Large random Young diagrams and representation theory

Hi!

Valentin Féray

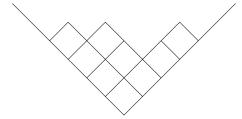
CNRS, Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Workshop on Free Probability and Random Combinatorial Structures University of Bielefeld (Germany) Tuesday December 8th 2009

Large Young diagrams

Teaser

Here is, in Russian representation, the Young diagram corresponding to $\lambda=4,2,2,1:$



3

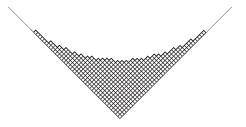
A B K A B K

Image: A matrix

Context

Teaser

Here is, in Russian representation, a large random Young diagram (taken randomly with Plancherel's distribution):



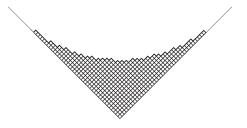
How does it look like when we choose randomly a large (renormalized) Young diagram?

V. Féray (CNRS, LaBRI)

Large Young diagrams

Teaser

Here is, in Russian representation, a large random Young diagram (taken randomly with Plancherel's distribution):



How does it look like when we choose randomly a large (renormalized) Young diagram?

For some measures, representation theory of symmetric groups and free cumulants allow us to find easily answers to this question!

Outline of the talk

1 Limit law theorem for Plancherel's measure revisited

Generalizations to balanced and non-balanced random Young diagrams

V. Féray (CNRS, LaBRI)

Large Young diagrams

Bielefeld, 2009-12-08 3 / 27

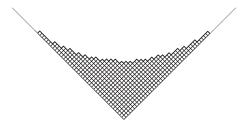
3

A B K A B K

Image: A matrix

Normalized border of a Young diagram

A Young diagram drawn with Russian convention



The Young diagram is determined by the continuous, piecewise affine function ω_{λ} in black. Renormalization (area=1):

$$\omega_{\overline{\lambda}}(x) = (1/\sqrt{|\lambda|}) \cdot \omega_{\lambda}(\sqrt{|\lambda|}x).$$

V. Féray (CNRS, LaBRI)

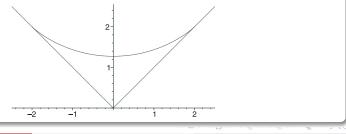
Existence of a limiting curve

Theorem (Logan and Shepp 77, Kerov and Vershik 77)

Let us take randomly (with Plancherel measure) a sequence of Young diagram λ_n of size n. Then, after renormalization, in probability, for the uniform convergence topology on continuous functions, one has:

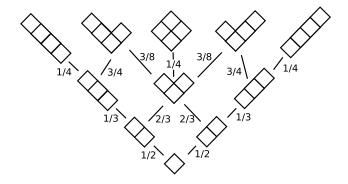
 $\omega_{\overline{\lambda_n}} \to \delta_{\Omega},$

where Ω is an explicit function drawn here:



The Plancherel measure

- \mathcal{P}_n : a measure on Young diagrams of size n.
- 1. can be defined by a Markov process:



V. Féray (CNRS, LaBRI)

The Plancherel measure

- \mathcal{P}_n : a measure on Young diagrams of size n.
- 2. can be defined, using representation theory:
 - Partitions of *n* index irreducible representations of \mathfrak{S}_n
 - Therefore :

$$\mathbb{C}[\mathfrak{S}_n] \simeq \bigoplus_{\lambda \vdash n} V_{\lambda}^{\dim V_{\lambda}}$$

In this context :

$$\mathcal{P}_n(\{\lambda\}) = \frac{(\dim V_\lambda)^2}{n!} = \frac{\dim(\text{isotypic component of type }\lambda)}{\dim \mathbb{C}[\mathfrak{S}_n]}$$

Normalized character values have simple expectations!

Fix $\sigma \in \mathfrak{S}_n$. Let us consider the random variable:

$$X_{\sigma}(\lambda) = \chi^{\lambda}(\sigma) = \operatorname{tr}\left(
ho_{\lambda}(\sigma)
ight) = rac{\operatorname{Tr}\left(
ho_{\lambda}(\sigma)
ight)}{\dim V_{\lambda}}.$$

Let us compute its expectation:

$$\mathbb{E}_{\mathcal{P}_{n}}(X_{\sigma}) = \frac{1}{n!} \sum_{\lambda \vdash n} (\dim V_{\lambda}) \cdot \operatorname{Tr} (\rho_{\lambda}(\sigma))$$
$$= \frac{1}{n!} \operatorname{Tr}_{\left(\bigoplus_{\lambda \vdash n} V_{\lambda}^{\dim V_{\lambda}}\right)}(\sigma) = \frac{1}{n!} \operatorname{Tr}_{\mathbb{C}[\mathfrak{S}_{n}]}(\sigma) = \operatorname{tr}_{\mathbb{C}[\mathfrak{S}_{n}]}(\sigma)$$

Last espression is easy to evaluate:

$$\mathbb{E}_{\mathcal{P}_n}(X_{\sigma}) = \delta_{\sigma,\mathsf{Id}_n}$$

V. Féray (CNRS, LaBRI)

(3) Bielefeld, 2009-12-08 7 / 27

And now?

- Character values do not give directly informations on the shape of the diagram. (9)
- Is there some other random variables, linked to the shape of the diagram, which can be expressed in terms of normalized character values?
- Yes, thanks Kerov's and Olshanski's algebra of *polynomial functions* on the set of Young diagrams.

(B)

Kerov's new approach

Polynomial functions on the set of Young diagrams

Let $\mu \vdash k$ and $\sigma \in \mathfrak{S}_k$ of type μ . We define:

$$\Sigma_{\mu}(\lambda) = \begin{cases} n(n-1)\dots(n-k+1)\chi^{\lambda}(\sigma) & \text{if } \lambda \vdash n \ge k \\ 0 & \text{if } \lambda \vdash n < k \end{cases}$$

Consequence:

$$\mathbb{E}_{\mathcal{P}_n}(\varSigma_\mu) = \left\{egin{array}{cc} n(n-1)\dots(n-k+1) & ext{if } \mu = \mathbf{1}^k ext{ with } k \geq n \\ 0 & ext{else} \end{array}
ight.$$

Theorem

The random variables Σ_{μ} span linearly an algebra denoted $\mathcal{P}ol$.

We will describe an other basis of this algebra.

V. Féray (CNRS, LaBRI)

Large Young diagrams

◆ □ → ◆ □ → ◆ □ → □ → ○ へ ○
Bielefeld, 2009-12-08 9 / 27

Moments of transition measure

Let μ_{λ} be the measure defined by:

$$\int_{\mathbb{R}} \frac{d\mu_{\lambda}(x)}{z-x} = \frac{1}{z} \exp\left(\int_{\mathbb{R}} \frac{(\omega'(x) - \operatorname{sgn}(x))dx}{2(z-x)}\right)$$

Theorem (Kerov, Olshanski, 1994) If $M_k(\mu_{\lambda}) = \int_{\mathcal{B}} x^k d\mu_{\lambda}(x)$, one has: $\mathcal{P}ol = \mathbb{C}[\lambda \mapsto M_k(\mu_\lambda)_{k\geq 2}]$

 \Rightarrow one has an expansion

$$\prod_{j} M_{k_{j}} = \sum_{\mu} c_{\mu} \Sigma_{\mu}.$$

V. Féray (CNRS, LaBRI)

Large Young diagrams

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三回 - のへで Bielefeld, 2009-12-08

Idea behind the following slides

Problem: we don't have good descriptions of the expansion of $\prod_j M_{k_j}$ in terms of Σ_{μ} .

But we interested in asymptotics of quantities :

$$M_k(\overline{\lambda}) = rac{1}{n^{k/2}} M_k(\lambda).$$

We do not need to know the whole expansion.

gradation

We can define a gradation on $\mathcal{P}ol$ by:

$$\deg(M_k)=k$$

Theorem (Biane, 1998)

 \varSigma_{μ} has degree $|\mu| + \ell(\mu)$ and

$$\varSigma_{\mu} = \prod_{i} \mathsf{R}_{\mu_i+1} + \mathsf{smaller} \; \mathsf{degree} \; \mathsf{terms},$$

where $R_k(\lambda)$ is the k-th free cumulant of the measure $d\mu_{\lambda}$ defined by:

$$M_k = \sum_{\pi \in \mathit{NCP}(k)} \prod_{b \in \pi} R_{|b|}$$
 note that $\deg(R_k) = k$.

3

Inverting Biane's theorem

Formula

$$\varSigma_{\mu} = \prod_i R_{\mu_i+1} + {\sf smaller} \; {\sf degree} \; {\sf terms}$$

can be read as:

One has a triangular change of basis between (Σ_{μ}) and $(\prod_{i} R_{\mu_{i}+1})$.

Therefore,

$$\prod_i R_{\mu_i+1} = \varSigma_\mu + ext{smaller}$$
 degree terms

Remark: the degree of $X = \sum_{\mu} c_{\mu} \Sigma_{\mu} \in \mathcal{P}ol$ is $\max_{c_{\mu} \neq 0} \deg(\Sigma_{\mu})$). Therefore,

$$\mathbb{E}\left(\prod R_{\mu_j+1}(\overline{\lambda})\right) = \sqrt{n}^{-|\mu|-\ell(\mu)} \mathbb{E}\left(\prod R_{\mu_j+1}(\lambda)\right)$$
$$= \sqrt{n}^{-|\mu|-\ell(\mu)} \mathbb{E}(\Sigma_{\mu}) + o(1)$$

V. Féray (CNRS, LaBRI)

Large Young diagrams

Bielefeld, 2009-12-08

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで

Limits of free cumulants

In particular,

$$\lim_{n\to\infty} \mathbb{E}_{\mathcal{P}_n}(R_k(\overline{\lambda})) = \begin{cases} 1 & \text{if } k=2\\ 0 & \text{else.} \end{cases}$$

and

$$\lim_{n\to\infty}\operatorname{Var}_{\mathcal{P}_n}(R_k(\overline{\lambda}))=0.$$

Therefore, in probability,

$$R_k(\overline{\lambda}) \rightarrow \delta_{k,2}$$

 $\rightarrow \mu_{\lambda}$ converges to the semi-circle law.

Image: Image:

3

Limiting curve

Lemma (technical, due to Kerov)

convergence of cumulants \Rightarrow uniform convergence of ω .

Moreover, one can compute ω from the cumulant sequence.

V. Féray (CNRS, LaBRI)

э

ヘロト 人間ト ヘヨト ヘヨト

Can be generalized!

Take a (reducible) family of representations of S_n, whose characters are easy to compute. For instance,

$$\mathcal{V} = (\mathbb{C}^r)^{\otimes n}, \,\, ext{with} \,\, r \sim c \cdot n^lpha$$

The normalized character is $\chi(\sigma) = r^{\# \text{ cycles of } \sigma - n}$

Onsider the associated measures on Young diagram:

$$SW_n(\{\lambda\}) = \frac{\dim(\text{isotypic component of type }\lambda)}{\dim((\mathbb{C}^r)^{\otimes n})}$$
$$= \frac{\left| \begin{cases} \text{standard tableaux} \\ \text{de forme }\lambda \end{cases} \right| \cdot \left| \begin{cases} \text{semi-standard tableaux} \\ \text{de forme }\lambda \text{ (entries } \leq N) \end{cases} \right|}{r^n}$$

イロト イポト イヨト イヨト 二日

Can be generalized!

If $\alpha \geq 1/2$, one can use the same method as Plancherel measure because:

$$\mathbb{E}(\Sigma_{\mu}) = O(n^{(|\mu|+\ell(\mu))/2}).$$

2 if $\alpha > 1/2$, same limit curve than the Plancherel case. if $\alpha = 1/2$, limit curve is the curve with free cumulants

$$0, 1, c, c^2, \ldots$$

(result obtained by Biane, 2001: he also computed an explicit formula for these curves)

Solution this works in general if $\chi(\rho_1\rho_2) \sim \chi(\rho_1)\chi(\rho_2)$ as soon as ρ_1 and ρ_2 has disjoint support (also a necessary condition).

V. Féray (CNRS, LaBRI)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三豆 - のへで Bielefeld, 2009-12-08

Second order asymptotics

Recall: for the first-order asymptotics, one has used

$$\prod_i R_{\mu_i+1} = \varSigma_\mu + ext{smaller}$$
 degree terms

If we know explicitely the next term in the expansion, one can compute the fluctuations of $R_k!$

- in the case of Plancherel's measure, fluctuations are gaussian: one can deduce the fluctuations of ω_{λ} around the limit function Ω (Kerov).
- in more generality, P. Śniady has given sufficient conditions for the fluctuations of the R_k 's to be gaussian.

• • = • • = •

Limits ?

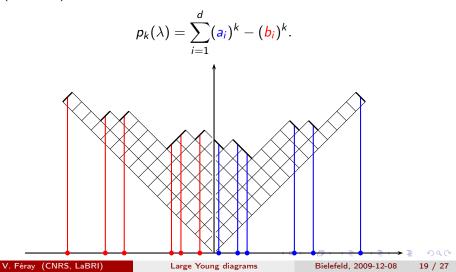
• This methods works only for representations such that:

$$\mathbb{E}(\Sigma_{\mu}) = O(n^{(|\mu|+\ell(\mu))/2}).$$

- If this is not satisfied (for instance, case α < 1/2 a few slides ago), the diagrams have quite big (i.e. ≫ √n) row(s) and/or column(s) (they are not *balanced*).
 ⇒ λ is perhaps not the good renormalization.
- But, still, one would like to describe asymptotically the shape of the diagram.

Power sums of Frobenius coordinates

In the non-balanced case, free cumulants should be replaced by power sums of (modified) Frobenius coordinates:



Power sums of Frobenius coordinates

In the non-balanced case, free cumulants should be replaced by power sums of (modified) Frobenius coordinates:

$$p_k(\lambda) = \sum_{i=1}^d (a_i)^k - (b_i)^k.$$

This intuition comes from the following results:

Properties of the p_i 's

$$\mathcal{P}ol = \mathbb{C}[p_1, p_2, \ldots]$$
 (Kerov, Olshanski, 1994)

If λ is not balanced,

$$\varSigma_{\mu}(\lambda) = \prod_i p_{\mu_i}(\lambda)(1+o(1)).$$

V. Féray (CNRS, LaBRI)

19 / 27

Image: 1 million of the second sec

Motivation for a new gradation

Let us look more precisely to the mesure SW_n in the case $\alpha < 1/2$. Expectation of characters:

$$\mathbb{E}(\varSigma_\mu) = n(n-1)\dots(n-|\mu|+1)(c\ n^lpha)^{\ell(\mu)-|\mu|} \ \sim c^{\ell(\mu)-|\mu|}n^{lpha\ell(\mu)-lpha|\mu|+|\mu|}$$

As we need a result of kind

$$\mathbb{E}(\varSigma_{\mu}) = O(n^{\deg(\varSigma)}),$$

we will define a gradation such that:

$$\mathsf{deg}(\varSigma_{\mu}) = \alpha \ell(\mu) - \alpha |\mu| + |\mu|$$

V. Féray (CNRS, LaBRI)

Large Young diagrams

Bielefeld, 2009-12-08

New gradation

Definition of the gradation

Let us define:

$$\deg_{\alpha}(p_{\mu}) = \alpha \ell(\mu) - \alpha |\mu| + |\mu|.$$

One has:

۲

 $\Sigma_{\mu} = p_{\mu} + \text{ smaller degree terms.}$

• If $X \in \mathcal{P}ol$, then $\mathbb{E}_{SW_n}(X) = O(n^{\deg_{\alpha}(X)})$

V. Féray (CNRS, LaBRI)

Bielefeld, 2009-12-08

3

21 / 27

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Convergence of power sums

Same ideas as before:

 $p_{\mu} = \Sigma_{\mu} + \text{ smaller degree terms.}$

Therefore:

$$\mathbb{E}_{\mathcal{SW}_n}(p_\mu) = (c^{\ell(\mu)-|\mu|}+o(1))\cdot n^{lpha\ell(\mu)-lpha|\mu|+|\mu|}$$

i.e.

$$\lim_{n \to \infty} \mathbb{E}_{SW_n} \left(\frac{p_k}{n^{\alpha - \alpha k + k}} \right) = \frac{1}{c^{k-1}}$$
$$\lim_{n \to \infty} \operatorname{Var}_{SW_n} \left(\frac{p_k}{n^{\alpha - \alpha k + k}} \right) = 0$$

 \Rightarrow convergence in probability of *normalized* power sums towards those of measure $c\delta_{c^{-1}}$.

V. Féray (CNRS, LaBRI)

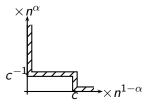
Bielefeld, 2009-12-08

Result on the diagram

After a technical step, one can obtain:

Theorem (F., Méliot, 2010)

With the probability measure described before, $\forall \varepsilon, \eta > 0, \exists n_0 \text{ s.t. } \forall n \ge n_0$, the border of the diagram λ_n is, after rescaling and with probability greater than $1 - \varepsilon$, contained in the hatched area of width η :



V. Féray (CNRS, LaBRI)

q-Plancherel measure: definition and motivation

We can also consider a q-deformation Plancherel measure defined by E. Strahov (2008). Motivations:

- links with Hecke algebras and representations of $GL(n, \mathbb{F}_{q})$.
- image by Robinson-Schensted of the distribution $q^{imaj(\sigma)}/[n]!$ on permutations.

Definition:

$$\mathbb{E}_{q-\mathcal{P}_n}(\chi_q^{\cdot}(T_{\mu}))=0,$$

where the χ^{λ}_{a} are the irreducible characters of the generic Hecke algebra. Luckily, this can be translated in terms of usual characters:

$$\mathbb{E}_{q \cdot \mathcal{P}_n}(\varSigma_\mu) = rac{(1-q)^{|\mu|}}{\prod_i 1 - q^{\mu_i}} \, n^{\downarrow |\mu|}$$

!!

Large Young diagrams

q-Plancherel measure

Asymptotics of *q*-Plancherel measure

Applying usual method with gradation $\deg_0(p_\mu) = |\mu|$, one obtains

Theorem (F., Méliot, 2010)

In probability, under q-Plancherel measure,

$$orall k \geq 1, \; rac{p_k(\lambda)}{|\lambda|^k} \mathop{\longrightarrow}_{M_{n,q}} rac{(1-q)^k}{1-q^k}.$$

Moreover,

$$\begin{aligned} \forall i \geq 1, \quad & \frac{\lambda_i}{n} \longrightarrow_{M_{n,q}} (1-q) q^{i-1}; \\ \forall i \geq 1, \quad & \frac{\lambda'_i}{n} \longrightarrow_{M_{n,q}} 0, \end{aligned}$$

We also obtained the second-order asymptotics.

V. Féray (CNRS, LaBRI)

Large Young diagrams

 □
 ↓
 ≥
 ↓
 ≥
 √
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

Conclusion

- Showing that some parameters of the diagrams converge is very simple!
- • Implies immediately convergence of character.
 - 2 can be used to find a continuous limiting object with some extra works.
 - **3** not precise enough to study the first row, except if it has size $\Theta(n)$.
- Perspective: would be interesting to generalize it to other groups and objects...

Many thanks!

Thank you for listening!

Any questions?

V. Féray (CNRS, LaBRI)

Large Young diagrams

Bielefeld, 2009-12-08

27 / 27

Э