Cumulants of Jack symmetric functions and b-conjecture

Maciej Dołęga and Valentin Féray

Uniwersytet im. Adama Mickiewicza/Institut für Mathematik, Universität Zürich

Part 1: Background and main result

Jack polynomials

Family J^(α)_λ(**x**) of symmetric functions depending on a parameter α > 0;
deformation of Schur and elementary symmetric functions:

$$J_{\lambda}^{(1)}(\boldsymbol{x}) = rac{n!}{\dim(\lambda)} s_{\lambda}(\boldsymbol{x}),$$

 $J_{\lambda}^{(0)}(\boldsymbol{x}) = \left(\prod \lambda_{i}^{t}!\right) e_{\lambda^{t}}(\boldsymbol{x});$

b-conjecture I

b-Conjecture II

b-Conjecture (Goulden, Jackson)

For all partitions $\tau, \mu, \nu \vdash n \geq 1$, the quantity

 $h_{\mu,\nu}^{\tau}(\beta)$ is a **polynomial** in β with **nonneg-**

ative integer coefficients.

Goulden and Jackson [3] defined a family of coefficients $\boldsymbol{h}_{\mu,\nu}^{\tau}(\boldsymbol{\alpha}-1)$ by the following identity: $\log\left(\sum_{n\geq 1}\sum_{\lambda\vdash n}\frac{J_{\lambda}^{(\alpha)}(\boldsymbol{x}) J_{\lambda}^{(\alpha)}(\boldsymbol{y}) J_{\lambda}^{(\alpha)}(\boldsymbol{z}) t^{n}}{h_{\alpha}(\lambda) h_{\alpha}'(\lambda)}\right) = \sum_{n\geq 1}\frac{t^{n}}{\alpha n}\left(\sum_{\mu,\nu,\tau\vdash n}\boldsymbol{h}_{\mu,\nu}^{\tau}(\boldsymbol{\alpha}-1) p_{\mu}(\boldsymbol{x}) p_{\nu}(\boldsymbol{y}) p_{\tau}(\boldsymbol{z})\right),$

A previous result of us states that $h^{\tau}_{\mu,\nu}(\beta)$ is a

- $\begin{pmatrix} \mathbf{1} \\ i \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ i \end{pmatrix}$
- For α = 2, we get zonal symmetric functions, that have a representation-theoretical interpretation.
- special case of **Macdonald** polynomials: $\lim_{t \to 1} (1-t)^{-|\lambda|} J_{\lambda}^{(t^{\alpha},t)}(\boldsymbol{x}) = J_{\lambda}^{(\alpha)}(\boldsymbol{x});$
- widely studied since their introduction by Jack in 1970.
- where $h_{\alpha}(\lambda)$ and $h'_{\alpha}(\lambda)$ are α -deformation of the "hook-product". Motivation:
- $h_{\mu,\nu}^{\tau}(0)$ enumerates connected hypergraphs embedded into **oriented surfaces** with particular statistics given by μ , ν and τ ,
- $h_{\mu,\nu}^{\tau}(1)$ enumerates connected hypergraphs embedded into **non-oriented surfaces** with the same statistics.

rational function in α with only possible poles at $\alpha = 0$. Our main result is a proof that, in fact, $h_{\mu,\nu}^{\tau}(\beta)$ has no pole at $\alpha = 0$, thus completing the proof of **polynomiality** in *b*-Conjecture:

Theorem (Main Result)

For all partitions $\tau, \mu, \nu \vdash n \geq 1$ quantity $h_{\mu,\nu}^{\tau}(\beta)$ is a **polynomial** in β of degree 2 + $n - \ell(\tau) - \ell(\mu) - \ell(\nu)$ with rational coefficients.

Part 2: Strong factorization property

Strong factorization property of Jack polynomials

Our main result is a consequence of the **strong factorization property (SFP)** of Jack polynomials:

• for partitions $\lambda = (\lambda_1, \lambda_2, ...)$, and

Two equivalent SFP

Let *R*-ring, and $\boldsymbol{u} = (u_I)_{I \subseteq [r]}$ - family of elements of $R(\alpha)$ indexed by subsets of [r].

Proposition (F, 2013)

Assume
$$u_{\{h\}}, u_{\{h\}}^{-1} = O(1)$$
. The following are
equivalent:
• for all $H \subseteq [r]$,
 $\Pi_{G \subseteq H} u_{G}^{(-1)^{|H|}} = 1 + O(\alpha^{|H|-1});$
• for all $H \subseteq [r]$,
 $\Sigma_{\pi \in \mathcal{P}(H)}(-1)^{|\pi|}(|\pi|-1)! \prod_{B \in \pi} u_B = O(\alpha^{|H|-1}).$
If this holds, we say that \boldsymbol{u} has the **strong**
factorization property (SFP).

Conclusion

 Strong factorization property of Jack polynomials leads to polynomiality result in *b*-conjecture;

 Polynomiality result in *b*-conjecture leads to combinatorial interpretation of the top-degree

 $\mu = (\mu_1, \mu_2, \dots) \text{ we define}$ $\lambda \oplus \mu := (\lambda_1 + \mu_1, \lambda_2 + \mu_2, \dots);$ • for partitions $\lambda^1, \cdots, \lambda^r$ and a subset I of $[r] := \{1, \cdots, r\}, \text{ we denote}$ $\lambda^I := \bigoplus_{i \in I} \lambda^i.$

Theorem (SFP for Jack) Let $\lambda^1, \dots, \lambda^r$ be partitions. Then $\prod_{I \subseteq [r]} \left(J_{\lambda^I}^{(\alpha)}\right)^{(-1)^{|I|}} = 1 + O(\alpha^{r-1}).$

Examples:

 $\frac{J_{\lambda^1 \oplus \lambda^2}^{(\alpha)}}{J_{\lambda^1}^{(\alpha)} J_{\lambda^2}^{(\alpha)}} = 1 + O(\alpha), \quad \frac{J_{\lambda^1 \oplus \lambda^2 \oplus \lambda^3}^{(\alpha)} J_{\lambda^1}^{(\alpha)} J_{\lambda^2}^{(\alpha)} J_{\lambda^3}^{(\alpha)}}{J_{\lambda^2 \oplus \lambda^3}^{(\alpha)} J_{\lambda^1 \oplus \lambda^3}^{(\alpha)} J_{\lambda^1 \oplus \lambda^2}^{(\alpha)}} = 1 + O(\alpha^2).$

The strong factorization property can also be stated in terms of **cumulants**:

Theorem (SFP for Jack,

Corollary:

For two families $(u_I)_{I \subseteq [r]}$ and $(v_I)_{I \subseteq [r]}$ with SFP, their entry-wise product $(u_I v_I)_{I \subseteq [r]}$ and quotient $(u_I/v_I)_{I \subseteq [r]}$ also have SFP.

Back to our main theorem

part of the coefficients $h_{\mu,\nu}^{\tau}(\beta)$ with $\tau = (n)$, and to the proof of *b*-conjecture in some special cases [1].

Open questions

Conjecture (SFP for Macdonald)

Let $\lambda^1, \dots, \lambda^r$ be partitions, and $J_{\lambda}^{(q,t)}$ be Macdonald polynomials. Then $\prod_{I \subseteq [r]} \left(J_{\lambda^I}^{(q,t)} \right)^{(-1)^{|I|}} = 1 + O\left((q-1)^{r-1}\right).$ Equivalently, $\sum_{\pi \in \mathcal{P}([r])} \mu(\pi, \{H\}) \prod_{B \in \pi} J_{\lambda^B}^{(q,t)} = O\left((q-1)^{r-1}\right).$

Question

Can we find a probabilistic framework in which the strong factorization property of Jack polynomials leads to some kind of central limit theorem?

2nd form)

For any partitions $\lambda^1, \dots, \lambda^r$, one has $\sum_{\pi \in \mathcal{P}([r])} (-1)^{|\pi|} (|\pi| - 1)! \prod_{B \in \pi} J_{\lambda^B} = O(\alpha^{r-1}).$

Examples: • $J_{\lambda^1 \oplus \lambda^2}^{(\alpha)} - J_{\lambda^1}^{(\alpha)} J_{\lambda^2}^{(\alpha)} = O(\alpha),$ • $J_{\lambda^1 \oplus \lambda^2 \oplus \lambda^3}^{(\alpha)} - J_{\lambda^1}^{(\alpha)} J_{\lambda^2 \oplus \lambda^3}^{(\alpha)} - J_{\lambda^2}^{(\alpha)} J_{\lambda^1 \oplus \lambda^3}^{(\alpha)} - J_{\lambda^3}^{(\alpha)} J_{\lambda^1 \oplus \lambda^2}^{(\alpha)} + 2J_{\lambda^1}^{(\alpha)} J_{\lambda^2}^{(\alpha)} J_{\lambda^3}^{(\alpha)} = O(\alpha^2).$

Notation: if F is a function on Young diagrams, $\kappa^F(\lambda^1, \dots, \lambda^r)$ denotes $\sum_{\pi \in \mathcal{P}([r])} (-1)^{|\pi|} (|\pi| - 1)! \prod_{B \in \pi} F(\lambda^B).$

 $\sum_{r\geq 1}\frac{t^r}{r!\alpha^r}\sum_{(j_1,\cdots,j_r)}\kappa^G(1^{j_1},\cdots,1^{j_r}),$ where $G(\lambda) = \frac{1}{h_{\alpha}(\lambda)h_{\alpha}''(\lambda)}J_{\lambda}^{\alpha}(\boldsymbol{x})J_{\lambda}^{\alpha}(\boldsymbol{y})J_{\lambda}^{\alpha}(\boldsymbol{z}).$

Thus our main theorem is equivalent to: $\kappa^G(1^{j_1}, \cdots, 1^{j_r}) = O(\alpha^{r-1}).$

For any $r \ge 1$ and for any partitions $\lambda^1, \dots, \lambda^r$, • the family $u_I := J^{\alpha}_{\lambda^I}(\boldsymbol{x})$ has SFP, • the family $v_I := h_{\alpha}(\lambda^I)$ has SFP, • the following family also has SFP: $w_I := h''_{\alpha}(\lambda^I) := \alpha^{-\lambda_1} (\prod_i m_i(\lambda^t)!)^{-1} h'_{\alpha}(\lambda).$ • as a consequence, the family $u_I/(v_I w_I) = G(\lambda^I)$ has SFP.

Thank you

Thank you for your attention. Here is a list of references for more on the subject.

References

[1] M. Dołęga. Top degree part in *b*-conjecture for unicellular bipartite maps. arXiv preprint 1604.03288, 2016.

[2] M. Dołęga and V. Féray. Cumulants of Jack symmetric functions and b-conjecture. arXiv preprint 1601.01501, 2016.

3] I. P. Goulden and D. M. Jackson. Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions. *Trans. Amer. Math. Soc.*, 348(3):873–892, 1996.