing dτ as a vector in CSn ,

pn dτ = (1−βk · · ·βn) dτ + (βk · · ·βn)
∑
ρ↗τ

p↑
k−1(ρ,τ)dρ .

The eigenvalues of pn are λk = 1−βk · · ·βn, with multiplicity |Sk |− |Sk−1|.
(Eigenvalues were known from Fulman, 2009, but without
diagonal/triangular descriptions.)
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Scaling limit: assumption on limiting space

Informally, we assume that we have an inclusion S ,→E in some space E ,
and that
convergence in E is equivalent to the convergence of the functions dτ.

Examples :
For permutations/graphs, such spaces are known and well-understood:
permutons and graphons.

In our partition example, E is the Kingman simplex{
(x1 ≥ x2 ≥ . . .),

∑
xi ≤ 1

}
.

For trees, we need to use the space of algebraic trees introduced by
Löhr–Mytnik–Winter, 2020 (it is a weaker topology than
Gromov–Hausdorff convergence).
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Scaling limit result

Theorem (F., Rivera-Lopez, ’25)

Let Xn be updown Markov chains satisfying assumption (C), and E be an
appropriate limiting space. Assume that Xn(0) converge to x in E .

Then there exists a Feller diffusion F on E(
Xn(cntc)

)
t≥0 =⇒

(
F (t)

)
t≥0,

in distribution in the Skorokhod space D([0,+∞),P ).

Moreover, the generator A of F admits Span(dτ,τ ∈S) as a core, and we
have, for τ in Sk ,

A dτ =−ck−1

(
dτ−

∑
ρ↗τ

p↑
k−1(ρ,τ)dρ

)
.

Generator of a process F : A g := d
dt E[g(F (t))]

∣∣∣
t=0

.
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Scaling limit result

Theorem (F., Rivera-Lopez, ’25)

Let Xn be updown Markov chains satisfying assumption (C), and E be an
appropriate limiting space. Assume that Xn(0) converge to x in E .

Then there exists a Feller diffusion F on E(
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)
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(
F (t)

)
t≥0,

in distribution in the Skorokhod space D([0,+∞),P ).

Moreover, the generator A of F admits Span(dτ,τ ∈S) as a core, and we
have, for τ in Sk ,

A dτ =−ck−1

(
dτ−

∑
ρ↗τ

p↑
k−1(ρ,τ)dρ

)
.

→ unifies a number of previous results; new for the permutation/graph
chain.
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Separation distance (asymptotics)

Theorem (F.–Rivera-Lopez, ’25)

Assume (C) and (S1), and in addition
p↓n(rn,rn−1)= 1 for n≥ 2;∑

n≥0
1
cn

<∞, and that {cn+1−cn}n≥0 is an unbounded, nondecreasing
sequence.

Then
∆F (t)= lim∆n(bcntc)=

∞∑
i=0

e−tci
∞∏
j=0
j 6=i

cj

cj −ci
,

where ∆F is the separation distance of the limiting process F .
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Asymptotics of the separation distance (permutation case)

Example
For the updown chain on permutations, we have

lim
n→+∞∆n(bn2tc)=∆F (t)=

+∞∑
j=1

(−1)j−1(2j +1)e−tj(j+1).

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Graph of ∆F .
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Thank you for your attention
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