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Introduction

First example of random combinatorial structures: random
graphs

Erdös-Rényi model of random graphs G (n, p):
G has n vertices labelled 1,. . . ,n;
each edge {i , j} is taken independently
with probability p;
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Example : n = 8, p = 1/2

Question
Does G contains a triangle? If yes, how many?

→ we look for an asymptotic answer.
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Introduction

Second example of random combinatorial structure: random
permutation

A uniform random permutation of size 20

[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]

Question
Does G contains an adjacency. If yes, how many?

adjacency = consecutive values in consecutive places.

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014–10 3 / 23



Introduction

Second example of random combinatorial structure: random
permutation

A uniform random permutation of size 20

[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]

Question
Does G contains an adjacency. If yes, how many?

adjacency = consecutive values in consecutive places.

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014–10 3 / 23



Introduction

Some general motivations

Biological observation: from one person to another, order of the genes
on a chromosome are the same.
From one species to another: this order changes, one can encode that
by a permutation.
Number of adjacencies measures how close the two species are.
→ One has to compare with a random permutation !

Spectrum of random (GOE) matrices describe accurately the spectra
of heavy atoms (Wigner, 50’).

Graphs can represent networks, e.g. internet (vertices are web pages,
edges hyperlinks).
But Erdős-Rényi random graph is not a good model for internet (not
the good degree distribution!).
→ A lot of other models of random graphs have been introduced and
studied.
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Introduction

Outline of the talk

1 Presentation of the moment method

2 Two facets of my work related to moment methods
Random permutations and small cumulants
Random representations
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Moment method First moment method

First moment: description of the method

Lemma
Let X be a random variable with non-negative integer values (for example
X is counting something). Then

P(X = 0) > 1− E (X ).

Proof: E (X ) =
∑

k kP(X = k) ≥
∑

k≥1 P(X = k) = 1− P(X = 0).

Corollary (first moment method)

If E (Xn) tends to 0, then Xn = 0 with high probability
(that is, P(Xn = 0) tends to 1).
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Moment method First moment method

First moment: application to triangles in random graphs

Let Tn be the number of triangles in G (n, pn). Then

Tn =
∑

{i ,j ,k}⊂[n]

∆{i ,j ,k},

where

∆{i ,j ,k} =

{
1 if G contains the triangle i , j , k ;
0 otherwise.

But E (∆{i ,j ,k}) = p3
n for all {i , j , k} and thus

E (Tn) =
∑
{i ,j ,k}

E (∆{i ,j ,k}) =

(
n
3

)
p3
n.

Theorem
If n pn → 0, then G (n, pn) has no triangles with high probability.
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Moment method First moment method

Variant: probabilistic method applied to Ramsay number.
Fix p = 1/2 and k ≥ 1. Then consider Xn the
number of sets W of k vertices in G (n, 1/2)
which are:

either a clique, all pairs of vertices of W
is linked by an edge;
or an independent set, i.e. there is no
edge between two vertices of W

1
2

3

4

5
6

7

8

Example : n = 8, k = 3

Then

P(Xn = 0) > 1− E (Xn) = 1− 21−(k
2)
(

n
k

)
Theorem (Erdős, 1947)

If 1− 21−(k
2)
(n
k

)
> 0, then there exists a graph G with n vertices and

neither cliques nor independent sets of size k.
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Moment method Second moment method

Second moment: description of the method

limn→∞ E (Xn) =∞ does NOT imply limn P(Xn = 0) = 0.

How to prove that “limn P(Xn = 0) = 0” ?

Idea: use variance Var(X ) := E (X 2)− E (X )2 = E
[
(X − E (X ))2].

Lemma (Chebyshev’s inequality)

P
(
|X − E (X )| ≥ λ

√
Var(X )

)
≤ 1/λ2.

In particular,

P(X = 0) ≤

(
E (X )√
Var(X )

)−2

.
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√
Var(X )

)
≤ 1/λ2.

In particular,

P(X = 0) ≤

(
E (X )√
Var(X )

)−2

.

Proof: If Y is a non-negative r.v., then P(Y ≥ a) ≤ E (Y )/a.
Apply this to Y = (X − E (X ))2 and a = λ2 Var(X ) = λ2E (Y ).
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Moment method Second moment method

Second moment: description of the method

limn→∞ E (Xn) =∞ does NOT imply limn P(Xn = 0) = 0.
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Idea: use variance Var(X ) := E (X 2)− E (X )2 = E
[
(X − E (X ))2].
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|X − E (X )| ≥ λ

√
Var(X )

)
≤ 1/λ2.

In particular,

P(X = 0) ≤

(
E (X )√
Var(X )

)−2

.

Second moment method

If
√

Var(Xn)/E (Xn)→ 0, then Xn > 0 with high probability.
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Moment method Second moment method

Second moment: application to triangles in random graphs

Recall that E (Tn) ∼ cn3p3
n. But

Var(Tn) = E
[
(Tn − E (Tn))2] = E

 ∑
{i ,j ,k}

∆{i ,j ,k} − E (∆{i ,j ,k})

2
=

∑
{i,j,k}
{i′,j′,k′}

E
[(

∆{i ,j ,k} − E (∆{i ,j ,k})
)
·
(
∆{i ′,j ′,k ′} − E (∆{i ′,j ′,k ′})

)]

if {i , j , k} and {i ′, j ′, k ′} do not share an edge,
then ∆{i ,j ,k} and ∆{i ′,j ′,k ′} are independent and E [. . . ] is zero.

But this is true for most of the terms in the sum! One can show:

Theorem

If n pn →∞, then
√

Var(Tn)/E (Tn) tends to 0 and thus G (n, pn) contains
a triangle with high probability.
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Moment method Second moment method

Transition

To prove that our random structure does not contain a given type of
substructure:
set Xn the number of these substructures Xn =

∑
α

Iα.

Compute E (Xn) by linearity and show that it tends to 0.

To prove that our random structure does contain a given type of
substructure:
consider E (X 2

n ) (or Var(Xn)), expand, use linearity of expectation and
independence and show that

lim
n→∞

√
Var(Tn)/E (Tn) = 0.

Question
In the case where there is a triangle with high probability, how many are
there ?
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Moment method Gaussian fluctuations by moments

Number of triangles in random graphs: a simulation

Here is a histogram number of triangles in 5000 independent random
graphs G (20, .4).

Theorem (Ruciński, 1988)

If npn →∞ and n2(1− pn)→∞, then Tn is asymptotically Gaussian.
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Moment method Gaussian fluctuations by moments

The moment method

Theorem (the moment method)

Let Xn be a sequence of random variable and N a standard normal random
variable. If for each ` ≥ 1,

lim
n→∞

E (X `
n) = E (N`),

then Xn converges to N in distribution.

Remark:

E (N`) =

{
1 · 3 · · · (2m − 1) if ` = 2m is even;
0 if ` is odd.
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Moment method Gaussian fluctuations by moments

Sketch of proof of Ruciński theorem

Let Tn be the number of triangles in G (n, pn) and Xn = Tn−E(Tn)√
Var(Tn)

. Then

E (X `
n) =

1
Var(Tn)`/2

E
(

(Tn − E (Tn))`
)

But Tn − E (Tn) =
∑

{{i ,j ,k}}
∆{i ,j ,k} − E (∆{i ,j ,k}). Thus

Var(Tn)`/2E (X `
n) =

∑
{i1,j1,k1}

...
{i`,j`,k`}

E
[(

∆{i1,j1,k1} − E (∆{i1,j1,k1})
)

· · ·
(
∆{i`,j`,k`} − E (∆{i`,j`,k`})

)]

Because of independence, most of the terms vanish. . . One has to study
asymptotics carefully and find limE (X `

n) = E (N`).

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014–10 14 / 23



Moment method Gaussian fluctuations by moments

Sketch of proof of Ruciński theorem

Let Tn be the number of triangles in G (n, pn) and Xn = Tn−E(Tn)√
Var(Tn)

. Then

E (X `
n) =

1
Var(Tn)`/2

E
(

(Tn − E (Tn))`
)

But Tn − E (Tn) =
∑

{{i ,j ,k}}
∆{i ,j ,k} − E (∆{i ,j ,k}). Thus

Var(Tn)`/2E (X `
n) =

∑
{i1,j1,k1}

...
{i`,j`,k`}

E
[(

∆{i1,j1,k1} − E (∆{i1,j1,k1})
)

· · ·
(
∆{i`,j`,k`} − E (∆{i`,j`,k`})

)]

Because of independence, most of the terms vanish. . . One has to study
asymptotics carefully and find limE (X `

n) = E (N`).

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014–10 14 / 23



Moment method Gaussian fluctuations by moments

A TCL for the number of prime divisors

Each integer X ≥ 1 writes uniquely as a product of primes:

18984 = 23 ∗ 3 ∗ 7 ∗ 113.

Theorem (Erdős, Kac, 1940)

Let Dn be the number of prime divisors of a uniform random integer
between 1 and n. Then

Xn :=
Dn − E (Dn)√

Var(Dn)
−→d N.
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Moment method Gaussian fluctuations by moments

Dn =
∑

p prime
p≤n

Ip(n) where Ip(n) =

{
1 if p divides n;
0 otherwise.

As usual, we want to compute E (D`
n), we expand and use linearity. . .

No independence, but, for distinct primes,

E (Ip1 . . . Ipk ) =
1
n

⌊
n

p1 . . . pk

⌋
' 1

p1 . . . pk︸ ︷︷ ︸
what we would have

if Ip1 . . . Ipk were independent

.

So
E (D`

n) ' E (Y `
n ),

where Yn is a sum of independent copies of the Ip. It converge after
normalization to a normal law.

⇒ Dn also converges after normalization to a normal law.
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Moment method Gaussian fluctuations by moments

Number of prime divisors: a simulation

n = 28511235679461510605581038657982805983853648817939444953417128836

ln(ln(n)) ∼ 5, but the empirical mean is 2.5.

Erdős-Kac theorem is an asymptotic result!
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Closer to my work Random permutations and small cumulants

Random permutations and non independence

Definition
A permutation of n is a word with letters from 1 to n, which contains
exactly one each letter.

A uniform random permutation of size 20:

[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]

The first element σ1 is uniform between 1 and n. Also the second σ2, . . .
But they are not independent.

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014–10 18 / 23



Closer to my work Random permutations and small cumulants

Measuring their dependence

Set σ′1 = σ1/n, σ′2 = σ2/n. Their covariance is

Cov(σ′1, σ
′
2) := E (σ′1 σ

′
2)− E (σ′1)E (σ′2) = · · · = O(1/n).

Small correlation!

Let us compute the 3rd cumulant:

κ3(σ′1, σ
′
2, σ
′
3) = E (σ′1 σ

′
2 σ
′
3)−E (σ′1 σ

′
2)E (σ′3)−· · ·+2E (σ′1)E (σ′2)E (σ′3)

= · · · = O(1/n2).

In general, κ`(σ′1, . . . , σ
′
`) = O(n−`+1) (F., 2013)

For “local” statistics, allows to use moment method as if σ1, σ2, . . . were
independent.
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In general, κ`(σ′1, . . . , σ
′
`) = O(n−`+1) (F., 2013)

For “local” statistics, allows to use moment method as if σ1, σ2, . . . were
independent.

Example: the number of adjacencies is asymptotically Poisson distributed!
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= · · · = O(1/n2).

In general, κ`(σ′1, . . . , σ
′
`) = O(n−`+1) (F., 2013)

For “local” statistics, allows to use moment method as if σ1, σ2, . . . were
independent.

Small cumulants also appear in random graphs with fixed number of edges,
random orthogonal/unitary matrices, . . .
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Closer to my work Random representations

Partitions

Definition
A partition (of n) is a non-increasing list of integer (of sum n).

Example : (4, 3, 1) is a partition of 8.

Representation as Young diagram :
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Closer to my work Random representations

Plancherel measure

Representation theory of symmetric group associates to each partition λ of
n a vector space Vλ, called representation, such that∑

λpartition
of n

(dimVλ)2 = n!

We consider Plancherel measure on partitions of size n:

P(λ) =
(dimVλ)2

n!
.

This defines a model for a random partition of size n, but not uniform.
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Closer to my work Random representations

Random partitions under Plancherel measure: simulation

c©Notices of the AMS, Feb. 2011, front cover.

Nice limit shape!
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Closer to my work Random representations

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)

E (χ̂•(σ)) =

{
1 if σ = id;

0 otherwise.
,

where χ̂ are irreducible characters.

We would like to use moment method and compute E (χ̂•(σ)m).

“Solution”: express χ̂•(σ)m as a linear combination of irreducible characters.

This is a classical kind of question in algebraic combinatorics!

Algebraic combinatorics provides a lot of non-trivial probabilistic models
that can be analysed by moment method → integrable probability.
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