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@ Symmetric functions and Jack polynomials
© Knop Sahi combinatorial formula

© Lassalle’s dual approach

@ Unifying both ? A new conjecture. . .

© Some special cases we can prove
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Symmetric functions and Jack polynomials

Symmetric functions

= "polynomials” in infinitely many variables x1, x2, x3, . . .
that are invariant by permuting indices

@ Augmented monomial basis:

2y — E( AL M
my = X Xi,

i1yeensip>1
distinct

Example: rﬁ(271,1) = 2X12XQX3 + 2X1X22X3 + 2X1X2X§ + 2X12XQX4 + ...

@ Power-sum basis:

pr:X{+X£+"'7 PXx = PXy P
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Symmetric functions and Jack polynomials

Schur functions

(s») is another basis of the symmetric function ring.

Several equivalent definitions:
@ 5, = ZTXT, sum over semi standard Young tableaux ;

e orthogonal basis (for Hall scalar product) + triangular over
(augmented) monomial basis ;

@ with determinants. ..

-> Encode irreducible characters of symmetric and general linear groups.
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Symmetric functions and Jack polynomials

Jack polynomials

Deformation of Schur functions with a positive real parameter «.
(J)(\a)) basis, Jg\l) = csty - Sy
Several equivalent definitions:

o Jy=> 7¢7(a)xT, sum over semi standard Young tableaux ;

e orthogonal basis (for a deformation of Hall scalar product) +
triangular over (augmented) monomial basis.

For a = 1/2,2, they also have a representation-theoretical interpretation
(in terms of Gelfand pairs) but not in general !
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Knop Sahi combinatorial formula

Polynomiality in a with non-negative coefficients

Both definitions involve rational functions in o.. Nevertheless, ...

Macdonald-Stanley conjecture (~ 90)

The coefficients of Jack polynomials in augmented monomial basis are
polynomials in o with non-negative integer coefficients.

Notation: [r:]Jy.
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Polynomiality in a with non-negative coefficients

Both definitions involve rational functions in o.. Nevertheless, ...

Knop-Sahi theorem (97)

The coefficients of Jack polynomials in augmented monomial basis are
polynomials in o with non-negative integer coefficients.

Notation: [r:]Jy.

KS give a combinatorial interpretation of [f;]Jy as a weighted
enumeration of admissible tableaux.
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A function on the set of all Young diagrams

Definition
Let i be a partition of k. Define

Ch{®()) = {

(nf/:nJlr("Zl)(/l))ZM . [p,ul"—k]J)(\a) if n= ’)\| > k;
0 otherwise.

Chl(f‘) is a function on all Young diagrams.

z,: standard explicit numerical factor.
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A function on the set of all Young diagrams

Definition
Let u be a partition of k. Define

(@) () 2 T S i = A 2 K
Ch# ()\) = 1(p .
0 otherwise.

Chl(f) is a function on all Young diagrams.
Specialization: if |u| < ||,

Al X)1n s
(IAl =)t dim(Va)

Introduced by S. Kerov, G. Olshanski in the case a = 1 (to study random
diagrams with Plancherel measure), by M. Lassalle in the general case.

1
ChH()) =
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A function on the set of all Young diagrams

Definition
Let u be a partition of k. Define

n—k+m1(p) (@) ; — .
ChLa)()\) = { ( ml(ul)/ >.Z“ ’ [pﬂl"_k]‘j)\ If n= ’)‘| 2 k'
0 otherwise.

Proposition (Kerov/Olshanski for o = 1, Lassalle in general)

For any r, the map
(ALy-- o A) = ChE (Mg, M)

is a polynomial in A1, ..., \,. Besides, it is symmetricin \; — 1/q, ...,
Ar —r/a.

In other words, Chg”‘) is a shifted symmetric function.
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Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

p1 times

Q@+ +qm.. @2+ +qdm,. ).

p2 times
g3 g2 q1
p
p
p

Young diagram of A(p,q)
Multirectangular Jack LIAFA, 2014-10
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Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

)\(P7Q):(q1++qm7’q1++qm’

-~

p1 times

p2 times

Proposition (Lassalle, F., Dotega)
Let i be a partition of k. Chfj’)()\(p,q)) is a polynomial in

P1,p2,--.,4q1,q92,...,&

Lassalle gave an algorithm to compute those polynomials.
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Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

)‘(p’q):(q1++Qm77Q1++qm,

p1 times

Q@+ +qm, G2t Gm, ).

p2 times
Conjecture (M. Lassalle, still open)
Let u be a partition of k. (—1)k Chfj‘)()\(p,q)) is a polynomial in

P17P27---7—CI17—Q2,---7C¥—1

with non-negative integer coefficients.
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Unifying both ? A new conjecture. ..

Link between the two questions 7

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:

Knop-Sahi Lassalle
monomial coefficients power-sum coefficients
look at one coefficient | coefficients as shifted symmetric functions
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Unifying both ? A new conjecture. ..

Link between the two questions 7

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:

Knop-Sahi Lassalle
monomial coefficients power-sum coefficients
look at one coefficient | coefficients as shifted symmetric functions

Idea: look at monomial coefficients as shifted symmetric functions.
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Monomial coefficients as shifted symmetric functions

Definition

Let i be a partition of k. Define

n—k+mi(L)y ., . [ (@) o :
{5
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Monomial coefficients as shifted symmetric functions

Definition
Let i be a partition of k. Define

(nifnt(m,ul)(ﬂ)»zu . [ﬁﬂ'ul"*k]Jga) if n=|\ > ki
0 otherwise.

Kol®(X) = {

Proposition

KoLa) is a shifted symmetric function.

y

Proof: Easy KoLa) => Luy Ch{® (with L, defined by p, = > L, ,m,).
vk ukk

Then apply Lassalle proposition.
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Unifying both ? A new conjecture. ..

A new conjecture

Proposition
Ko&a)(p X q) is a polynomial in p, q and «a. J
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Unifying both ? A new conjecture. ..

A new conjecture

Proposition

Ko&a)(p X q) is a polynomial in p, q and «a.

@ when specialized to non-negative values of p and q, Koga)(p X q) is a
polynomial in a with nonnegative coefficients (KS) ;

@ But it does not have non-negative coefficients as polynomial in p, q
and a.
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A new conjecture

Proposition

Koff‘)(p X q) is a polynomial in p, q and «a.

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, Ko,(f)(p X q) has non-negative
integer coefficients.

falling factorial: (n)x :=n(n—1)...(n—k+1).

falling factorial basis: <(p1),-1(p2),-2 o (q)i(g2))s - - ak).

It is stronger than positivity in Knop-Sahi theorem (and does not follow
from their combinatorial interpretation) !
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Some special cases we can prove

Evidence for our conjecture

e Computer exploration: the conjecture holds for |u| <9 and 4
rectangles ;

@ Proof for u = (k) ;

@ Proof fora =1 (and a =2) ;

Nice combinatorics in these case.
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Some special cases we can prove

Combinatorial formulas for a =1

For @ = 1, there is a combinatorial formula for Ch&l):

Theorem (F. 2007; F., Sniady 2008 ; conj. by Stanley 2006)
Let i a partition of k. Fix a permutation 7 in Sy of type p. Then

Chu(p xq) = Z e(T)No,(p, Q).

o, TES)

oT=T

N, ; : combinatorial polynomial with non-negative integer coefficients.
= Lassalle conjecture holds for o = 1.
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Combinatorial formulas for a =1

For @ = 1, there is a combinatorial formula for ChLl):

Theorem (F. 2007; F., Sniady 2008 ; conj. by Stanley 2006)
Let i a partition of k. Fix a permutation 7 in Sy of type p. Then

Chu(p xq) = Z e(T)No,(p, Q).

U,TSSk
Proposition
Fix a set-partition 1 = {Iy, ..., My} whose block sizes are given by p.
Then
KoP(pxa)= Y e(r)No-(p,q).
o, TES)
0'7'65”

where Spq = Sp, x Sp, -+ x S,

v
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«) - o
Kogk)) is FF non-negative.

Observation: Ko&))(p xq)= > e(1)Ns-(p,q).

o, TES)
no restriction
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Some special cases we can prove

Kogf)) is FF non-negative.

Observation: Ko&))(p X q) = ES e(T)Ny~(p, q).
U’TE' llfion

This formula simplifies to:

Kot (\) = 3 T IEnR]

ECX, |E|=k R row
for any column C, |[ENC|<1 of X

x| [x]

Example: |X| |X has weight 4 in KOE )((6,5,3)).

1
5)
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«) - o
Kogk)) is FF non-negative.

Observation: Ko&))(p X q) = ES e(T)Ny~(p, q).
U’Te' llfion

This formula simplifies to:

Kot (\) = 3 T IEnR]

ECX, |E|=k R row
for any column C, |[ENC|<1 of X

x| [x]

Example: |[X| |X has weight (a + 1)? in Kogg))((6,5,3)).

Proposition (deformation for a general «)

Kol (\) = 3 [T a+a)@+(ENR - 1))

ECA, |E|=k R row
for any column C, |[ENC|<1 of X
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Some special cases we can prove

Proposition

Koyl (\) = 3 [Ta+a)-—@+(ENR -1)a)

ECX, |E|=k R row
for any column C, |[ENC|<1 of A
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Some special cases we can prove

Proposition

Koli)(\) = 3 [Ta+e)-@+(ENR -1)a)

ECAX, |E|=k R row
for any column C, |[ENC|<1 of A

Sketch of proof: Start from KS combinatorial interpretation

a) KS
Kofp) S 3 wta(F).

FCA, |Fl=k
for any column C, |FNC|<1
forbidden pattern

x -
) 4 x ||x
A

forbidden pattern  weight: 3o+ 2

x\
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Some special cases we can prove

Proposition

Kol®)(\) = 3 [Ta+e)-@+(ENR -1)a)

(k)
ECAX, |E|=k R row
for any column C, |[ENC|<1 of A

Sketch of proof: Start from KS combinatorial interpretation

Kol2) &2 3 wta(F).

(k) —
FCA, |Fl=k
for any column C, |FNC|<1
forbidden pattern

) x ||x xt

A% i

I

/
forbidden pattern  weight: 3o + 2 Apply this rule

With well chosen rules to solve conflicts (two elements in the same
column), each E is obtained with the good weight.
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Some special cases we can prove

Proposition

Koyl (\) = 3 [Ta+a)-—@+(ENR -1)a)

ECX, |E|=k R row
for any column C, |[ENC|<1 of A

@ This formula implies that Kog‘z)) is non negative in the falling factorial
basis, while KS combinatorial interpretation does not.

@ The reason is that our combinatorial interpretation is dilatation
invariant.

@ Maybe our conjecture suggests the existence of a dilatation-invariant

combinatorial interpretation of [rﬁuln_k]J/(\a) (so far, we have one only
for hooks!).
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Backto a =1

KoP(pxa)= Y e(r)No-(p,q).

o, TES)
UTESn

... use explicit expression of N, -(p,q) + sum manipulations . ..

It is enough to prove
Question 1

Fix three set partitions T, U and 1 of the same set and define
ST = 5T1 X e X ST,- Then

> e(r)=o0.

oc€ST,TESY
oTESH
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Backto a =1

KoP(pxa)= Y e(r)No-(p,q).

o, TES)
UTESn

... use explicit expression of N, -(p,q) + sum manipulations . ..

It is enough to prove
Conjecture

Fix three set partitions T, U and 1 of the same set and define
ST = 5T1 X oo X ST,- Then

> e(r)=o0.

oc€eST,TESY
UTESH
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Backto a =1

KoP(pxa)= Y e(r)No-(p,q).

o, TES)
UTGSH

... use explicit expression of N, -(p,q) + sum manipulations . ..

It is enough to prove
Conjecture

Fix three set partitions T, U and 1 of the same set and define
ST = 5T1 X oo X ST,- Then

> e(r)=o0.

oc€eST,TESY
UTESH

Natural idea: construct an involution by multiplication by a well-chosen
transposition. This does not work here! (we have one example where
T=idor 7= (12)(34)(56))
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Other approach

n! S

(n— KT, mi()! dim (V)
B n! n—k
= (= R miGa) dimy 7 22Y T )

KoM(A) = 10 ]S = [m10-4]

N
w
~
(@)}

Ex: € SSYT((4,4,3),(3,2,1%).
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Other approach

KoM(A) = 10 ]S = [m10-4]

Ex:

Bijection:

[0}

N

w
N~

n! S

(n— KT, mi()! dim (V)
B n! n—k
= (= R miGa) dimy 7 22Y T )

€ SSYT((4,4,3),(3,2,1°).

SSYT(\, pul™ ) «— {(v, T, T") with T € SSYT (v, ), T' € SYT(\/v)}

V. Féray (with P.A.)
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Other approach

n! S

RN, )t dim()
B n! n—k
= (= R miGa) dimy 7 22Y T )

KoM(A) = 10 ]S = [m10-4] C

5|7
Ex: 2|3
111112

[0}

N~
(@)}

€ SSYT((4,4,3),(3,2,1°).

Bijection:
SSYT(\, pul™ ) «— {(v, T, T") with T € SSYT (v, ), T' € SYT(\/v)}

0(1) Z |SSYT (v, )| nt |SYT(N\/v)] '
2 ThmGe) (- kl_dm()

-~
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Other approach

n! S

RN, )t dim()
B n! n—k
= (= R miGa) dimy 7 22Y T )

KoM(A) = 10 ]S = [m10-4] C

5|7
Ex: 2|3
111112

[0}

N~
(@)}

€ SSYT((4,4,3),(3,2,1°).

Bijection:
SSYT(\, pul™ ) «— {(v, T, T") with T € SSYT (v, ), T' € SYT(\/v)}

0(1) Z |SSYT (v, )| nt |SYT(N\/v)] '
Y O O T

LV
Shifted Schur function (Okounkov, Olshanski)
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Some special cases we can prove

Using shifted Schur function (1/2)

In the previous slide, we have seen:
Proposition

KoLl) is a non-negative linear combination of st J

Is s non-negative in the falling factorial basis ?
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Some special cases we can prove

Using shifted Schur function (1/2)

In the previous slide, we have seen:
Proposition

Kof}) is a non-negative linear combination of st J

Is s non-negative in the falling factorial basis ?

sfexa)= > X'(o7)e(r) Nor(p, ),

o,7ES)

where y* is an irreducible character of the symmetric group.
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Some special cases we can prove

Using shifted Schur functions (2/2)

Sf(p X q) = Z XH(O—T) g(T)Na,T(paq)y

o,7ESK
... use explicit expression of N, -(p,q) + sum manipulations ...

It is enough to prove
Question

For any two set partitions T, U of [n] and integer partition u of n,

Y e(m)xeT) =0

oc€ST,TESyY
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Using shifted Schur functions (2/2)

stpxa)= Y x"(07)e(r)Nor(p, ),

o,7€SK
... use explicit expression of N, -(p,q) + sum manipulations ...
It is enough to prove
Proposition

For any two set partitions T, U of [n] and integer partition p of n,

Z e(t)x*(o1) > 0.

o€ST,TESY

Proof by easy representation-theoretical manipulations.
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Another conjecture

Shifted Schur function can be deformed to shifted Jack polynomials J(ii).
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Another conjecture

Shifted Schur function can be deformed to shifted Jack polynomials J(#;).

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, o/(“)JjLa)(p X q) has non-negative
integer coefficients.

Proposition

Ko,(f‘) is a linear combination of « “)Jﬁ (p x q). The coefficients in this
linear combination are rational funct|ons in a with non-negative coefficients
in the numerator and denominator.

4

This new conjecture does not imply our other conjecture !
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Conclusion

A bridge between KS theorem and Lassalle's conjecture:

@ Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

@ Our partial results use (partial) results from both theories.
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Conclusion

A bridge between KS theorem and Lassalle's conjecture:

@ Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

@ Our partial results use (partial) results from both theories.

Other partial results?
@ o = 2 works similarly as & = 1 with a bit more work ;

o Case of rectangular Young diagram is maybe tractable (Lassalle proved
his conjecture in this case);
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Conclusion

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

@ Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

@ Our partial results use (partial) results from both theories.

Other partial results?
@ o = 2 works similarly as & = 1 with a bit more work ;
o Case of rectangular Young diagram is maybe tractable (Lassalle proved
his conjecture in this case);
Future work:

e What about (shifted) Macdonald polynomials and multirectangular
coordinates?
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