On Kerov polynomials for Jack characters

Maciej Dołęga and Valentin Féray

Instytut Matematyczny, Uniwersytet Wrocławski / LaBRI, CNRS, Université Bordeaux 1

Part 1: Background

Jack polynomials

- Family $J_{\lambda}^{(\alpha)}$ of symmetric functions depending on a parameter $\alpha > 0$.
- deformation of Schur functions:

 $J_{\lambda}^{(1)} = rac{n!}{\dim(\lambda)} s_{\lambda}.$

- widely studied since their introduction by Jack in 1970. [7]
- Consider the expansion of Jack polynomials on

Dual approach

We review here some work of Lassalle. [9] Fix a partition μ . Define Jack characters as $\operatorname{Ch}_{\mu}^{(\alpha)}(\lambda) = \begin{pmatrix} |\lambda| - |\mu| + m_1(\mu) \\ m_1(\mu) \end{pmatrix} z_{\mu} \theta_{\mu,1^{|\lambda| - |\mu|}}^{(\alpha)}(\lambda).$

roughly θ^(α)_μ(λ) with a normalization factor ;
Ch^(α)_μ is a function on all Young diagrams ;

• many results in the case $\alpha = 1$

Lassalle's conjecture

Interesting multiplicative basis of shifted symmetric functions:

free cumulants $(R_k^{(\alpha)}(\lambda))_{k\geq 2}$

Conjecture (Lassalle)

 $\operatorname{Ch}_{\mu}^{(\alpha)}$ can be written as a polynomial (called Kerov polynomial) in $(R_k^{(\alpha)})_{k\geq 2}, \alpha, 1-\alpha$ with non-negative integer coefficients.

the power sum basis:

 $J^{(lpha)}_{\lambda} = \sum_{\mu \vdash |\lambda|} heta^{(lpha)}_{\mu}(\lambda) \, p_{\mu}.$

Special case: $\theta_{\mu}^{(1)}(\lambda)$ is the normalized character value of the symmetric group.

Proposition (Lassalle)

 $\operatorname{Ch}_{\mu}^{(\alpha)}$ is a (α -)shifted symmetric function in λ_1 , λ_2, \ldots (*i.e.* symmetric in $\lambda_1 - 1/\alpha, \lambda_2 - 2/\alpha$,

- The polynomiality in $(R_k^{(\alpha)})_{k\geq 2}$ is proved by Lassalle, but not in $\alpha!$
- This conjecture is inspired by the case α = 1, where the coefficients are shown to count some graphs on orientable surfaces. [3]

Part 2: Polynomiality

Our first main result is a partial answer to Lassalle conjecture:

Theorem (DF, 2013)

 $\operatorname{Ch}_{\mu}^{(\alpha)}$ is a polynomial in $(R_k^{(\alpha)})_{k\geq 2}, \alpha$ with rational coefficients.

Three ingredients in the proof:

 use an algorithm given by Lassalle to compute the coefficients by induction on the size of µ (each step involves an overdetermined linear system (S));

Part 3: Structure constants

When μ runs over all partitions, the family $(Ch_{\mu}^{(\alpha)})_{\mu}$ is a basis of the shifted symmetric function algebra. Hence,

 $\operatorname{Ch}_{\mu}^{(\alpha)} \cdot \operatorname{Ch}_{\nu}^{(\alpha)} = \sum_{\rho} g_{\mu,\nu}^{\rho}(\alpha) \operatorname{Ch}_{\rho}^{(\alpha)},$

for some scalars $g^{\rho}_{\mu,\nu}(\alpha)$, called structure constants.

Theorem (DF, 2013)

The structure constants $g^{\rho}_{\mu,\nu}(\alpha)$ are polynomials with rational coefficients in α .

- rewrite this algorithm with suitable normalizations and an auxiliary basis $(M_k^{(\alpha)})_{k\geq 2}$: we get a new system (S')
- extract a triangular subsystem from (S').

Corollary (Lapointe-Vinet theorem)

 $\theta_{\mu}^{(\alpha)}(\lambda)$ is a polynomial in α with rational coefficients.

This has long been an open problem (until paper [8] from Lapointe and Vinet in 1995; they in fact prove that the coefficients are integers).

Part 4: Fluctuations of large diagrams.

In probability,

Jack-Plancherel measure

- probability measure $\mathbb{P}_n^{(\alpha)}$ on Young diagrams λ with n boxes ;
- deformation of the well-known Plancherel measure (corresponding to $\alpha = 1$);
- defined using Jack polynomials. It can be

Idea of the proof: write $\operatorname{Ch}_{\mu}^{(\alpha)}$ and $\operatorname{Ch}_{\nu}^{(\alpha)}$ as polynomial in free cumulants, multiply them and them write free cumulants in terms of $\operatorname{Ch}_{\rho}^{(\alpha)}$.

This result contains:

- by specialization $\alpha = 1, 2$, the polynomiality in n of structure constants of the symmetric group algebra $\mathbb{C}[S_n]$ (Farahat-Higman 1959, [4]) and Hecke algebra of (S_{2n}, H_n) (Aker-Can 2012/Tout 2013, [1, 10]).
- the polynomiality in $b = \alpha 1$ in the *b*-conjecture of Goulden and Jackson (1995).

Thank you

Thank you for your attention. Here is a list of references for more on the subject.

References

- [1] K. Aker and M. Can. Generators of the Hecke algebra of (s_{2n}, b_n) . Adv. Math., 231(5):2465–2483, 2012.
- [2] M. Dołęga and V. Féray. On Kerov polynomials for Jack characters, long version. arXiv preprint 1201.1806, 2012.

characterized by:

Problem

Fix a partition μ . Study the asymptotic behaviour of the random variables $\operatorname{Ch}_{\mu}^{(\alpha)}(\lambda^{(n)})$ where $\lambda^{(n)}$ is distributed via $\mathbb{P}_{n}^{(\alpha)}$.

Link with other parts? Structure constants appear when we compute moments

 $\frac{1}{n^{|\mu|}} \operatorname{Ch}_{\mu}^{(\alpha)} \left(\lambda^{(n)} \right) \longrightarrow \begin{cases} 1 & \text{if } \mu = (1^k); \\ 0 & \text{else.} \end{cases}$ Besides, the variables $\frac{1}{kn^{k-1}} \operatorname{Ch}_{(k)}^{(\alpha)} \left(\lambda^{(n)} \right)$ converges in law towards independent standard normal variables.

Results

Theorem (DF, 2013)

The flucutation result uses multivariate Stein's method, as suggested in [5].

Consequence on the "shape" of the diagram: if we draw $\lambda^{(n)}$ with rectangular boxes, one has the same limit $\sqrt[1/\sqrt{n\alpha}]$ shape as for $\alpha = 1$.

Remark. Part 4 is based on the work of Ivanov, Kerov, Olshanski in the case $\alpha = 1$. [6]

- [3] M. Dołęga, V. Féray, and P. Śniady. Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations. Adv. Math., 225(1):81–120, 2010.
- [4] HK Farahat and G. Higman. The centres of symmetric group rings. Proc. Roy. Soc. London. Ser. A. Mathematical and Physical Sciences, 250(1261):212-221, 1959.
- [5] J. Fulman. Stein's method, Jack measure, and the Metropolis algorithm. Journal of Combinatorial Theory, Series A, 108(2):275–296, 2004.
- [6] V. Ivanov and G. Olshanski. Kerov's central limit theorem for the Plancherel measure on Young diagrams. In Symmetric functions 2001: surveys of developments and perspectives, volume 74 of NATO Sci. Ser. II Math. Phys. Chem., pages 93–151. Kluwer Acad. Publ., Dordrecht, 2002.
- [7] H. Jack. A class of symmetric polynomials with a parameter. Proc. Roy. Soc. Edinburgh Sect. A, 69:1–18, 1970/1971.
- [8] L. Lapointe and L. Vinet. A Rodrigues formula for the Jack polynomials and the Macdonald-Stanley conjecture. *International Mathematics Research Notices*, 1995(9):419–424, 1995.
- [9] M. Lassalle. Jack polynomials and free cumulants. Adv. Math., 222(6):2227-2269, 2009.
- [10] O. Tout. Structure coefficients of the Hecke algebra of (S_{2n}, B_n) . FPSAC 2013, DMTCS proceedings, to appear.