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Central limit theorems

Theorem

If Y1,Y2, . . . are independent identically distributed variables with finite

variance, and Xn =
∑n

i=1 Yi , then

Xn−E(Xn)√
VarXn

d
→ N (0, 1). (CLT)
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variance, and Xn =
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i=1 Yi , then

Xn−E(Xn)√
VarXn

d
→ N (0, 1). (CLT)

Relax identical distribution hypothesis −→ Lindeberg condition.
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Central limit theorems

Theorem

If Y1,Y2, . . . are independent identically distributed variables with finite

variance, and Xn =
∑n

i=1 Yi , then

Xn−E(Xn)√
VarXn

d
→ N (0, 1). (CLT)

Relax identical distribution hypothesis −→ Lindeberg condition.

Relax independence hypothesis: leads to CLT for Markov chains,
martingales, mixing sequences, exchangeable pairs, determinantal point
processes, dependency graphs, . . .
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Central limit theorems

Theorem

If Y1,Y2, . . . are independent identically distributed variables with finite

variance, and Xn =
∑n

i=1 Yi , then

Xn−E(Xn)√
VarXn

d
→ N (0, 1). (CLT)

Relax identical distribution hypothesis −→ Lindeberg condition.

Relax independence hypothesis: leads to CLT for Markov chains,
martingales, mixing sequences, exchangeable pairs, determinantal point
processes, dependency graphs, . . .

Goal of the talk: give an extension of dependency graphs that has a wide
range of application.
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Dependency graphs

Dependency graphs
(Petrovskaya/Leontovich, Janson, Baldi/Rinott, Mikhailov, 80’s)
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Dependency graphs

A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;

1
2
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5
6

7

8

Example : n = 8, p = 1/2
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Dependency graphs

A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;
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Example : n = 8, p = 1/2

Question

Fix p ∈ (0; 1). Does the number of triangles Tn satisfy a CLT?
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Dependency graphs

A problem in random graphs

Erdős-Rényi model of random graphs G (n, p):

G has n vertices labelled 1,. . . ,n;

each edge {i , j} is taken independently
with probability p;

1
2

3

4

5
6

7

8

Example : n = 8, p = 1/2

Question

Fix p ∈ (0; 1). Does the number of triangles Tn satisfy a CLT?

Tn =
∑

∆={i ,j ,k}⊂[n]

Y∆, where Y∆(G ) =

{
1 if G contains the triangle ∆;

0 otherwise.

Tn is a sum of mostly independent variables.
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Dependency graphs

Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.
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Dependency graphs

Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider G = G (n, p). Let A = {∆ ∈
([n]

3

)
} (set of potential triangles) and

{∆1, ∆2} ∈ EL iff ∆1 and ∆2 share an edge in G .

Then L is a dependency graph for the family {Y∆,∆ ∈
(
[n]
3

)
}.
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Dependency graphs

Dependency graphs

Definition (Petrovskaya and Leontovich, 1982, Janson, 1988)

A graph L with vertex set A is a dependency graph for the family
{Yα, α ∈ A} if

if A1 and A2 are disconnected subsets in L, then {Yα, α ∈ A1} and
{Yα, α ∈ A2} are independent.

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider G = G (n, p). Let A = {∆ ∈
([n]

3

)
} (set of potential triangles) and

{∆1, ∆2} ∈ EL iff ∆1 and ∆2 share an edge in G .

Then L is a dependency graph for the family {Y∆,∆ ∈
(
[n]
3

)
}.

✞
✝

☎
✆Note: L has degree O(n)
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Dependency graphs

Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).
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Dependency graphs

Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Theorem (Janson, 1988)

Assume that
(

Nn

∆n

)1/s
∆n

σn
→ 0 for some integer s. Then Xn satisfies a CLT.
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Dependency graphs

Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Theorem (Janson, 1988)

Assume that
(

Nn

∆n

)1/s
∆n

σn
→ 0 for some integer s. Then Xn satisfies a CLT.

For triangles, Nn =
(
n
3

)
, ∆n = O(n), while σn ≍ n2. (for fixed p)

Corollary

Fix p in (0, 1). Then Tn satisfies a CLT.

(also true for pn → 0 with npn → ∞; originally proved by Rucinski, 1988).
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Dependency graphs

Applications of dependency graphs to CLT results

mathematical modelization of cell populations (Petrovskaya,
Leontovich, 82);

subgraph counts in random graphs (Janson, Baldi, Rinott, Penrose,
88, 89, 95, 03);

Geometric probability (Avram, Bertsimas, Penrose, Yukich, Bárány,
Vu, 93, 05 , 07);

pattern occurrences in random permutations (Bóna, Janson,
Hitchenko, Nakamura, Zeilberger, 07, 09, 14).

m-dependence (Hoeffding, Robbins, 53, . . . ; now widely used in
statistics) is a special case.

(Some of these applications use variants of Janson’s normality criterion,
which are more technical to state and omitted here. . . )
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Dependency graphs

Not an application of dependency graphs

Random graph G (n,M):

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
2

3

4

5
6

7

8
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Dependency graphs

Not an application of dependency graphs

Random graph G (n,M):

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
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4
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If p = M/
(
n
2

)
, each edge appears with probability p, but no independence

any more!
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Dependency graphs

Not an application of dependency graphs

Random graph G (n,M):

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14
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If p = M/
(
n
2

)
, each edge appears with probability p, but no independence

any more!

Question

Fix p ∈ (0; 1) and M = p
(
n
2

)
. Does the number of triangles Tn in

G (n,Mn) satisfy a CLT?
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Dependency graphs

Not an application of dependency graphs

Random graph G (n,M):

G has n vertices labelled 1,. . . ,n;

The edge-set of G is taken uniformly
among all possible edge-sets of cardinality
M.

Example with n = 8 and M = 14

1
2

3

4

5
6

7

8

If p = M/
(
n
2

)
, each edge appears with probability p, but no independence

any more!

Question

Fix p ∈ (0; 1) and M = p
(
n
2

)
. Does the number of triangles Tn in

G (n,Mn) satisfy a CLT?

Tn still writes as a sum of Y∆, but the Y∆ are pairwise dependent!
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Dependency graphs

Solution: edge-weighted dependency graphs

weighted graphs = graphs with weights in [0, 1] on edges.

Definition

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if

(skipped for the moment).

Roughly: the smaller the weight on the edge {Yα,Yβ} is, the closer to
independence Yα and Yβ should be.
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Dependency graphs

Solution: edge-weighted dependency graphs

weighted graphs = graphs with weights in [0, 1] on edges.

Definition

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if

(skipped for the moment).

Roughly: the smaller the weight on the edge {Yα,Yβ} is, the closer to
independence Yα and Yβ should be.

Example

Consider G = G (n,M), where M = p
(
n
2

)
. Let A = {∆ ∈

(
[n]
3

)
} and

wt
L̃
({∆1, ∆2}) =

{
1 if ∆1 and ∆2 share an edge in G .

1/n2 otherwise.

Then L̃ is a weighted dependency graph for the family {Y∆,∆ ∈
([n]

3

)
}.
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Dependency graphs

Solution: edge-weighted dependency graphs

weighted graphs = graphs with weights in [0, 1] on edges.

Definition

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if

(skipped for the moment).

Roughly: the smaller the weight on the edge {Yα,Yβ} is, the closer to
independence Yα and Yβ should be.

Example

Consider G = G (n,M), where M = p
(
n
2

)
. Let A = {∆ ∈

(
[n]
3

)
} and

wt
L̃
({∆1, ∆2}) =

{
1 if ∆1 and ∆2 share an edge in G .

1/n2 otherwise.

Then L̃ is a weighted dependency graph for the family {Y∆,∆ ∈
([n]

3

)
}.

✎

✍

☞

✌

Note: L̃ has degree O(n3),
but weighted degree O(n).
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Dependency graphs

A normality criterion for weighted dependency graphs

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a weighted dependency graph L̃n with weighted maximal
degree ∆n − 1.
we set Xn =

∑Nn

i=1 Yn,i and σ2
n = Var(Xn).
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Dependency graphs

A normality criterion for weighted dependency graphs

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a weighted dependency graph L̃n with weighted maximal
degree ∆n − 1.
we set Xn =

∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Theorem (F., 2016)

Assume that
(

Nn

∆n

)1/s
∆n

σn
→ 0 for some integer s. Then Xn satisfies a CLT.
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Dependency graphs

A normality criterion for weighted dependency graphs

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a weighted dependency graph L̃n with weighted maximal
degree ∆n − 1.
we set Xn =

∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Theorem (F., 2016)

Assume that
(

Nn

∆n

)1/s
∆n

σn
→ 0 for some integer s. Then Xn satisfies a CLT.

For triangles in G (n,Mn), Nn =
(
n
3

)
, ∆n = O(n), while σn ≍ n3/2.

Corollary

Fix p in (0, 1) and set Mn = p
(
n
2

)
. Then Tn satisfies a CLT.

(also true for n ≪ Mn ≪ n2; originally proved by Janson, 1994).
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Dependency graphs

Applications of weighted dependency graphs

crossings in random pair-partitions;

subgraph counts in G (n,M);

random permutations;

particles in symmetric simple exclusion process;

subword counts in Markov chains;

patterns in multiset permutations*, in set-partitions*;

spins in Ising model*;

determinantal point process**.

*in progress with Jehanne Dousse and Marko Thiel. **project
(Some of these applications use a variant of the above normality criterion,
which is more technical to state. . . )
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Cumulants

Cumulants
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Cumulants

What are (mixed) cumulants?

The r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Notation: κℓ(X ) := κℓ(X , . . . ,X ).
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Cumulants

What are (mixed) cumulants?

The r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Notation: κℓ(X ) := κℓ(X , . . . ,X ).

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.
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Cumulants

What are (mixed) cumulants?

The r -th mixed cumulant κr of r random variables is a specific r -linear
symmetric polynomial in joint moments. Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) := Cov(X ,Y ) = E(XY )− E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )− E(XY )E(Z )− E(XZ )E(Y )

− E(YZ )E(X ) + 2E(X )E(Y )E(Z ).

Notation: κℓ(X ) := κℓ(X , . . . ,X ).

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.

If, for each r big enough, we have κr (Xn) = o(Var(Xn)
r/2),

then Xn satisfies a CLT. (Janson, 1988)
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Cumulants

Sketch of proof of Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).
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Cumulants

Sketch of proof of Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Fix r ≥ 1. Then

κr (Xn) =
∑

i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).
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Cumulants

Sketch of proof of Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Fix r ≥ 1. Then

κr (Xn) =
∑

i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless, up to reordering, each ij is a neighbour in Ln of
either i1,. . . ,ij−1.
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Cumulants

Sketch of proof of Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Fix r ≥ 1. Then

κr (Xn) =
∑

i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless, up to reordering, each ij is a neighbour in Ln of
either i1,. . . ,ij−1.
→ only (r !)2 Nn ∆

r−1
n non-zero terms, each of which is easily bounded by a

constant.
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Cumulants

Sketch of proof of Janson’s normality criterion

Setting: for each n,

{Yn,i , 1 ≤ i ≤ Nn} is a family of bounded random variables;
|Yn,i | < M a.s.

we have a dependency graph Ln with maximal degree ∆n − 1.

we set Xn =
∑Nn

i=1 Yn,i and σ2
n = Var(Xn).

Fix r ≥ 1. Then

κr (Xn) =
∑

i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless, up to reordering, each ij is a neighbour in Ln of
either i1,. . . ,ij−1.
→ only (r !)2 Nn ∆

r−1
n non-zero terms, each of which is easily bounded by a

constant.
|κr (Xn)| ≤ CrNn ∆

r−1
n .
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Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.
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Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,

∣∣κ(Yα1 , · · · ,Yαr )
∣∣ ≤ Cr M

(
L̃[α1, · · · , αr ]

)
.
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Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,

∣∣κ(Yα1 , · · · ,Yαr )
∣∣ ≤ Cr M

(
L̃[α1, · · · , αr ]

)
.

L̃
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Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,

∣∣κ(Yα1 , · · · ,Yαr )
∣∣ ≤ Cr M

(
L̃[α1, · · · , αr ]

)
.

L̃[α1, · · · , αr ]: graph induced
by L̃ on vertices α1, · · · , αr . α1 α2

α3 α4

ε
2

ε
3

1

ε
ε
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Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,

∣∣κ(Yα1 , · · · ,Yαr )
∣∣ ≤ Cr M

(
L̃[α1, · · · , αr ]

)
.

L̃[α1, · · · , αr ]: graph induced
by L̃ on vertices α1, · · · , αr .

M
(
K
)
: Maximum weight of a

spanning tree of K .

In the example,
M
(
L̃[α1, · · · , α4]

)
= ε2.

α1 α2

α3 α4

ε
2

ε
3

1

ε
ε

V. Féray (UZH) Weighted dependency graphs Macada, 2016–06 15 / 26



Cumulants

Back to weighted dependency graphs

→ what we should require in the definition of weighted dependency graphs
is a bound on mixed cumulants.

Definition (F., 2016)

A weighted graph L̃ with vertex set A is a weighted dependency graph for
the family {Yα, α ∈ A} if, for any α1, . . . , αr in A,

∣∣κ(Yα1 , · · · ,Yαr )
∣∣ ≤ Cr M

(
L̃[α1, · · · , αr ]

)
.

This is a simplified version of the definition; some of the applications
need a more general but more technical version.
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Cumulants

On the normality criterion for weighted dependency graphs

Proof is rather easy, similar as Janson’s.
(The reordering is given by Prim’s minimum spanning tree algorithm.)
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Cumulants

On the normality criterion for weighted dependency graphs

Proof is rather easy, similar as Janson’s.
(The reordering is given by Prim’s minimum spanning tree algorithm.)

Question

How to prove that something is a weighted dependency graph for a family
{Yα, α ∈ A}?

i.e. prove a bound on every cumulant κ(Yα1 , · · · ,Yαr ).
A priori not easy!
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Cumulants

On the normality criterion for weighted dependency graphs

Proof is rather easy, similar as Janson’s.
(The reordering is given by Prim’s minimum spanning tree algorithm.)

Question

How to prove that something is a weighted dependency graph for a family
{Yα, α ∈ A}?

i.e. prove a bound on every cumulant κ(Yα1 , · · · ,Yαr ).
A priori not easy!

→ in the next section, we give 3 general tools for that.
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Finding weighted dependency graphs

Stability by powers

Setting:

Let {Yα, α ∈ A} be r.v. with weighted dependency graph L̃;

fix an integer m ≥ 2;

for a multiset B = {α1, · · · , αm} of elements of A, denote

YB := Yα1 · · · Yαm .
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Finding weighted dependency graphs

Stability by powers

Setting:

Let {Yα, α ∈ A} be r.v. with weighted dependency graph L̃;

fix an integer m ≥ 2;

for a multiset B = {α1, · · · , αm} of elements of A, denote

YB := Yα1 · · · Yαm .

Tool 1

The set of r.v. {YB} has a weighted dependency graph L̃m, where

wt
L̃m
(YB ,YB′) = max

α∈B,α′∈B′

wt
L̃
(Yα,Yα′).

In short: if we have a dependency graph for some variables Yα, we have
also one for monomials in the Yα.
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Finding weighted dependency graphs

Back to triangles (1/2)

It is enough to find a weighted dependency graph for edge indicators:

Ye = 1e∈G (e ∈

(
[n]

2

)
).

(Indeed, triangle indicators are product of edge indicators.)
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Finding weighted dependency graphs

Back to triangles (1/2)

It is enough to find a weighted dependency graph for edge indicators:

Ye = 1e∈G (e ∈

(
[n]

2

)
).

(Indeed, triangle indicators are product of edge indicators.)

We need to bound cumulants of the shape

κ
(
Ye1 , · · · ,Yer

)
. (1)

A priori, there can be repetitions in the sequence e1, · · · , er .
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Finding weighted dependency graphs

Back to triangles (1/2)

It is enough to find a weighted dependency graph for edge indicators:

Ye = 1e∈G (e ∈

(
[n]

2

)
).

(Indeed, triangle indicators are product of edge indicators.)

We need to bound cumulants of the shape

κ
(
Ye1 , · · · ,Yer

)
. (1)

A priori, there can be repetitions in the sequence e1, · · · , er .

Tool 2 (informal version)

In (1), we can replace repeated variables or variables linked by edges of
weight 1 by their products

→ with Bernoulli variables, we can forget repetitions.
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Finding weighted dependency graphs

Back to triangles (2/2)

We only need to prove

κ
(
Ye1 , · · · ,Yer

)
= O(n−2(r−1)),

for distinct edges.
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Finding weighted dependency graphs

Back to triangles (2/2)

We only need to prove

κ
(
Ye1 , · · · ,Yer

)
= O(n−2(r−1)),

for distinct edges.

Joint moments are explicit: let En =
(
n
2

)
,

Jℓ := E(Ye1 . . .Yeℓ) =

(
En−ℓ
Mn−ℓ

)
(
En

Mn

) =
(En − ℓ)!Mn!

En!(Mn − ℓ)!
.

Example: for r = 3, we need to prove

J3 − 3 J2 J1 + 2J3
1 = O(n−4).

For fixed r , easy to check with a computer algebra system, but not easy to
prove for general r .
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Finding weighted dependency graphs

The multiplicative criterion

Tool 3 (for edges in G (n,M))

The bounds

κ
(
Ye1 , · · · ,Yer

)
= O(n−2(r−1)) (for all r ≥ 1)

are equivalent to
r∏

i=1

J
−(ri)
i = 1 + O(n−2(r−1))
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Finding weighted dependency graphs

The multiplicative criterion

Tool 3 (for edges in G (n,M))

The bounds

κ
(
Ye1 , · · · ,Yer

)
= O(n−2(r−1)) (for all r ≥ 1)

are equivalent to
r∏

i=1

J
−(ri)
i = 1 + O(n−2(r−1))

Second statement is much easier to handle:

it is “multiplicative” in Ji : can be done separately for each factorial
factor.

lots of cancellations in LHS.

→ form here, quite easy to prove that we have a weighted dependency
graph. . .
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Other dependency graphs
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Other dependency graphs

Uniform random permutations

Let σ be a uniform random permutation of size n. Set

Y(i ,s) = 1σ(i)=s .

Joint moment for distinct i1, · · · , ir , s1, · · · , sr :

E
(
Yi1,s1 · · ·Yir ,sr

)
=

(n − r)!

n!
.
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Other dependency graphs

Uniform random permutations

Let σ be a uniform random permutation of size n. Set

Y(i ,s) = 1σ(i)=s .

Joint moment for distinct i1, · · · , ir , s1, · · · , sr :

E
(
Yi1,s1 · · ·Yir ,sr

)
=

(n − r)!

n!
.

It is a quotient of factorial factor, so it satisfies the multiplicity
criterion.

Thus we have a weighted dependency graphs for the Yi ,s;

and, therefore, also for monomials in Yi ,s .

No need to do any computation here.
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Other dependency graphs

Uniform random permutations

Let σ be a uniform random permutation of size n. Set

Y(i ,s) = 1σ(i)=s .

Joint moment for distinct i1, · · · , ir , s1, · · · , sr :

E
(
Yi1,s1 · · ·Yir ,sr

)
=

(n − r)!

n!
.

It is a quotient of factorial factor, so it satisfies the multiplicity
criterion.

Thus we have a weighted dependency graphs for the Yi ,s;

and, therefore, also for monomials in Yi ,s .

No need to do any computation here.

→ gives a bivariate extension of a functional CLT of Janson and Barbour.
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Other dependency graphs

Markov chains

Setting:

Let (Mi)i≥0 be an irreducible aperiodic Markov chain on a finite space
state S ;

Assume M0 is distributed with the stationary distribution π;

Set Yi ,s = 1Mi=s .
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Other dependency graphs

Markov chains

Setting:

Let (Mi)i≥0 be an irreducible aperiodic Markov chain on a finite space
state S ;

Assume M0 is distributed with the stationary distribution π;

Set Yi ,s = 1Mi=s .

Proposition

We have a weighted dependency graph L̃ with wt
L̃

(
{Yi ,s ,Yj ,t}

)
= |λ2|

j−i ,
where λ2 is the second eigenvalue of the transition matrix.

→ CLT for linear statistics
∑N

i=1 f (Mi ) =
∑

i ,s f (s)Yi ,s .
Already known (huge literature on the subject).
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Other dependency graphs

Markov chains

Setting:

Let (Mi)i≥0 be an irreducible aperiodic Markov chain on a finite space
state S ;

Assume M0 is distributed with the stationary distribution π;

Set Yi ,s = 1Mi=s .

Proposition

We have a weighted dependency graph L̃ with wt
L̃

(
{Yi ,s ,Yj ,t}

)
= |λ2|

j−i ,
where λ2 is the second eigenvalue of the transition matrix.

Corollary (using the stability by product)

We have a weighted dependency graph L̃m for monomials Yi1,s1 , . . . ,Yim,sm .

→ gives a CLT for the number of copies of a given word in (Mi )0≤i≤N .
(Answers a question of Bourdon and Vallée.)
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Other dependency graphs

Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition

X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)

1≤i ,j≤r

.
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Other dependency graphs

Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition

X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)

1≤i ,j≤r

.

Strange definition (not even clear a priori if such a process exists at all),
but there are lots of example:

random Young diagrams, taken with Poissonized Plancherel measure;

mid-time positions of non-intersecting random walks conditioned to
come back to their starting positions.

eigenvalues of random matrices (continuous DPP);
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Other dependency graphs

Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition

X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)

1≤i ,j≤r

.

Lemma (Soshnikov, 2000)

If X is a discrete determinantal point process with kernel K , then, for any

distinct s1, . . . , sr in S ,

κ(1s1∈X , . . . ,1sr∈X ) =
∑

σ ε(σ)
∏

i K (si , sσ(i)),

where the sum runs over cyclic permutation in Sr .
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Other dependency graphs

Discrete determinantal point processes

Setting: S discrete state space; X random subset of S .

Definition

X is a discrete determinantal point process (DPP) with kernel K if for any
distinct s1, . . . , sr in S ,

P({s1, . . . , sr} ⊆ X ) = E

(
r∏

i=1

1si∈X

)
= det

(
K (si , sj)

)

1≤i ,j≤r

.

Soshnikov cumulant formula ⇒
for each DPP, we have a weighted

dependency graph with weights K (si , sj).

again, CLT for linear statistic is known;
Project: investigate CLT for “multilinear” statistics.
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Conclusion

Conclusion

We provide a general tool to prove CLT for sums of weakly dependent
random variables.

Other examples (d -regular graphs)?

Can we prove other type of results: speed of convergence, large
deviations, . . . ? (with P.-L. Méliot and A. Nikeghbali, we have such
results for usual dependency graphs.)

A theory of continuous weighted dependency graphs (to handle
continuous determinantal point processes)?
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