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Symmetric functions and Jack polynomials

Symmetric functions

= “polynomials” in infinitely many variables x1, x2, x3, . . .
that are invariant by permuting indices

Augmented monomial basis:

m̃λ =
∑

i1,...,i`≥1
distinct

xλ1i1
· · · xλ`i`

Example: m̃(2,1,1) = 2x2
1x2x3 + 2x1x

2
2x3 + 2x1x2x

2
3 + 2x2

1x2x4 + . . .

Power-sum basis:

pr = x r1 + x r2 + . . . , pλ = pλ1 · · · pλ`
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Symmetric functions and Jack polynomials

Schur functions

(sλ) is another basis of the symmetric function ring.

Several equivalent definitions:

sλ =
∑

T xT , sum over semi standard Young tableaux ;

orthogonal basis (for Hall scalar product) + triangular over
(augmented) monomial basis ;

with determinants. . .

-> Encode irreducible characters of symmetric and general linear groups.
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Symmetric functions and Jack polynomials

Jack polynomials

Deformation of Schur functions with a positive real parameter α.

(J
(α)
λ ) basis, J

(1)
λ = cstλ · sλ

Several equivalent definitions:

Jλ =
∑

T ψT (α)xT , sum over semi standard Young tableaux ;

orthogonal basis (for a deformation of Hall scalar product) +
triangular over (augmented) monomial basis.

For α = 1/2, 2, they also have a representation-theoretical interpretation
(in terms of Gelfand pairs) but not in general !
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Knop Sahi combinatorial formula

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α. Nevertheless, . . .

Macdonald-Stanley conjecture (∼ 90)

The coefficients of Jack polynomials in augmented monomial basis are
polynomials in α with non-negative integer coefficients.

Notation: [m̃τ ]Jλ.

KS give a combinatorial interpretation of [m̃τ ]Jλ as a weighted
enumeration of admissible tableaux.
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Knop Sahi combinatorial formula

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α. Nevertheless, . . .

Knop-Sahi theorem (97)

The coefficients of Jack polynomials in augmented monomial basis are
polynomials in α with non-negative integer coefficients.

Notation: [m̃τ ]Jλ.

KS give a combinatorial interpretation of [m̃τ ]Jλ as a weighted
enumeration of admissible tableaux.
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Lassalle’s dual approach

A function on the set of all Young diagrams

Definition
Let µ be a partition of k . Define

Ch(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [pµ1n−k ]J

(α)
λ if n = |λ| ≥ k;

0 otherwise.

Ch(α)
µ is a function on all Young diagrams.

zµ: standard explicit numerical factor.

Specialization: if |µ| < |λ|,

Ch(1)
µ (λ) =

|λ|!
(|λ| − |µ|)!

·
χλ
µ1n−k

dim(Vλ)
.

Introduced by S. Kerov, G. Olshanski in the case α = 1 (to study random
diagrams with Plancherel measure), by M. Lassalle in the general case.
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Lassalle’s dual approach

A function on the set of all Young diagrams

Definition
Let µ be a partition of k . Define

Ch(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [pµ1n−k ]J

(α)
λ if n = |λ| ≥ k;

0 otherwise.

Proposition (Kerov/Olshanski for α = 1, Lassalle in general)

For any r , the map

(λ1, . . . , λr ) 7→ Ch(α)
µ

(
(λ1, . . . , λr )

)
is a polynomial in λ1, . . . , λr . Besides, it is symmetric in λ1 − 1/α, . . . ,
λr − r/α.

In other words, Ch(α)
µ is a shifted symmetric function.
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Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

λ(p,q) =
(
q1 + · · ·+ qm, . . . , q1 + · · ·+ qm︸ ︷︷ ︸

p1 times

,

q2 + · · ·+ qm, . . . , q2 + · · ·+ qm︸ ︷︷ ︸
p2 times

, . . .
)
.

q3 q2 q1

p1

p2

p3

Young diagram of λ(p,q)
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Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

λ(p,q) =
(
q1 + · · ·+ qm, . . . , q1 + · · ·+ qm︸ ︷︷ ︸

p1 times

,

q2 + · · ·+ qm, . . . , q2 + · · ·+ qm︸ ︷︷ ︸
p2 times

, . . .
)
.

Proposition (Lassalle, F., Dołęga)

Let µ be a partition of k . Ch(α)
µ (λ(p,q)) is a polynomial in

p1, p2, . . . , q1, q2, . . . , α

Lassalle gave an algorithm to compute those polynomials.

V. Féray (with P.A.) (I-Math, UZH)Multirectangular Jack LIAFA, 2014–10 8 / 21



Lassalle’s dual approach

Multirectangular coordinates (R. Stanley)

Consider two lists p and q of positive integers of the same length m.
We associate to them the partition

λ(p,q) =
(
q1 + · · ·+ qm, . . . , q1 + · · ·+ qm︸ ︷︷ ︸

p1 times

,

q2 + · · ·+ qm, . . . , q2 + · · ·+ qm︸ ︷︷ ︸
p2 times

, . . .
)
.

Conjecture (M. Lassalle, still open)

Let µ be a partition of k . (−1)k Ch(α)
µ (λ(p,q)) is a polynomial in

p1, p2, . . . ,−q1,−q2, . . . , α− 1

with non-negative integer coefficients.
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Unifying both ? A new conjecture. . .

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:

Knop-Sahi Lassalle
monomial coefficients power-sum coefficients
look at one coefficient coefficients as shifted symmetric functions

Idea: look at monomial coefficients as shifted symmetric functions.
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Unifying both ? A new conjecture. . .

Monomial coefficients as shifted symmetric functions

Definition
Let µ be a partition of k . Define

Ko(α)
µ (λ) =

{ (n−k+m1(µ)
m1(µ)

)
·zµ · [m̃µ1n−k ]J

(α)
λ if n = |λ| ≥ k ;

0 otherwise.

Proposition

Ko(α)
µ is a shifted symmetric function.

Proof: Easy Ko(α)
µ =

∑
ν`k

Lµ,ν Ch(α)
ν (with Lµ,ν defined by pν =

∑
µ`k

Lµ,νm̃µ).

Then apply Lassalle proposition.
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Unifying both ? A new conjecture. . .

A new conjecture

Proposition

Ko(α)
µ (p× q) is a polynomial in p, q and α.
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Unifying both ? A new conjecture. . .

A new conjecture

Proposition

Ko(α)
µ (p× q) is a polynomial in p, q and α.

when specialized to non-negative values of p and q, Ko(α)
µ (p× q) is a

polynomial in α with nonnegative coefficients (KS) ;

But it does not have non-negative coefficients as polynomial in p, q
and α.
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Unifying both ? A new conjecture. . .

A new conjecture

Proposition

Ko(α)
µ (p× q) is a polynomial in p, q and α.

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, Ko(α)
µ (p× q) has non-negative

integer coefficients.

falling factorial: (n)k := n(n − 1) . . . (n − k + 1).

falling factorial basis:
(

(p1)i1(p2)i2 . . . (q1)j1(q2)j2 . . . α
k

)
.

It is stronger than positivity in Knop-Sahi theorem (and does not follow
from their combinatorial interpretation) !
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Some special cases we can prove

Evidence for our conjecture

Computer exploration: the conjecture holds for |µ| ≤ 9 and 4
rectangles ;

Proof for µ = (k) ;

Proof for α = 1 (and α = 2) ;

Nice combinatorics in these case.
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Some special cases we can prove

Combinatorial formulas for α = 1

For α = 1, there is a combinatorial formula for Ch(1)
µ :

Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)

Let µ a partition of k . Fix a permutation π in Sk of type µ. Then

Chµ(p× q) =
∑
σ,τ∈Sk
στ=π

ε(τ)Nσ,τ (p,q).

Nσ,τ : combinatorial polynomial with non-negative integer coefficients.
⇒ Lassalle conjecture holds for α = 1.
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Some special cases we can prove

Combinatorial formulas for α = 1

For α = 1, there is a combinatorial formula for Ch(1)
µ :

Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006)

Let µ a partition of k . Fix a permutation π in Sk of type µ. Then

Chµ(p× q) =
∑
σ,τ∈Sk
στ=π

ε(τ)Nσ,τ (p,q).

Proposition

Fix a set-partition Π = {Π1, . . . ,Π`} whose block sizes are given by µ.
Then

Ko(1)
µ (p× q) =

∑
σ,τ∈Sk
στ∈SΠ

ε(τ)Nσ,τ (p,q),

where SΠ = SΠ1 × SΠ2 · · · × SΠ` .

V. Féray (with P.A.) (I-Math, UZH)Multirectangular Jack LIAFA, 2014–10 13 / 21



Some special cases we can prove

Ko(α)
(k) is FF non-negative.

Observation: Ko(1)
(k)(p× q) =

∑
σ,τ∈Sk

no restriction

ε(τ)Nσ,τ (p,q).

This formula simplifies to:

Ko(1)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

|E ∩ R|!

Example:
× ×

× ×
×

has weight 4 in Ko(1)
(5)((6, 5, 3)).

Proposition (deformation for a general α)

Ko(α)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

(1 + α) · · · (1 + (|E ∩ R| − 1)α)
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Some special cases we can prove

Ko(α)
(k) is FF non-negative.

Observation: Ko(1)
(k)(p× q) =

∑
σ,τ∈Sk

no restriction

ε(τ)Nσ,τ (p,q).

This formula simplifies to:

Ko(1)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

|E ∩ R|!

Example:
× ×

× ×
×

has weight (α + 1)2 in Ko(α)
(5) ((6, 5, 3)).

Proposition (deformation for a general α)

Ko(α)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

(1 + α) · · · (1 + (|E ∩ R| − 1)α)
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Some special cases we can prove

Proposition

Ko(α)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

(1 + α) · · · (1 + (|E ∩ R| − 1)α)
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Some special cases we can prove

Proposition

Ko(α)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

(1 + α) · · · (1 + (|E ∩ R| − 1)α)

Sketch of proof: Start from KS combinatorial interpretation

Ko(α)
(k)

KS
=

∑
F⊂λ, |F |=k

for any column C , |F∩C |≤1
forbidden pattern

wtα(F ).

forbidden pattern weight: 3α + 2

Apply this rule

With well chosen rules to solve conflicts (two elements in the same
column), each E is obtained with the good weight.
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Some special cases we can prove

Proposition

Ko(α)
(k)(λ) =

∑
E⊂λ, |E |=k

for any column C , |E∩C |≤1

∏
R row
of λ

(1 + α) · · · (1 + (|E ∩ R| − 1)α)

This formula implies that Ko(α)
(k) is non negative in the falling factorial

basis, while KS combinatorial interpretation does not.

The reason is that our combinatorial interpretation is dilatation
invariant.

Maybe our conjecture suggests the existence of a dilatation-invariant
combinatorial interpretation of [m̃µ1n−k ]J

(α)
λ (so far, we have one only

for hooks!).
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Some special cases we can prove

Back to α = 1

Ko(1)
µ (p× q) =

∑
σ,τ∈Sk
στ∈SΠ

ε(τ)Nσ,τ (p,q),

. . . use explicit expression of Nσ,τ (p,q) + sum manipulations . . .

It is enough to prove
Question 1
Fix three set partitions T , U and Π of the same set and define
ST = ST1 × · · · × STl

. Then ∑
σ∈ST ,τ∈SU
στ∈SΠ

ε(τ) ≥ 0.

Natural idea: construct an involution by multiplication by a well-chosen
transposition. This does not work here! (we have one example where
τ = id or τ = (1 2)(3 4)(5 6))
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Some special cases we can prove

Other approach

Ko(1)
µ (λ) = [m̃µ1n−k ]J

(1)
λ = [mµ1n−k ]

n!

(n − k)!
∏

i mi (µ)!

sλ
dim(λ)

=
n!

(n − k)!
∏

i mi (µ)! dim(λ)
# SSYT(λ, µ1n−k)

Ex:
5 7 8
2 3 4 6
1 1 1 2

∈ SSYT((4, 4, 3), (3, 2, 16)).

Bijection:
SSYT(λ, µ1n−k)←→ {(ν,T ,T ′) with T ∈ SSYT(ν, µ),T ′ ∈ SYT (λ/ν)}

Ko(1)
µ (λ) =

∑
ν`k

| SSYT(ν, µ)|∏
i mi (µ)!

n!

(n − k)!

|SYT (λ/ν)|
dim(λ)︸ ︷︷ ︸

s#
ν (λ)

.

Shifted Schur function (Okounkov, Olshanski)
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dim(λ)︸ ︷︷ ︸

s#
ν (λ)

.

Shifted Schur function (Okounkov, Olshanski)
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Some special cases we can prove

Using shifted Schur function (1/2)

In the previous slide, we have seen:

Proposition

Ko(1)
µ is a non-negative linear combination of s#

ν .

Is s#
ν non-negative in the falling factorial basis ?

s#
µ (p× q) =

∑
σ,τ∈Sk

χµ(σ τ) ε(τ)Nσ,τ (p,q),

where χµ is an irreducible character of the symmetric group.
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Some special cases we can prove

Using shifted Schur functions (2/2)

s#
µ (p× q) =

∑
σ,τ∈Sk

χµ(σ τ) ε(τ)Nσ,τ (p,q),

. . . use explicit expression of Nσ,τ (p,q) + sum manipulations . . .

It is enough to prove
Question
For any two set partitions T , U of [n] and integer partition µ of n,∑

σ∈ST ,τ∈SU

ε(τ)χµ(σ τ) ≥ 0.

Proof by easy representation-theoretical manipulations.
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Some special cases we can prove

Another conjecture

Shifted Schur function can be deformed to shifted Jack polynomials J#
(α).

Conjecture (F., Alexandersson)

In the falling factorial basis in p and q, α`(µ)J]
(α)
µ (p× q) has non-negative

integer coefficients.

Proposition

Ko(α)
µ is a linear combination of α`(µ)J]

(α)
µ (p× q). The coefficients in this

linear combination are rational functions in α with non-negative coefficients
in the numerator and denominator.

This new conjecture does not imply our other conjecture !
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Conclusion

Conclusion

A bridge between KS theorem and Lassalle’s conjecture:

Our conjecture involves shifted symmetric functions and
multirectangular coordinates and implies KS theorem ;

Our partial results use (partial) results from both theories.

Other partial results?

α = 2 works similarly as α = 1 with a bit more work ;

Case of rectangular Young diagram is maybe tractable (Lassalle proved
his conjecture in this case);

Future work:

What about (shifted) Macdonald polynomials and multirectangular
coordinates?
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