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Up-down chains

Let S =Up=1Sn be a combinatorial class, with |S1]=1. An updown chain

is a Markov chain p, = p,T,p,lHl on S, consisting of

e an up-step p) from S, to Spi1 (typically adding/duplicating an
element);

@ a down-step p,l7+1 from Spi1 to Spy1 (typically deleting a random
element).
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Let S =Up=1Sn be a combinatorial class, with |S1]=1. An updown chain

is a Markov chain p, = p,T,p,lHl on S, consisting of

e an up-step p) from S, to Spi1 (typically adding/duplicating an
element);

@ a down-step p,l7+1 from Spi1 to Spy1 (typically deleting a random
element).

In this talk: stationary distribution, mixing time (in terms of separation
distance) and scaling limit.
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Up-down chains

Let S =Up=1Sn be a combinatorial class, with |S1]=1. An updown chain

is a Markov chain p, = p,T,p,lHl on S, consisting of

e an up-step p) from S, to Spi1 (typically adding/duplicating an
element);

@ a down-step p,l7+1 from Spi1 to Spy1 (typically deleting a random
element).

In this talk: stationary distribution, mixing time (in terms of separation
distance) and scaling limit.

Motivations: tractable dynamic models, construction of diffusions on
infinite-dimensional space states, Stein method.
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Example 1: trees (Aldous, 2000)

up step down step

@ up step: choose a uniform random edge, and attach to it a new leaf.

@ down step: erase a uniform random leaf (and the corresponding edge
and branching point).
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Example 2: partitions (Petrov 2009)

OO

Q D up step (4,4,1) with proba '819 Q D
O Q0ms OO0
(4,3,1) Q Q (4,2,1,1) with proba 3

643,
(4,3,1,1) with proba 8+;

@ up step: increase a part of size i with probability (i—a)/(n+6), and
create a new part with probability (6 +a?)/(n+6), where ¢ is the

number of parts.
(For 6 =1, a =0, this is a step of the Chinese Restaurant Process.)

@ down step: remove a uniform random element (i.e. each part of size i
decreases with probability i/(n+1)).
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Example 2: partitions (Petrov 2009)

DD

Q D up step (4,4,1) with ploba ST Q D
O Q0= OO0
(4, 3, 1) Q Q (4,2,1,1) with proba 3 H

643,
(4,3,1,1) with proba 8+;

— many variants in the literature:

@ Involving Schur functions, z-measures on partitions/ Thoma simplex
(Borodin—Olshanski 2009), and Jack polynomials (Olshanski 2010);

e Strict partitions (Petrov 2010);
@ Ordered version on integer compositions (Rivera-Lopez—Rizzolo 2022).

ALEA, 2024-10 4/16



Example 3: permutations/graphs

T NN

Upstep : duplicate a uniform random element/vertex.

With probability p€(0,1),
{the "twin" elements are in increasing order (permutation case);

the two "twin" vertices are connected with probability p (graph case).
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Example 3: permutations/graphs
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Downstep: delete a uniform random element/vertex
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Example 3: permutations/graphs — simulation

1000—. ..
6004 u*
4004.° * . ¢

200 4

200 400 600 800 1000 |> | |

Simulation of the up-down chain on permutations. Here, we take g=1/2,
n=1,000, and we plot the permutation after m steps, where
me{0,...,50}-2,000.
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Key assumption: the commutation relation

o Let p| € M (Sn % Sn+1) be the up transition matrix, i.e. p;(T,O’) is the
probability to find o when duplicating a uniform random point in 7.
o Let p},ﬂ € M (Sn+1 % Sn) be the down transition matrix, i.e. piﬁl(a,r)
is the probability to find T when deleting a uniform random point in o.
Assumption (C)

For any n=2, we have

phpt . = Baphipl L +(1-Bn)lds,,

Assumption (C) is fulfilled in the previous examples

- n(2n-7 n(n-1+60 — .
(with fin = (n+(1)(2n25)’ (ngl)(;g)’z_ﬁ respectively).

(Intuition: adding and removing an element in different places commute,
adding and removing an element in the same place gives Ids, .)
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Stationary distribution

Proposition (general case)

Assume (C). For s€S,, let My(s)= p{pg...p;_l(sl,s), where sy is the
unique element of S1.
Then M, is the unique stationary measure of p,.
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Stationary distribution

Proposition (general case)

Assume (C). For s€S,, let My(s)= p{pg...p;_l(sl,s), where sy is the
unique element of S1.
Then M, is the unique stationary measure of p,.

Proposition (alternative description in the permutation case)

For each k=1, let 0,0, ,O'Z be independent random permutations with
law M,.. Then, if | is uniform in {1,...,n—1}

Law(()'n) =p LaW(O'/I 690'/(’”_/)) + (1 — p) LaW(U’, eU(n_l))'

"
, " _ -1 Iy _
01 D0y = 019041 =

"
O(n—1)

We call o, the recursive separable permutation.
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Convergence to the stationary distribution - simulation
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Left: Simulation of the stationary distribution (n=1000), the colored
square emphasizes the recursive structure of the limit.

Right: Simulation of the up-down chain on permutations after 250000
steps (n=1000, p=1/2).
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Separation distance (exact formula)

Definition (separation distance, Aldous—Diaconis, '87)

Let (X(m))m=o0 be a Markov chain on a finite space S with stationary

distribution M
_ Px(X(m)=y)
A(m):= max 1—M—.
J&#o (y)

It is a standard way to quantify speed of convergence for Markov chains.

10/16
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Separation distance (exact formula)

Definition (separation distance, Aldous—Diaconis, '87)

Let (X(m))m=o0 be a Markov chain on a finite space S with stationary
distribution M

g Bx(X(m) =y)
A(m) = A;&ﬁiol Mo

Assumption (S1): for each n=1, there exist r, # s, in S, which are at
distance n—1.
(Fulfilled in the partition and permutation examples
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Separation distance (exact formula)

Definition (separation distance, Aldous—Diaconis, '87)

Let (X(m))m=o0 be a Markov chain on a finite space S with stationary
distribution M

g Bx(X(m) =y)
A(m) = M*&jiol Mo

Assumption (S1): for each n=1, there exist r, # s, in S, which are at
distance n—1.

Proposition (F.—Rivera-Lopez, '25, based on Fulman, '09)
Assume (C) and (S1). Then, if A, is the separation distance of X,
n-1 A\m Ci
a(m)= % 1= 2] 1 2

)
i=0 Cn)  osj=n-1 G —Cj
J#i

where ¢, = (B1...Bn) "L, cn=0(n?) in the examples.
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Density functions and eigenvalues of p,

For 7in Sx and 0 in S,, with k<n

di(0) = (ph-.-pt,1)(0,7).

In words, d;(o) is the probability to obtain 7 when deleting n— k uniform
random elements in o, or the “proportion of 7" in 0.
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Density functions and eigenvalues of p,

For 7in Sx and 0 in S,, with k<n

di(0) = (ph-.-pt,1)(0,7).
In words, d;(o) is the probability to obtain 7 when deleting n— k uniform
random elements in o, or the “proportion of 7" in 0.

Proposition (F., Rivera-Lopez, '25)
Under assumption (C), seeing d; as a vector in C®,

pndr=(1= Pk Bn) dr + (B Bn) ; P/T(_l(p’T)dP-
0/ T

The eigenvalues of p, are A =1— B --- B, with multiplicity [Skl— Sk_1l.
(Eigenvalues were known from Fulman, 2009, but without
diagonal/triangular descriptions.)
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Scaling limit: assumption on limiting space

Informally, we assume that we have an inclusion S — E in some space E,
and that
convergence in E is equivalent to the convergence of the functions d;.
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Scaling limit: assumption on limiting space

Informally, we assume that we have an inclusion S — E in some space E,

and that
convergence in E is equivalent to the convergence of the functions d;.

Examples :

e For permutations/graphs, such spaces are known and well-understood:
permutons and graphons.

@ In our partition example, E is the Kingman simplex
{(Xl =Xy = ...),ZX,‘ =< 1}.

@ For trees, we need to use the space of algebraic trees introduced by
Lohr—-Mytnik—Winter, 2020 (it is a weaker topology than
Gromov—Hausdorff convergence).
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Scaling limit result

Theorem (F., Rivera-Lopez, '25)

Let X, be updown Markov chains satisfying assumption (C), and E be an
appropriate limiting space. Assume that X,(0) converge to x in E

Then there exists a Feller diffusion F on E

(Xn(cnt”)tzo = (F(t))tEO’
in distribution in the Skorokhod space D([0,+o0),2?)

Moreover, the generator o/ of F admits Span(d;,T€S) as a core, and we
have, for T in Sy,

Ady = —c_ 1( p;Tpk 1 P, )

Generator of a process F: o/g:= 3 d E[g(F(t ))]| o
t=
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Scaling limit result

Theorem (F., Rivera-Lopez, '25)

Let X, be updown Markov chains satisfying assumption (C), and E be an
appropriate limiting space. Assume that X,(0) converge to x in E.

Then there exists a Feller diffusion F on E

(Xn(cnt”)tzo = (F(t))tEO’
in distribution in the Skorokhod space D([0,+o0),2?).

Moreover, the generator o/ of F admits Span(d;,T€S) as a core, and we
have, for T in Sy,

Ady = _Ck—l(dr - ; P}(_I(P,T)dp)-
/T

— unifies a number of previous results; new for the permutation/graph
chain.

V. Féray (CNRS, IECL) Up-down chains ALEA, 2024-10 13 /16




Separation distance (asymptotics)

Theorem (F.—Rivera-Lopez, '25)

Assume (C) and (S1), and in addition
° p,l,(r,,,r,,_l) =1 forn=2;
® X >0 .

= <oo, and that {cy+1— Cp}n=0 s an unbounded, nondecreasing
n
sequence.

Then N .
AF(t)ZlimAn([cntJ):Ze—tc,-l—[ j

i=0 0G=Ci
it
where AF is the separation distance of the limiting process F.

V. Féray (CNRS, IECL) Up-down chains ALEA, 2024-10 14 /16



Asymptotics of the separation distance (permutation case)

Example

For the updown chain on permutations, we have

+00 ) .
“T A,,(Ln2tj) =Ap(t) = Z(_l)l—l(gj+ 1)e—tJ(J+1).
n—+oo j:]_

0.5 1.0 1.5 20 25 3.0
Graph of Af.
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Thank you for your attention
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