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Introduction

Main topic: random permutations

Classical questions: look at some statistics, like the number of cycles
(of given length), longest increasing subsequences, . . .
(usually for uniform or Ewens distributions)

a more recent approach: look for a limit theorem for the permutation
itself (interesting for non-uniform models or constrained
permutations).
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First part

The theory of permutons
(Hoppen, Kohayakawa, Moreira, Rath, Sampaio)
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

We have a natural notion of limit for such objects: the weak convergence.
This defines a nice compact Polish space.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Note: the projection on µπ on each axis is the Lebesgue measure on [0, 1]
(in other words, µπ has uniform marginals).
→ potential limits also have uniform marginals.
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How to look at large permutations?

A permutation π can be encoded as a probability measure µπ on [0, 1]2.

π = 5 2 4 1 3 = 7→ µπ =

In µπ, each small square has weight 1/n (i.e. density n).

Definition

A permuton is a probability measure on [0, 1]2 with uniform marginals.

Next few slides: connection with permutation patterns.
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Permutation patterns

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation
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Pattern density in permutations and permutons

If τ and σ are permutations of size k and n, resp., we set

õcc(τ, σ) :=
(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

In other terms: take k elements uniformly at random in σ, the probability
to find a pattern τ is õcc(τ, σ).

This probabilistic interpretation extends to permutons:
replacing σ with a permuton µ

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

where U(1), · · · ,U(k) are i.i.d. points in [0, 1]2 with
distribution µ.

a “231 pattern”
in a permuton
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An approximation lemma

Reminder:

õcc(τ, σ) :=
(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

In general, õcc(τ, σ) ̸= õcc(τ, µσ).
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An approximation lemma

Reminder:

õcc(τ, σ) :=
(
n

k

)−1

·#
{

occurrences of
τ in σ

}
∈ [0, 1].

õcc(τ, µ) := Pµ(U(1), · · · ,U(k) form a pattern τ),

In general, õcc(τ, σ) ̸= õcc(τ, µσ).

But we have the following approximation lemma:

Lemma
If π and σ are permutations of size k and n, resp., then

| õcc(π, σ)− õcc(π, µσ)| ≤
1
n

(
k

2

)
.
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Pattern density convergence and permuton convergence

Theorem (Hoppen, Kohayakawa, Moreira, Rath, Sampaio, 2013)

Weak convergence of permutons is equivalent to the pointwise convergence
of õcc(τ, ·) for all τ , i.e.

µ(n) → µ ⇔ for all τ, õcc(τ, µ(n)) → õcc(τ, µ).

As a consequence, for a sequence of permutation σ(n) of size tending to
infinity,

µσ(n) → µ ⇔ for all τ, õcc(τ, σ(n)) → õcc(τ, µ).

(In terms of permutations, õcc(τ, σ(n)) is much more concrete!)

Proof: ⇒ is easy, ⇐ see next two slides.
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Proof that ∀τ, õcc(τ, µ(n)) → õcc(τ, µ) ⇒ µ(n) → µ (1/2)

Consider three independent r.v. (U1,U2), (V1,V2) and (W1,W2) in [0, 1]2

according to µ and let
pµ := P(U1 < W1,V2 < W2).

Integrating over the value of (W1,W2), we get

pµ =

∫
[0,1]2

P(U1 < x , V2 < y) dµ(x , y)=

∫
[0,1]2

x y dµ(x , y).

On the other hand, we can split the event {U1 < W1,V2 < W2}
depending on whether U1 < V1 or U1 > V1, whether V1 < W1 or
V1 > W1, . . .

pµ = P(U1 < V1 < W1,V2 < W2 < U2)

+ other terms of the same kind;

= 1
6 õcc(312, µ) + . . ..

U

V
W
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Proof that ∀τ, õcc(τ, µ(n)) → õcc(τ, µ) ⇒ µ(n) → µ (2/2)

Conclusion: the map µ 7→ pµ =
∫
[0,1]2 x y dµ(x , y) is a linear combination

of maps µ 7→ õcc(τ, µ) for τ in S3.

Bold generalization: for any p, q there exists constants cτp,q such that for all
permutons µ, ∫

[0,1]2
xp yq dµ(x , y) =

∑
τ

cτp,q õcc(τ, µ).

Then convergence of all õcc(τ, ·) implies moment convergence, which in
turn implies convergence in distribution.
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Permuton convergence of random permutations

Theorem (BBFGMP, 17)

Let σn be a random permutation of size n. The following assertions are
equivalent.
(a) µσn converges in distribution for the weak topology to some random

permuton µ.
(b) The random infinite vector

(
õcc(π,σn)

)
π∈S converges in distribution

in the product topology to some random infinite vector (Λπ)π∈S.
(c) For every π in S, there is a ∆π ≥ 0 such that

E[õcc(π,σn)]
n→∞−−−→ ∆π.

Note: (a) ⇔ (b) expected (random version of the previous result),
(b) ⇔ (c) might be more surprising (cv in expectation is enough!).
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Why are expectations enough?

Claim: Fix τ1, . . . , τk . There exist constants cρ such that, for all
permutons µ,

k∏
i=1

õcc(τi , µ) =
∑
ρ

cρ õcc(ρ, µ).

(Similar argument as in the previous proof.)

Hence the cv in expectation implies cv of joint moments, which is enough
to deduce cv in distribution (our random variables are bounded).
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Second part

First examples of permuton convergence
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Limiting permuton for Mallows permutation (Starr, ’09)

Mallows model on Sn: P(σn) ∝ q
inv(σn)
n ,

where inv(σ) = #{(i , j) with i < j and σ(i) > σ(j)}.

Theorem (Starr, ’09)

Take qn = 1 − β/n. Then µσ(n) converge to the deterministic permuton
with density

u(x , y) =
(β/2) sinh(β/2)(

eβ/4 cosh(β[x − y ]/2)− e−β/4 cosh(β[x + y − 1]/2)
)2 .

β = 10 β = 6 β = 2
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Random minimal factorizations (Angel, Holroyd, Romik,
Virag, ’06)

Consider a uniform random minimal factorization of ω0 := n n-1 . . . 2 1
into adjacent transpositions: ω0 = τ1 . . . τN (where N =

(n
2

)
).

Q: what do partial products τ1 . . . τ⌊cN⌋ look like?

Pictures ( c⃝AHRV) (n = 500, c = 0, .1, .2, . . . , .9, 1):

There is a conjectural formula for the limiting process in the space of
permutons.
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Third part

Substitution-closed classes
and Brownian permutons
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Substitution in permutations

Definition

Let θ be a permutation of size d and π(1), . . . , π(d) be permutations. The
diagram of the permutation θ[π(1), . . . , π(d)] is obtained by replacing the
i-th dot in the diagram of θ with the diagram of π(i) (for each i).

2413[132, 21, 1, 12] = 12 = = 24387156

132

21

1

→ we are interested in substitution-closed permutation classes C, i.e. set
C ⊊

⊎
n≥0 Sn such that:

θ, π(1), . . . , π(d) ∈ C ⇒ θ[π(1), . . . , π(d)] ∈ C;
τ occurs in π and π ∈ C ⇒ τ ∈ C.
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Tree representation in substitution closed classes (Albert,
Atkinson, ’05)

Permutations in a substitution closed class C can be represented by
“substitution trees”:

= 243978156

2413

132 - +

+

A priori this tree representation is not unique, but it can be made unique by
imposing constraints (in particular, node labels should be ⊕, ⊖ or simple
permutations).
→ the set S of simple permutations in C will play a crucial role.
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Limit of substitution-closed classes

Theorem (BBFGMP, ’17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function S(z) =

∑
α∈S z |α|. Assume

RS > 0 and S ′(RS) >
2

(1 + RS)2
− 1. (H1)

For every n ≥ 1, let σn be a uniform permutation in C. The sequence
(µσn)n tends to the biased Brownian separable permuton µ(p) for some
“explicit” parameter p in [0, 1].

RS : radius of convergence of S(z).
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Limit of substitution-closed classes

Theorem (BBFGMP, ’17)

Let C be a substitution-closed class whose set of simple permutations S
has generating function S(z) =

∑
α∈S z |α|. Assume

RS > 0 and S ′(RS) >
2

(1 + RS)2
− 1. (H1)

For every n ≥ 1, let σn be a uniform permutation in C. The sequence
(µσn)n tends to the biased Brownian separable permuton µ(p) for some
“explicit” parameter p in [0, 1].

µ(p) (and õcc(τ, µ(p))) can be constructed from the Brownian
excursion or the continuous Brownian tree T .
First example of non-deterministic permuton limits;
universality phenomenon: the limit only depends on S through a single
parameter p (in practice, always closed to 1/2).
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Pictures

Simulation of σn with
S = ∅

(separable permutations)

Simulation of σn with
S = {2413, 3142, 24153}
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Other limiting behaviours

1 (Reminder) If S ′(RS) >
2

(1+RS )2
− 1, convergence to µ(p);

2 If S ′(RS) <
2

(1+RS )2
− 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.

3 If S ′(RS) =
2

(1+RS )2
− 1, two subcases:

a. S ′′(RS) < ∞ again, convergence to µ(p);
b. S ′′(RS) = ∞ new nontrivial limits, called “stable permutons”.
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Other limiting behaviours

1 (Reminder) If S ′(RS) >
2

(1+RS )2
− 1, convergence to µ(p);

2 If S ′(RS) <
2

(1+RS )2
− 1, degenerate case: composite structure

disappears at the limit and a random permutation has the same limit
as a random simple permutation.

3 If S ′(RS) =
2

(1+RS )2
− 1, two subcases:

a. S ′′(RS) < ∞ again, convergence to µ(p);
b. S ′′(RS) = ∞ new nontrivial limits, called “stable permutons”.

Intuition: in case 2, the tree encoding σn has one vertex of very large
degree. In case 3b., it tends towards a stable tree.

(Cases 2, 3a and 3b require additional technical hypotheses.)
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Pictures (stable permutons)

Simulation of stable permutons of parameter δ = 1.1 and δ = 1.5

We do not know substitution-closed classes which fits in case 3b. This
simulation is a ad-hoc model constructed to converge towards the stable
permutons.
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A word on the proofs

1 Reminder: enough to prove that, for any τ ,

E
[
õcc(τ,σn)

]
→ E

[
õcc(τ,ν)

]
,

where ν is the targeted limit random permuton.

2 The LHS can be computed combinatorially:

E[õcc(π,σn)] =
#{σ ∈ Cn, I ⊂ [n] : patI (σ) = π}(n

k

)
Cn

.

Can be translated in terms of trees and estimated asymptotically
through analytic combinatorics. (This is the main part of the proof.)

3 The RHS can be evaluated through the theory of random trees.
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Combinatorial decomposition of canonical trees with marked
leaves inducing a given t

simple
+/S

simple

-/S

2413
+

132

−

t

The white pieces are trees with zero or one marked leaf and some
conditions (to avoid creating adjacent ⊕ by gluing).

V. Féray (UZH) Random permutations Fribourg, 2017–12 24 / 28



Translating that into equations (1/2)

Equations for the white pieces:
One implicit equation

Tnot⊕ = z +
T 2

not⊕

1 − Tnot⊕
+ S

(
Tnot⊕

1 − Tnot⊕

)
.

Other series are expressed in terms of this one

T =
Tnot⊕

1 − Tnot⊕
;

T+ =
1

1 −WS ′(T )−W − S ′(T )
;

T+
not⊖ =

1
1 +W

T+;

T+
not⊕ = (WS ′(T ) +W + S ′(T ))T+

not⊖

where W = ( 1
1−Tnot⊕

)2 − 1.
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Translating that into equations (2/2)

Equation for Num(t)(z) =
∑

Num(t)
n zn:

Num(t)(z) = zk
∑
Vs

T type of root
∏

v∈Int(t)

Av ,

where

Av =


Occθv (T ) (T ′)d

′
v (T+)d

+
v (T−)d

−
v if v ∈ Vs ,(

1
1−Tnot⊕

)dv+1
(T ′

not⊕)
d ′
v (T+

not⊕)
d+
v (T−

not⊕)
d−
v if v /∈ Vs and θv = ⊕ ,(

1
1−Tnot⊖

)dv+1
(T ′

not⊖)
d ′
v (T+

not⊖)
d+
v (T−

not⊖)
d−
v if v /∈ Vs and θv = ⊖ .
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Second step: singularity analysis

1 Find singularity exponents: the singular part of all these series is
cst(1 − z

ρ)
β(1 + o(1)) where β is:

Brownian case stable case degenerate case
simple permutations analytic δ ∈ (1, 2) δ > 1

canonical trees 1/2∗ 1/δ δ

trees with one
marked leaf

−1/2 1
δ − 1 δ − 1

Num(t)(z) −(e + 1)/2 0
∑

v (δ − dv )
−

e: number of edges of t; dv : number of children of v ; x = min(x , 0).

∗: this 1/2 exponent is classical for series defined through analytic
implicit equations.
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2 Identify which trees t appear in the limit (i.e. minimize the exponent
of Num(t)(z)): binary in the Brownian case, all in the stable case,
stars in the degenerate case;

3 Compute constants for such trees. . .
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Conclusion

Expansion in the last few years of the study of non-uniform/constraint
random permutations (not necessarily in terms of permutons);
→ but no big picture at the moment.

Numerous potential applications:
mathematical problems: permutation classes appear naturally in
algebraic geometry, dynamical systems, . . . ;
in many domains, we have data in the form of permutations (genomics,
effective complexity of sorting algorithms).
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