Combinatorial interpretation and positivity of Kerov's polynomials

Valentin Féray Laboratoire d'Informatique de l'Institut Gaspard-Monge Université Paris-Est

Formal Power Series and Algebraic Combinatorics 2008 University of Talca (Chile), June 24th

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.
- Goal : prove that the coefficients are non-negative.

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.
- Goal : prove that the coefficients are non-negative.
- Tool : a combinatorial formula for character values using maps.



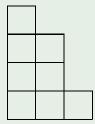
Irreducible representations of symmetric groups

They are indexed by partitions λ ⊢ n, or equivalently by Young diagrams.

Example

•
$$\lambda_1 = 3; \lambda_2 = \lambda_3 = 2;$$

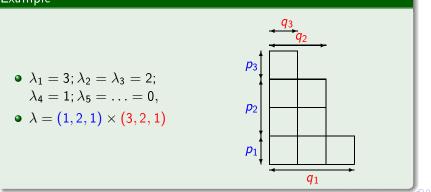
 $\lambda_4 = 1; \lambda_5 = \dots = 0,$



Irreducible representations of symmetric groups

- They are indexed by partitions λ ⊢ n, or equivalently by Young diagrams.
- Other notation : $\lambda = \mathbf{p} \times \mathbf{q}$.

Example

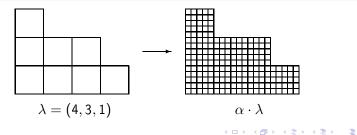


Free cumulants

Young diagram
$$\lambda \rightarrow$$
 Transition measure
 \rightarrow Free cumulants $(R_i(\lambda))_{i\geq 2}$

Properties (Biane, 1998)

Homogeneous R_i of degree i in \mathbf{p} and \mathbf{q} Asymptotics $\chi^{\alpha \cdot \lambda}(1 \dots k) \sim_{\alpha \to \infty} R_{k+1}(\lambda) |\alpha \cdot \lambda|^{-(k-1)/2}$



Kerov's polynomials

If
$$\mu \in S(k) \subset S(n)$$
 and $\lambda \vdash n$, let

$$\Sigma^{\lambda}_{\mu} = n(n-1)\dots(n-k+1)rac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(Id_n)}$$

where χ^{λ} is the character of the irreducible representation indexed by λ .

글 > - < 글 >

Kerov's polynomials

If
$$\mu \in S(k) \subset S(n)$$
 and $\lambda \vdash n$, let

$$\Sigma^{\lambda}_{\mu} = n(n-1)\dots(n-k+1)rac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(Id_n)}$$

where χ^{λ} is the character of the irreducible representation indexed by λ .

Theorem : Existence of Kerov's polynomials (Kerov, Biane, 2001)

Let $k \geq 1$, there exists a **universal** polynomial K_k such that :

$$\Sigma_{(1...k)}^{\lambda} = K_k(R_2(\lambda), \ldots, R_{k+1}(\lambda))$$

 \mathcal{K}_k does not depend on the diagram $\lambda! \iff$ equality as power series in \mathbf{p} and \mathbf{q}

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

 $K_k = R_{k+1} + \text{ lower degree terms}$

Moreover :

• K_k has integer coefficients.

(日) (同) (日) (日) (日)

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

 $K_k = R_{k+1} + \text{ lower degree terms}$

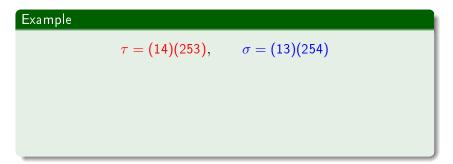
Moreover :

- K_k has integer coefficients.
- We prove here their positivity (conjectured by Kerov and Biane, 2001)

• • • • • • • • •

Map of a pair of permutations

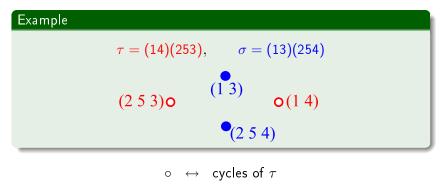
pair of permutations \mapsto bicolored edge-labeled map



(日) (同) (日) (日)

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

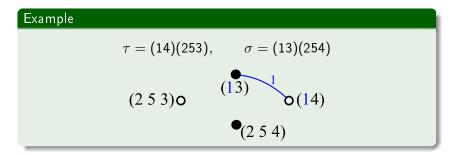


• \leftrightarrow cycles of σ

(日) (同) (日) (日)

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

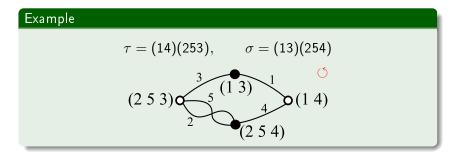


The edge labeled 1 links the two vertices corresponding to cycles containing 1.

イロト イポト イヨト イヨト

Map of a pair of permutations

pair of permutations \mapsto bicolored edge-labeled map

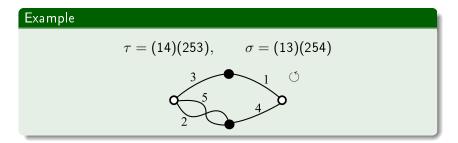


Same thing for the integers between 2 and k. The cyclic order at vertices is given by the cycle on the node.

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Map of a pair of permutations

pair of permutations $\stackrel{\sim}{\mapsto}$ bicolored edge-labeled map



Even if we forget the node labels, we can recover easily the permutations

イロト イポト イヨト イヨト

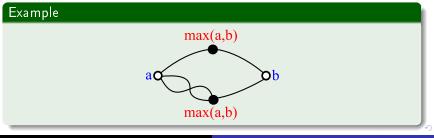
Colourings of a bicolored map

A colouring of the white vertices of M is :

$$arphi:V_\circ(M) o\mathbb{N}^\star$$

We associate the following colouring for the black vertices :

$$\psi: \begin{array}{ccc} V_{\bullet}(M) & \to & \mathbb{N}^{\star} \\ b & \mapsto & \max_{w \text{ neighbour of } b} \varphi(w) \end{array}$$



Power series associated to a bicolored map

We define the power series in indeterminates \mathbf{p} and \mathbf{q} :

$$N(M) = \sum_{\substack{\varphi \text{ colouring of} \\ \text{the white vertices}}} \left(\prod_{w \in V_{\circ}(M)} p_{\varphi(w)} \prod_{b \in V_{\bullet}(M)} q_{\psi(b)} \right)$$

N(M) is homogeneous of degree $V_{\circ}(M) + V_{\bullet}(M)$ in **p** and **q**!

Example

$$N(M^{\tau,\sigma}) = \sum_{\substack{a \ge 1 \\ b \ge 1}} p_a \cdot p_b \cdot q^2_{\max(a,b)}$$

・ロト ・ 同ト ・ ヨト ・ 日

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\Sigma^{\mathbf{p}\times\mathbf{q}}_{\mu} = \sum_{\substack{\tau,\sigma\in\mathcal{S}(k)\\\tau\cdot\sigma=\mu}} (-1)^{|C(\sigma)|+|C(\mu)|} N(M^{\tau,\sigma})(\mathbf{p},\mathbf{q})$$

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\sum_{\mu}^{\mathbf{p}\times\mathbf{q}} = \sum_{\substack{\tau,\sigma\in S(k)\\\tau\cdot\sigma=\mu}} (-1)^{|C(\sigma)|+|C(\mu)|} N(M^{\tau,\sigma})(\mathbf{p},\mathbf{q})$$

The homogeneous component of degree k + 1 is:

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (1...k) \\ |C(\tau)| + |C(\sigma)| = k+1}} (-1)^{|C(\sigma)| + 1} N(M^{\tau,\sigma})(\mathbf{p}, \mathbf{q})$$

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\sum_{\mu}^{\mathbf{p}\times\mathbf{q}} = \sum_{\substack{\tau,\sigma\in S(k)\\\tau\cdot\sigma=\mu}} (-1)^{|C(\sigma)|+|C(\mu)|} N(M^{\tau,\sigma})(\mathbf{p},\mathbf{q})$$

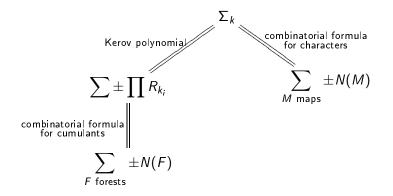
The homogeneous component of degree k + 1 is:

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (1...k) \\ |C(\tau)| + |C(\sigma)| = k+1}} (-1)^{|C(\sigma)|+1} N(M^{\tau,\sigma})(\mathbf{p},\mathbf{q})$$

The maps of the pairs of permutations in the second equation are planar trees.

Idea

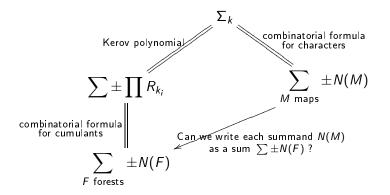
As power series in **p** and **q**,



• • = • • = •

Idea

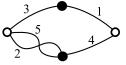
As power series in **p** and **q**,



• • = • • = •

T-transformation

Description on our favorite example

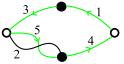


æ

∢ ≣⇒

T-transformation

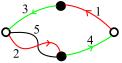
We choose an oriented loop \vec{L} (here dotted)



∢ ≣⇒

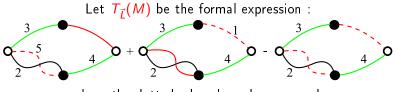
T-transformation

Call erasable its white-to-black directed edges



∢ ≣⇒

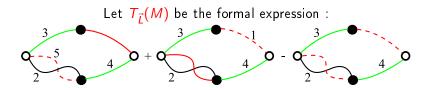
T-transformation



where the dotted edges have been erased.

< ∃⇒

T-transformation

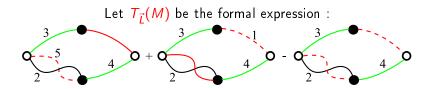


Proposition

$$N(T_{\vec{L}}(M)) = N(M)$$

Proof. Inclusion/exclusion!

*T***-transformation**



Proposition

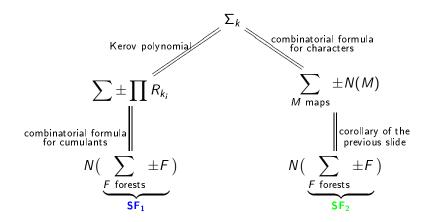
$$N(T_{\vec{l}}(M)) = N(M)$$

Corollary

For any map M, N(M) can be written (not in a unique way!) as

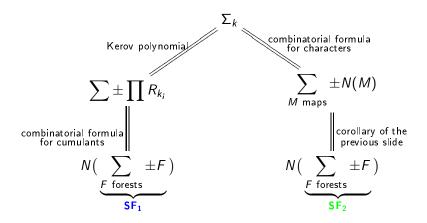
$$N(M) = \sum \pm N(F).$$

Return to our general picture



(日) (同) (三) (三)

Return to our general picture



Question : $SF_1 = SF_2$? (*N* is not injective on $\mathbb{Z}[forests]$)

→ < ∃ →</p>

Answer

It depends! (there are several ways to write N(M) as $\sum \pm N(F)$)

・ロト ・四ト ・ヨト ・ヨト

3

Answer

It depends! (there are several ways to write N(M) as $\sum \pm N(F)$)

Theorem

There exists $D : \{ \text{bic. edge-labeled maps} \} \rightarrow \mathbb{Z}[\text{forests}] \text{ such that } :$

$$N(M) = N(D(M))$$

$$SF_1 = SF_2 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12...k)}} (-1)^{|C(\sigma)|+1} D(M^{\tau,\sigma})$$

We will explain how to compute D later.

A B > A B >

Consequences on Kerov polynomials

Let
$$T_j = \underbrace{\int_{j-1}^{0} \frac{1}{j-1} f(x_j) f(x_j) f(x_j)}_{j-1}$$
 white vertices

The combinatorial expression for cumulants give :

$$\prod_{i} R_{j_{i}} = \bigsqcup T_{j_{i}} + \begin{array}{c} \text{forests with at least 1 tree} \\ \text{with more than 1 black vertex} \end{array}$$

$$\begin{array}{c} \text{coefficients} \\ \text{of} \prod R_{j_{i}} \\ \text{in } K_{k} \end{array} = \begin{array}{c} \text{of} \bigsqcup T_{j_{i}} \\ \text{in } \mathbf{SF}_{1} \end{array} = \begin{array}{c} \text{of} \bigsqcup T_{j_{i}} \\ \text{in } \mathbf{SF}_{2} \end{array}$$

Construction of D(M)

Add an external half-edge to the map .
 extremity the black extremity * of the edge e1 of smallest label
 where in the cyclic order of *? just after e1.

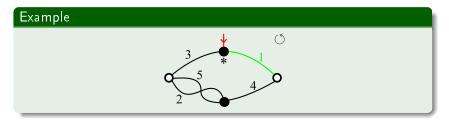
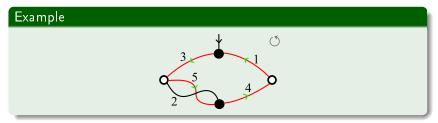


Image: A matrix

∃ > .

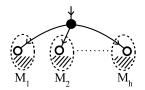
Construction of D(M)

- Add an external half-edge to the map .
- 2 Define as admissible the loops :
 - passing through \star if there are any
 - oriented from left to right (it has a sense if we draw the external half-edge on the top of the picture)



Construction of D(M)

- Add an external half-edge to the map .
- 2 Define as admissible the loops :
 - an admissible loop in one of the M_i (inductive definition)
 - oriented from left to right (it has a sense if we draw the external half-edge on the top of the picture)



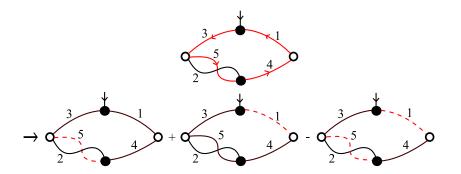
Construction of D(M)

- Add an external half-edge to the map if necessary.
- 2 Define the admissible loops
- Apply a *T*-transformation with respect to an admissible loop, without erasing the external half-edge
- Go back to step 1 with each connected component of each graph of the result.

Example

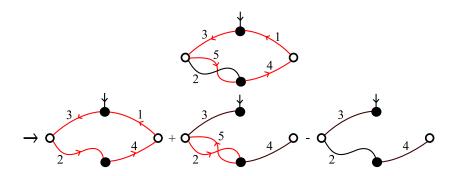
Back to our favorite example :

the loop in the previous example is admissible!



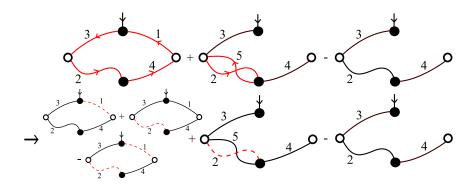
Example

In each one of the resulting maps, there is at most one admissible loop (in red)



Example

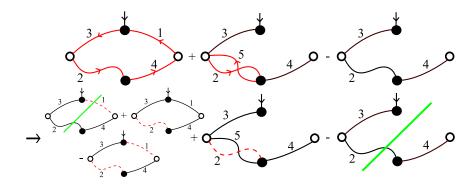
We again apply T-transformations.



(日) (四) (三) (三)

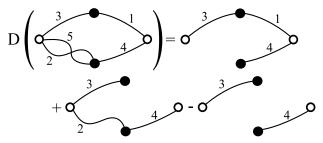
Example

There is a simplification. Note that the trees have coefficient +1 and the forest with two components -1.



Example

Final result :



(日) (四) (三) (三)

æ

Invariance of the result

There are still some choices to do, but :

Proposition

If we choose only admissible loops, we always obtain the same sum of forests denoted D(M).

D(M) has interesting properties :

Proposition

N(D(M)) = N(M)(obtained by iterating *T*-transformations)

D(M) is an alternate sum of subforests F of M : the sign of the coefficient of F is $(-1)^{\# \text{ c.c. of } F - \# \text{ c.c. of } M}$

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

D is the decomposition we were looking for!

Theorem

$$\mathsf{SF}_1 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12\dots k)}} (-1)^{|C(\sigma)|+1} D(M^{\tau,\sigma})$$

Sketch of proof :

- We gather terms coming from permutations in a given interval of the symmetric group.
- As intervals are products of non-crossing partions sets, products of free cumulants appear.
- Both sides are decompositions of cumulants.
- Algebraic independance of cumulants finishes the proof.

Proof of Kerov's positivity conjecture

Recall : the coefficient of $\prod_{i=1}^{\ell} Rj_i$ is the coefficient of $\bigsqcup T_{j_i}$ in

$$\mathsf{SF}_2 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12\dots k)}} (-1)^{|C(\sigma)|+1} D(M^{\tau, \sigma})$$

Proof of Kerov's positivity conjecture

Recall : the coefficient of $\prod_{i=1}^{\ell} Rj_i$ is the coefficient of $\bigsqcup T_{j_i}$ in $SF_2 = \sum_{\substack{\tau,\sigma \in S(k) \\ \tau \cdot \sigma = (12...k)}} (-1)^{|C(\sigma)|+1} D(M^{\tau,\sigma})$

Note that the sum is over connected maps and that the map with a non-zero contribution have ℓ black vertices.

All the contributions have the following sign

$$\underbrace{(-1)^{\ell+1}}_{\substack{\text{due to the}\\\text{sign in } \mathsf{SF}_2}} \cdot \underbrace{(-1)^{\ell-1}}_{\substack{\text{in } D(M^{\tau,\sigma})}} = 1$$

Computation of some coefficients

This method gives more information on coefficients than their positivity :

- We have found a new proof of the compact formula for the highest graduate degree terms in K_k (already computed by I.P. Goulden and A. Ratten and, separately, P. Śniady).
- We can compute the highest degree term in a generalisation about character values on more complex permutations than cycles.

Computation of some coefficients

This method gives more information on coefficients than their positivity :

- Compact expression for highest graduate degree terms.
- We recover the combinatorial interpretation of linear monomials.
- We give a simple combinatorial interpretation for the coefficients of quadratic monomials, which counts permutations.

Computation of some coefficients

This method gives more information on coefficients than their positivity :

- Compact expression for highest graduate degree terms.
- Simple combinatorial interpretations.
- We can give bounds for all the coefficients and link high order cumulants and character values on quite long permutations.

End

Many thanks !,

```
j Gracias !, Merci !
```

Any questions ?,

```
¿ Preguntas ?, Questions ?
```