Jack polynomials and multirectangular coordinates

Valentin Féray joint work (in progress) with Per Alexandersson (Zürich)

Institut für Mathematik, Universität Zürich

Séminaire Combinatoire énumérative et analytique LIAFA, Paris 7, October 23rd, 2014

- 2 Knop Sahi combinatorial formula
- 3 Lassalle's dual approach
- 4 Unifying both ? A new conjecture...
- 5 Some special cases we can prove

Symmetric functions

= "polynomials" in infinitely many variables $x_1, x_2, x_3, ...$ that are invariant by permuting indices

• Augmented monomial basis:

$$ilde{m}_{\lambda} = \sum_{\substack{i_1, ..., i_\ell \geq 1 \ ext{distinct}}} x_{i_1}^{\lambda_1} \cdots x_{i_\ell}^{\lambda_\ell}$$

Example: $\tilde{m}_{(2,1,1)} = 2x_1^2x_2x_3 + 2x_1x_2^2x_3 + 2x_1x_2x_3^2 + 2x_1^2x_2x_4 + \dots$

• Power-sum basis:

$$p_r = x_1^r + x_2^r + \ldots, \quad p_\lambda = p_{\lambda_1} \cdots p_{\lambda_\ell}$$

Schur functions

 (s_{λ}) is another basis of the symmetric function ring.

Several equivalent definitions:

- $s_{\lambda} = \sum_{T} x^{T}$, sum over semi standard Young tableaux ;
- orthogonal basis (for Hall scalar product) + triangular over (augmented) monomial basis ;
- with determinants...

-> Encode irreducible characters of symmetric and general linear groups.

Jack polynomials

Deformation of Schur functions with a positive real parameter α .

$$(J_{\lambda}^{(lpha)})$$
 basis, $J_{\lambda}^{(1)} = \mathsf{cst}_{\lambda} \cdot s_{\lambda}$

Several equivalent definitions:

- $J_{\lambda} = \sum_{T} \psi_{T}(\alpha) x^{T}$, sum over semi standard Young tableaux ;
- orthogonal basis (for a deformation of *Hall scalar product*) + triangular over (augmented) monomial basis.

For $\alpha = 1/2, 2$, they also have a representation-theoretical interpretation (in terms of Gelfand pairs) but not in general !

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α . Nevertheless, ...

Macdonald-Stanley conjecture (\sim 90)

The coefficients of Jack polynomials in augmented monomial basis are polynomials in α with non-negative integer coefficients.

Notation: $[\tilde{m}_{\tau}]J_{\lambda}$.

Polynomiality in α with non-negative coefficients

Both definitions involve rational functions in α . Nevertheless, ...

Knop-Sahi theorem (97)

The coefficients of Jack polynomials in augmented monomial basis are polynomials in α with non-negative integer coefficients.

Notation: $[\tilde{m}_{\tau}]J_{\lambda}$.

KS give a combinatorial interpretation of $[\tilde{m}_{\tau}]J_{\lambda}$ as a weighted enumeration of *admissible* tableaux.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k. Define

$$\mathsf{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot [p_{\mu 1^{n-k}}] J_{\lambda}^{(\alpha)} & \text{if } n = |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

 $Ch_{\mu}^{(\alpha)}$ is a function on all Young diagrams. z_{μ} : standard explicit numerical factor.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k. Define

$$\mathsf{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot [p_{\mu 1^{n-k}}] J_{\lambda}^{(\alpha)} & \text{if } n = |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

 ${\sf Ch}_{\mu}^{(lpha)}$ is a function on all Young diagrams. Specialization: if $|\mu| < |\lambda|$,

$$\mathsf{Ch}_{\mu}^{(1)}(\lambda) = \frac{|\lambda|!}{(|\lambda| - |\mu|)!} \cdot \frac{\chi_{\mu 1^{n-k}}^{\lambda}}{\mathsf{dim}(V_{\lambda})}.$$

Introduced by S. Kerov, G. Olshanski in the case $\alpha = 1$ (to study random diagrams with Plancherel measure), by M. Lassalle in the general case.

A function on the set of all Young diagrams

Definition

Let μ be a partition of k. Define

$$\mathsf{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot [p_{\mu 1^{n-k}}] J_{\lambda}^{(\alpha)} & \text{if } n = |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition (Kerov/Olshanski for $\alpha = 1$, Lassalle in general) For any r, the map

$$(\lambda_1,\ldots,\lambda_r)\mapsto \mathsf{Ch}^{(\alpha)}_{\mu}\left((\lambda_1,\ldots,\lambda_r)\right)$$

is a polynomial in $\lambda_1, \ldots, \lambda_r$. Besides, it is symmetric in $\lambda_1 - 1/\alpha, \ldots, \lambda_r - r/\alpha$.

In other words, $Ch^{(\alpha)}_{\mu}$ is a shifted symmetric function.

V. Féray (with P.A.)

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same length m. We associate to them the partition

V. Féray (with P.A.)

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same length m. We associate to them the partition

$$\lambda(\mathbf{p}, \mathbf{q}) = (\underbrace{q_1 + \dots + q_m, \dots, q_1 + \dots + q_m}_{p_1 \text{ times}}, \underbrace{q_2 + \dots + q_m, \dots, q_2 + \dots + q_m}_{p_2 \text{ times}}, \dots).$$

Proposition (Lassalle, F., Dołęga)

Let μ be a partition of k. $Ch^{(\alpha)}_{\mu}(\lambda(\mathbf{p},\mathbf{q}))$ is a polynomial in

 $p_1, p_2, \ldots, q_1, q_2, \ldots, \alpha$

Lassalle gave an algorithm to compute those polynomials.

V. Féray (with P.A.)

Multirectangular coordinates (R. Stanley)

Consider two lists \mathbf{p} and \mathbf{q} of positive integers of the same length m. We associate to them the partition

$$\lambda(\mathbf{p},\mathbf{q}) = (\underbrace{q_1 + \dots + q_m, \dots, q_1 + \dots + q_m}_{p_1 \text{ times}}, \underbrace{q_2 + \dots + q_m, \dots, q_2 + \dots + q_m}_{p_2 \text{ times}}, \dots).$$

Conjecture (M. Lassalle, still open)

Let μ be a partition of k. $(-1)^k \operatorname{Ch}_{\mu}^{(\alpha)}(\lambda(\mathbf{p},\mathbf{q}))$ is a polynomial in

$$p_1, p_2, \ldots, -q_1, -q_2, \ldots, \alpha - 1$$

with non-negative integer coefficients.

V. Féray (with P.A.)

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:

Knop-Sahi	Lassalle
monomial coefficients	power-sum coefficients
look at one coefficient	coefficients as shifted symmetric functions

Link between the two questions ?

Knop-Sahi theorem and Lassalle conjecture do not seem related.

Two (main) differences:

Knop-Sahi	Lassalle
monomial coefficients	power-sum coefficients
look at one coefficient	coefficients as shifted symmetric functions

Idea: look at monomial coefficients as shifted symmetric functions.

Monomial coefficients as shifted symmetric functions

Definition

Let μ be a partition of k. Define

$$\mathsf{Ko}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot [\tilde{m}_{\mu \mathbf{1}^{n-k}}] J_{\lambda}^{(\alpha)} & \text{if } n = |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

Monomial coefficients as shifted symmetric functions

Definition

Let μ be a partition of k. Define

$$\mathsf{Ko}_{\mu}^{(\alpha)}(\lambda) = \begin{cases} \binom{n-k+m_{1}(\mu)}{m_{1}(\mu)} \cdot z_{\mu} \cdot [\tilde{m}_{\mu\mathbf{1}^{n-k}}] J_{\lambda}^{(\alpha)} & \text{if } n = |\lambda| \ge k; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition

 $\operatorname{Ko}_{\mu}^{(\alpha)}$ is a shifted symmetric function.

Proof: Easy
$$\operatorname{Ko}_{\mu}^{(\alpha)} = \sum_{\nu \vdash k} L_{\mu,\nu} \operatorname{Ch}_{\nu}^{(\alpha)}$$
 (with $L_{\mu,\nu}$ defined by $p_{\nu} = \sum_{\mu \vdash k} L_{\mu,\nu} \tilde{m}_{\mu}$).

Then apply Lassalle proposition.

A new conjecture

Proposition

 $\operatorname{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ is a polynomial in \mathbf{p} , \mathbf{q} and α .

A new conjecture

Proposition

```
\operatorname{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q}) is a polynomial in \mathbf{p}, \mathbf{q} and \alpha.
```

- when specialized to non-negative values of **p** and **q**, $\text{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q})$ is a polynomial in α with nonnegative coefficients (KS);
- But it does not have non-negative coefficients as polynomial in p, q and α.

A new conjecture

Proposition

```
\operatorname{Ko}_{\mu}^{(\alpha)}(\mathbf{p} \times \mathbf{q}) is a polynomial in \mathbf{p}, \mathbf{q} and \alpha.
```

Conjecture (F., Alexandersson)

In the falling factorial basis in **p** and **q**, $\text{Ko}^{(\alpha)}_{\mu}(\mathbf{p} \times \mathbf{q})$ has non-negative integer coefficients.

falling factorial: $(n)_k := n(n-1)\dots(n-k+1)$.

falling factorial basis:
$$\left((p_1)_{i_1}(p_2)_{i_2}\dots(q_1)_{j_1}(q_2)_{j_2}\dots\alpha^k\right)$$
.

It is stronger than positivity in Knop-Sahi theorem (and does not follow from their combinatorial interpretation) !

V. Féray (with P.A.)

Evidence for our conjecture

- Computer exploration: the conjecture holds for $|\mu| \leq 9$ and 4 rectangles ;
- Proof for $\mu = (k)$;
- Proof for $\alpha = 1$ (and $\alpha = 2$);

Nice combinatorics in these case.

Combinatorial formulas for $\alpha = 1$

For $\alpha = 1$, there is a combinatorial formula for $Ch_{\mu}^{(1)}$:

Theorem (F. 2007; F., Śniady 2008; conj. by Stanley 2006) Let μ a partition of k. Fix a permutation π in S_k of type μ . Then

$$\mathsf{Ch}_{\mu}(\mathbf{p} imes \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \ \sigma \tau = \pi}} \varepsilon(\tau) \mathcal{N}_{\sigma, \tau}(\mathbf{p}, \mathbf{q}).$$

 $N_{\sigma,\tau}$: combinatorial polynomial with non-negative integer coefficients. \Rightarrow Lassalle conjecture holds for $\alpha = 1$.

Combinatorial formulas for $\alpha = 1$

For $\alpha = 1$, there is a combinatorial formula for $Ch_{\mu}^{(1)}$:

Theorem (F. 2007; F., Śniady 2008 ; conj. by Stanley 2006) Let μ a partition of k. Fix a permutation π in S_k of type μ . Then

$$\mathsf{Ch}_{\mu}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \\ \sigma \tau = \pi}} \varepsilon(\tau) \mathcal{N}_{\sigma, \tau}(\mathbf{p}, \mathbf{q}).$$

Proposition

Fix a set-partition $\Pi = {\Pi_1, \dots, \Pi_\ell}$ whose block sizes are given by μ . Then

$$\mathsf{Ko}_{\mu}^{(1)}(\mathbf{p}\times\mathbf{q}) = \sum_{\substack{\sigma,\tau\in S_k\\\sigma\tau\in S_{\Pi}}} \varepsilon(\tau) \mathcal{N}_{\sigma,\tau}(\mathbf{p},\mathbf{q}),$$

where $S_{\Pi} = S_{\Pi_1} \times S_{\Pi_2} \cdots \times S_{\Pi_{\ell}}$.

$$\operatorname{Ko}_{(k)}^{(\alpha)}$$
 is FF non-negative.

Observation:
$$\operatorname{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \\ \text{no restriction}}} \varepsilon(\tau) N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}).$$

$\operatorname{Ko}_{(k)}^{(\alpha)}$ is FF non-negative.

Observation:
$$\operatorname{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \\ \mathbf{p} \sigma \text{ restriction}}} \varepsilon(\tau) N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}).$$

This formula simplifies to:

$$\operatorname{Ko}_{(k)}^{(\alpha)}$$
 is FF non-negative.

Observation:
$$\operatorname{Ko}_{(k)}^{(1)}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \\ \mathbf{p} \sigma \text{ restriction}}} \varepsilon(\tau) N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}).$$

This formula simplifies to:

Proposition (deformation for a general
$$\alpha$$
)

$$\mathsf{Ko}_{(k)}^{(\alpha)}(\lambda) = \sum_{\substack{E \subset \lambda, \ |E|=k \\ \text{for any column } C, \ |E \cap C| \leq 1}} \prod_{\substack{R \text{ row} \\ \text{of } \lambda}} (1+\alpha) \cdots (1+(|E \cap R|-1)\alpha)$$

$$\mathsf{Ko}_{(k)}^{(\alpha)}(\lambda) = \sum_{\substack{E \subset \lambda, \ |E| = k \\ \text{for any column } C, \ |E \cap C| \leq 1 }} \prod_{\substack{R \text{ row} \\ \text{of } \lambda}} (1 + \alpha) \cdots (1 + (|E \cap R| - 1)\alpha)$$

$$\mathsf{Ko}_{(k)}^{(\alpha)}(\lambda) = \sum_{\substack{E \subset \lambda, \ |E|=k\\ \text{for any column } C, \ |E \cap C| \leq 1 \\ of \lambda}} \prod_{\substack{R \text{ row} \\ of \lambda}} (1+\alpha) \cdots (1+(|E \cap R|-1)\alpha)$$

Sketch of proof: Start from KS combinatorial interpretation

$$\mathsf{Ko}_{(k)}^{(\alpha)}(\lambda) = \sum_{\substack{E \subset \lambda, \ |E| = k \\ \text{for any column } C, \ |E \cap C| \leq 1 \\ \text{of } \lambda}} \prod_{\substack{R \text{ row} \\ \text{of } \lambda}} (1 + \alpha) \cdots (1 + (|E \cap R| - 1)\alpha)$$

Sketch of proof: Start from KS combinatorial interpretation

With well chosen rules to solve conflicts (two elements in the same column), each E is obtained with the good weight.

V. Féray (with P.A.)

$$\mathsf{Ko}_{(k)}^{(\alpha)}(\lambda) = \sum_{\substack{E \subset \lambda, \ |E|=k\\ \text{for any column } C, \ |E \cap C| \leq 1}} \prod_{\substack{R \text{ row}\\ of \lambda}} (1+\alpha) \cdots (1+(|E \cap R|-1)\alpha)$$

- This formula implies that Ko^(\alpha)_(k) is non negative in the falling factorial basis, while KS combinatorial interpretation does not.
- The reason is that our combinatorial interpretation is dilatation invariant.
- Maybe our conjecture suggests the existence of a dilatation-invariant combinatorial interpretation of $[\tilde{m}_{\mu 1^{n-k}}]J_{\lambda}^{(\alpha)}$ (so far, we have one only for hooks!).

Back to $\alpha = 1$

$$\mathsf{Ko}^{(1)}_{\mu}(\mathbf{p} imes \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \mathcal{N}_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

... use explicit expression of $N_{\sigma,\tau}(\mathbf{p},\mathbf{q})$ + sum manipulations ...

It is enough to prove Question 1

Fix three set partitions T, U and Π of the same set and define $S_T = S_{T_1} \times \cdots \times S_{T_l}$. Then

$$\sum_{\substack{\sigma \in S_T, \tau \in S_U\\ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \ge 0.$$

Back to $\alpha = 1$

$$\mathsf{Ko}^{(1)}_{\mu}(\mathbf{p} imes \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \mathcal{N}_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

... use explicit expression of $N_{\sigma,\tau}(\mathbf{p},\mathbf{q})$ + sum manipulations ...

It is enough to prove

Conjecture

Fix three set partitions T, U and Π of the same set and define $S_T = S_{T_1} \times \cdots \times S_{T_l}$. Then

 σ

$$\sum_{\substack{\in S_T, \tau \in S_U\\ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \ge 0.$$

Back to $\alpha = 1$

$$\mathsf{Ko}^{(1)}_{\mu}(\mathbf{p} imes \mathbf{q}) = \sum_{\substack{\sigma, \tau \in S_k \ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \mathcal{N}_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

... use explicit expression of $N_{\sigma,\tau}(\mathbf{p},\mathbf{q})$ + sum manipulations ...

It is enough to prove Conjecture

Fix three set partitions T, U and Π of the same set and define $S_T = S_{T_1} \times \cdots \times S_{T_l}$. Then

$$\sum_{\substack{\sigma \in S_T, \tau \in S_U\\ \sigma \tau \in S_{\Pi}}} \varepsilon(\tau) \ge 0.$$

Natural idea: construct an involution by multiplication by a well-chosen transposition. This does not work here! (we have one example where $\tau = \text{id or } \tau = (1 \ 2)(3 \ 4)(5 \ 6))$

V. Féray (with P.A.)

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = [\tilde{m}_{\mu 1^{n-k}}] J_{\lambda}^{(1)} = [m_{\mu 1^{n-k}}] \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)!} \frac{s_{\lambda}}{\dim(\lambda)}$$
$$= \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)! \dim(\lambda)} \# \mathsf{SSYT}(\lambda, \mu 1^{n-k})$$

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = [\tilde{m}_{\mu 1^{n-k}}] J_{\lambda}^{(1)} = [m_{\mu 1^{n-k}}] \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)!} \frac{s_{\lambda}}{\dim(\lambda)}$$
$$= \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)! \dim(\lambda)} \# \mathsf{SSYT}(\lambda, \mu 1^{n-k})$$

Bijection:

 $SSYT(\lambda, \mu 1^{n-k}) \longleftrightarrow \{(\nu, T, T') \text{ with } T \in SSYT(\nu, \mu), T' \in SYT(\lambda/\nu)\}$

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = [\tilde{m}_{\mu 1^{n-k}}] J_{\lambda}^{(1)} = [m_{\mu 1^{n-k}}] \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)!} \frac{s_{\lambda}}{\dim(\lambda)}$$
$$= \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)! \dim(\lambda)} \# \mathsf{SSYT}(\lambda, \mu 1^{n-k})$$

Bijection:

 $SSYT(\lambda, \mu 1^{n-k}) \longleftrightarrow \{(\nu, T, T') \text{ with } T \in SSYT(\nu, \mu), T' \in SYT(\lambda/\nu)\}$

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = \sum_{\nu \vdash k} \frac{|\mathsf{SSYT}(\nu,\mu)|}{\prod_{i} m_{i}(\mu)!} \underbrace{\frac{n!}{(n-k)!} \frac{|\mathsf{SYT}(\lambda/\nu)|}{\dim(\lambda)}}.$$

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = [\tilde{m}_{\mu 1^{n-k}}] J_{\lambda}^{(1)} = [m_{\mu 1^{n-k}}] \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)!} \frac{s_{\lambda}}{\dim(\lambda)}$$
$$= \frac{n!}{(n-k)! \prod_{i} m_{i}(\mu)! \dim(\lambda)} \# \mathsf{SSYT}(\lambda, \mu 1^{n-k})$$

Bijection:

 $SSYT(\lambda, \mu 1^{n-k}) \longleftrightarrow \{(\nu, T, T') \text{ with } T \in SSYT(\nu, \mu), T' \in SYT(\lambda/\nu)\}$

$$\mathsf{Ko}_{\mu}^{(1)}(\lambda) = \sum_{\nu \vdash k} \frac{|\mathsf{SSYT}(\nu,\mu)|}{\prod_{i} m_{i}(\mu)!} \frac{n!}{(n-k)!} \frac{|\mathsf{SYT}(\lambda/\nu)|}{\dim(\lambda)}$$

Shifted Schur function (Okounkov, Olshanski)

V. Féray (with P.A.)

.

Using shifted Schur function (1/2)

In the previous slide, we have seen:

Proposition

 ${\sf Ko}_\mu^{(1)}$ is a non-negative linear combination of $s_
u^\#$.

Is $s_{\nu}^{\#}$ non-negative in the falling factorial basis ?

Using shifted Schur function (1/2)

In the previous slide, we have seen:

Proposition

 ${\sf Ko}_\mu^{(1)}$ is a non-negative linear combination of $s_
u^\#$.

Is $s_{
u}^{\#}$ non-negative in the falling factorial basis ?

$$s^{\#}_{\mu}(\mathbf{p} \times \mathbf{q}) = \sum_{\sigma, \tau \in S_{k}} \chi^{\mu}(\sigma \, \tau) \, \varepsilon(\tau) \, N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

where χ^{μ} is an irreducible character of the symmetric group.

Using shifted Schur functions (2/2)

(

$$s^{\#}_{\mu}(\mathbf{p} \times \mathbf{q}) = \sum_{\sigma, \tau \in S_k} \chi^{\mu}(\sigma \, \tau) \, \varepsilon(\tau) N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

 \ldots use explicit expression of $N_{\sigma,\tau}(\mathbf{p},\mathbf{q})$ + sum manipulations \ldots

It is enough to prove

Question

For any two set partitions T, U of [n] and integer partition μ of n,

$$\sum_{\sigma\in S_{\mathcal{T}}, \tau\in S_U} \varepsilon(\tau) \, \chi^{\mu}(\sigma \, \tau) \geq 0.$$

Using shifted Schur functions (2/2)

$$s^{\#}_{\mu}(\mathbf{p} \times \mathbf{q}) = \sum_{\sigma, \tau \in S_k} \chi^{\mu}(\sigma \, \tau) \, \varepsilon(\tau) N_{\sigma, \tau}(\mathbf{p}, \mathbf{q}),$$

... use explicit expression of $N_{\sigma,\tau}(\mathbf{p},\mathbf{q})$ + sum manipulations ...

It is enough to prove Proposition

For any two set partitions T, U of [n] and integer partition μ of n,

$$\sum_{\sigma \in S_T, \tau \in S_U} \varepsilon(\tau) \, \chi^{\mu}(\sigma \, \tau) \geq 0.$$

Proof by easy representation-theoretical manipulations.

Another conjecture

Shifted Schur function can be deformed to shifted Jack polynomials $J^{\#}_{(\alpha)}$.

Another conjecture

Shifted Schur function can be deformed to shifted Jack polynomials $J^{\#}_{(\alpha)}$.

Conjecture (F., Alexandersson)

In the falling factorial basis in **p** and **q**, $\alpha^{\ell(\mu)} \mathcal{J}_{\mu}^{\sharp(\alpha)}(\mathbf{p} \times \mathbf{q})$ has non-negative integer coefficients.

Proposition

 $\operatorname{Ko}_{\mu}^{(\alpha)}$ is a linear combination of $\alpha^{\ell(\mu)} \mathcal{J}_{\mu}^{\sharp(\alpha)}(\mathbf{p} \times \mathbf{q})$. The coefficients in this linear combination are rational functions in α with non-negative coefficients in the numerator and denominator.

This new conjecture does not imply our other conjecture !

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results from both theories.

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results from both theories.

Other partial results?

- $\alpha = 2$ works similarly as $\alpha = 1$ with a bit more work ;
- Case of rectangular Young diagram is maybe tractable (Lassalle proved his conjecture in this case);

Conclusion

A bridge between KS theorem and Lassalle's conjecture:

- Our conjecture involves shifted symmetric functions and multirectangular coordinates and implies KS theorem ;
- Our partial results use (partial) results from both theories.

Other partial results?

- $\alpha = 2$ works similarly as $\alpha = 1$ with a bit more work ;
- Case of rectangular Young diagram is maybe tractable (Lassalle proved his conjecture in this case);

Future work:

• What about (shifted) Macdonald polynomials and multirectangular coordinates?

V. Féray (with P.A.)