Antrittsvorlesung Random combinatorial structures: graphs, permutations and representations

Valentin Féray

Assistenzprofessor für reine Mathematik, Universität Zürich

This presentation is recorded and will be made publicy available at www.uzh.ch/outreach/events/av.html

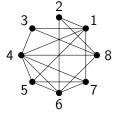
October 27th, 2014

V. Féray (I-Math, UZH)

First example of random combinatorial structures: random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge {i, j} is taken independently with probability p;

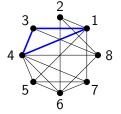


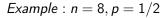
Example : n = 8, p = 1/2

First example of random combinatorial structures: random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge {*i*, *j*} is taken independently with probability *p*;





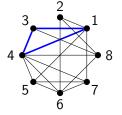
Question

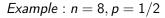
Does G contains a triangle? If yes, how many?

First example of random combinatorial structures: random graphs

Erdös-Rényi model of random graphs G(n, p):

- G has n vertices labelled 1,...,n;
- each edge {i, j} is taken independently with probability p;





Question

Does G contains a triangle? If yes, how many?

 \rightarrow we look for an asymptotic answer.

Second example of random combinatorial structure: random permutation

A uniform random permutation of size 20

[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]

Second example of random combinatorial structure: random permutation

A uniform random permutation of size 20

```
[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]
```

Question

Does G contains an adjacency. If yes, how many?

adjacency = consecutive values in consecutive places.

• Biological observation: from one person to another, order of the *genes* on a chromosome are the same.

From one species to another: this order changes, one can encode that by a permutation.

Number of adjacencies measures how close the two species are.

 \rightarrow One has to compare with a random permutation !

• Biological observation: from one person to another, order of the *genes* on a chromosome are the same.

From one species to another: this order changes, one can encode that by a permutation.

Number of adjacencies measures how close the two species are.

 \rightarrow One has to compare with a random permutation !

• Spectrum of random (GOE) matrices describe accurately the spectra of heavy atoms (Wigner, 50').

• Biological observation: from one person to another, order of the *genes* on a chromosome are the same.

From one species to another: this order changes, one can encode that by a permutation.

Number of adjacencies measures how close the two species are.

 \rightarrow One has to compare with a random permutation !

- Spectrum of random (GOE) matrices describe accurately the spectra of heavy atoms (Wigner, 50').
- Graphs can represent networks, *e.g.* internet (vertices are web pages, edges hyperlinks).
 But Erdős-Rényi random graph is not a good model for internet (not the good degree distribution!).

 \rightarrow A lot of other models of random graphs have been introduced and studied.

Outline of the talk

Presentation of the moment method

2 Two facets of my work related to moment methods

- Random permutations and small cumulants
- Random representations

First moment: description of the method

Lemma

Let X be a random variable with non-negative integer values (for example X is counting something). Then

$$P(X = 0) > 1 - E(X).$$

Proof:
$$E(X) = \sum_{k} k P(X = k) \ge \sum_{k \ge 1} P(X = k) = 1 - P(X = 0).$$

First moment: description of the method

Lemma

Let X be a random variable with non-negative integer values (for example X is counting something). Then

P(X = 0) > 1 - E(X).

Proof:
$$E(X) = \sum_{k} kP(X = k) \ge \sum_{k \ge 1} P(X = k) = 1 - P(X = 0).$$

Corollary (first moment method)

If $E(X_n)$ tends to 0, then $X_n = 0$ with high probability (that is, $P(X_n = 0)$ tends to 1).

6 / 23

First moment: application to triangles in random graphs

Let T_n be the number of triangles in $G(n, p_n)$. Then

$$T_n = \sum_{\{i,j,k\}\subset [n]} \Delta_{\{i,j,k\}},$$

where

$$\Delta_{\{i,j,k\}} = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$$

First moment: application to triangles in random graphs

Let T_n be the number of triangles in $G(n, p_n)$. Then

$$T_n = \sum_{\{i,j,k\}\subset [n]} \Delta_{\{i,j,k\}},$$

where

$$\Delta_{\{i,j,k\}} = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$$

But $E(\Delta_{\{i,j,k\}}) = p_n^3$ for all $\{i,j,k\}$ and thus

$$E(T_n) = \sum_{\{i,j,k\}} E(\Delta_{\{i,j,k\}}) = \binom{n}{3} p_n^3.$$

First moment: application to triangles in random graphs

Let T_n be the number of triangles in $G(n, p_n)$. Then

$$T_n = \sum_{\{i,j,k\}\subset [n]} \Delta_{\{i,j,k\}},$$

where

$$\Delta_{\{i,j,k\}} = \begin{cases} 1 & \text{if } G \text{ contains the triangle } i,j,k; \\ 0 & \text{otherwise.} \end{cases}$$

But $E(\Delta_{\{i,j,k\}}) = p_n^3$ for all $\{i,j,k\}$ and thus

$$E(T_n) = \sum_{\{i,j,k\}} E(\Delta_{\{i,j,k\}}) = \binom{n}{3} p_n^3.$$

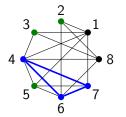
Theorem

If $n p_n \rightarrow 0$, then $G(n, p_n)$ has no triangles with high probability.

First moment method

Variant: probabilistic method applied to Ramsay number.

- Fix p = 1/2 and $k \ge 1$. Then consider X_n the number of sets W of k vertices in G(n, 1/2) which are:
 - either a clique, all pairs of vertices of W is linked by an edge;
 - or an independent set, *i.e.* there is no edge between two vertices of *W*



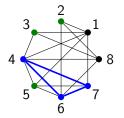
Example :
$$n = 8, k = 3$$

First moment method

Variant: probabilistic method applied to Ramsay number.

Fix p = 1/2 and $k \ge 1$. Then consider X_n the number of sets W of k vertices in G(n, 1/2) which are:

- either a clique, all pairs of vertices of *W* is linked by an edge;
- or an independent set, *i.e.* there is no edge between two vertices of *W*



Example : n = 8, k = 3

Then

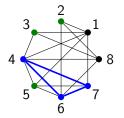
$$P(X_n = 0) > 1 - E(X_n) = 1 - 2^{1 - \binom{k}{2}} \binom{n}{k}$$

First moment method

Variant: probabilistic method applied to Ramsay number.

Fix p = 1/2 and $k \ge 1$. Then consider X_n the number of sets W of k vertices in G(n, 1/2) which are:

- either a clique, all pairs of vertices of *W* is linked by an edge;
- or an independent set, *i.e.* there is no edge between two vertices of *W*



Example : n = 8, k = 3

Then

$$P(X_n = 0) > 1 - E(X_n) = 1 - 2^{1 - \binom{k}{2}} \binom{n}{k}$$

Theorem (Erdős, 1947)

If $1 - 2^{1-\binom{k}{2}}\binom{n}{k} > 0$, then there exists a graph G with n vertices and neither cliques nor independent sets of size k.

 $\triangle \lim_{n\to\infty} E(X_n) = \infty$ does NOT imply $\lim_n P(X_n = 0) = 0$.

 $\lim_{n\to\infty} E(X_n) = \infty \text{ does NOT imply } \lim_n P(X_n = 0) = 0.$ How to prove that " $\lim_n P(X_n = 0) = 0$ "?

Idea: use variance $Var(X) := E(X^2) - E(X)^2 = E[(X - E(X))^2].$

 $\lim_{n\to\infty} E(X_n) = \infty \text{ does NOT imply } \lim_n P(X_n = 0) = 0.$ How to prove that " $\lim_n P(X_n = 0) = 0$ "? Idea: use variance $Var(X) := E(X^2) - E(X)^2 = E[(X - E(X))^2].$ Lemma (Chebyshev's inequality)

$$P(|X - E(X)| \ge \lambda \sqrt{\operatorname{Var}(X)}) \le 1/\lambda^2.$$

In particular,

$$P(X=0) \leq \left(rac{E(X)}{\sqrt{\operatorname{Var}(X)}}
ight)^{-2}$$

Proof: If Y is a non-negative r.v., then $P(Y \ge a) \le E(Y)/a$. Apply this to $Y = (X - E(X))^2$ and $a = \lambda^2 \operatorname{Var}(X) = \lambda^2 E(Y)$.

 $\lim_{n\to\infty} E(X_n) = \infty \text{ does NOT imply } \lim_n P(X_n = 0) = 0.$ How to prove that " $\lim_n P(X_n = 0) = 0$ "? Idea: use variance $Var(X) := E(X^2) - E(X)^2 = E[(X - E(X))^2].$ Lemma (Chebyshev's inequality)

$$P(|X - E(X)| \ge \lambda \sqrt{\operatorname{Var}(X)}) \le 1/\lambda^2.$$

In particular,

$${\mathcal P}(X=0) \leq \left(rac{E(X)}{\sqrt{{\sf Var}(X)}}
ight)^{-2}$$

Second moment method

If $\sqrt{\operatorname{Var}(X_n)}/E(X_n) \to 0$, then $X_n > 0$ with high probability.

V. Féray (I-Math, UZH)

Random combinatorial structures

Second moment: application to triangles in random graphs

Recall that $E(T_n) \sim cn^3 p_n^3$. But

$$\operatorname{Var}(T_n) = E\left[(T_n - E(T_n))^2\right] = E\left[\left(\sum_{\{i,j,k\}} \Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right)^2\right]$$
$$= \sum_{\substack{\{i,j,k\}\\\{i',j',k'\}}} E\left[\left(\Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right) \cdot \left(\Delta_{\{i',j',k'\}} - E(\Delta_{\{i',j',k'\}})\right)\right]$$

Second moment: application to triangles in random graphs

Recall that $E(T_n) \sim cn^3 p_n^3$. But

$$\operatorname{Var}(T_n) = E\left[(T_n - E(T_n))^2\right] = E\left[\left(\sum_{\{i,j,k\}} \Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right)^2\right]$$
$$= \sum_{\substack{\{i,j,k\}\\\{i',j',k'\}}} E\left[\left(\Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right) \cdot \left(\Delta_{\{i',j',k'\}} - E(\Delta_{\{i',j',k'\}})\right)\right]$$

• if $\{i, j, k\}$ and $\{i', j', k'\}$ do not share an edge, then $\Delta_{\{i, j, k\}}$ and $\Delta_{\{i', j', k'\}}$ are independent and $E[\dots]$ is zero. Second moment: application to triangles in random graphs

Recall that $E(T_n) \sim cn^3 p_n^3$. But

$$\operatorname{Var}(T_n) = E\left[(T_n - E(T_n))^2\right] = E\left[\left(\sum_{\{i,j,k\}} \Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right)^2\right]$$
$$= \sum_{\substack{\{i',j',k'\}\\\{i',j',k'\}}} E\left[\left(\Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})\right) \cdot \left(\Delta_{\{i',j',k'\}} - E(\Delta_{\{i',j',k'\}})\right)\right]$$

 if {i, j, k} and {i', j', k'} do not share an edge, then Δ_{i,j,k} and Δ_{i',j',k'} are independent and E[...] is zero.

But this is true for most of the terms in the sum! One can show:

Theorem

If $n p_n \to \infty$, then $\sqrt{\operatorname{Var}(T_n)}/E(T_n)$ tends to 0 and thus $G(n, p_n)$ contains a triangle with high probability.

Transition

• To prove that our random structure does not contain a given type of substructure:

set X_n the number of these substructures $X_n = \sum I_{\alpha}$.

Compute $E(X_n)$ by linearity and show that it tends to 0.

Transition

• To prove that our random structure does not contain a given type of substructure:

set X_n the number of these substructures $X_n = \sum I_{\alpha}$.

Compute $E(X_n)$ by linearity and show that it tends to 0.

 To prove that our random structure does contain a given type of substructure: consider E(X_n²) (or Var(X_n)), expand, use linearity of expectation and

consider $E(X_n^2)$ (or Var (X_n)), expand, use linearity of expectation and independence and show that

$$\lim_{n\to\infty}\sqrt{\operatorname{Var}(T_n)}/E(T_n)=0.$$

Transition

• To prove that our random structure does not contain a given type of substructure:

set X_n the number of these substructures $X_n = \sum I_{\alpha}$.

Compute $E(X_n)$ by linearity and show that it tends to 0.

 To prove that our random structure does contain a given type of substructure: consider E(X_n²) (or Var(X_n)), expand, use linearity of expectation and independence and show that

$$\lim_{n\to\infty}\sqrt{\operatorname{Var}(T_n)}/E(T_n)=0.$$

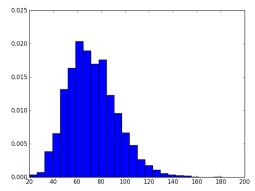
Question

In the case where there is a triangle with high probability, how many are there ?

11 / 23

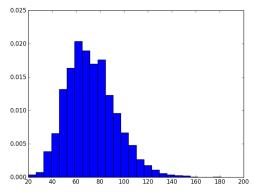
Number of triangles in random graphs: a simulation

Here is a histogram number of triangles in 5000 independent random graphs G(20, .4).



Number of triangles in random graphs: a simulation

Here is a histogram number of triangles in 5000 independent random graphs G(20, .4).



Theorem (Ruciński, 1988)

If $np_n o \infty$ and $n^2(1-p_n) o \infty$, then ${\mathcal T}_n$ is asymptotically Gaussian.

V. Féray (I-Math, UZH)

The moment method

Theorem (the moment method)

Let X_n be a sequence of random variable and N a standard normal random variable. If for each $\ell \ge 1$,

$$\lim_{n\to\infty} E(X_n^\ell) = E(N^\ell),$$

then X_n converges to N in distribution.

Remark:

$$E(N^{\ell}) = \begin{cases} 1 \cdot 3 \cdots (2m-1) & \text{if } \ell = 2m \text{ is even;} \\ 0 & \text{if } \ell \text{ is odd.} \end{cases}$$

Sketch of proof of Ruciński theorem

Let T_n be the number of triangles in $G(n, p_n)$ and $X_n = \frac{T_n - E(T_n)}{\sqrt{Var(T_n)}}$. Then

$$E(X_n^{\ell}) = \frac{1}{\operatorname{Var}(T_n)^{\ell/2}} E\left((T_n - E(T_n))^{\ell}\right)$$

But $T_n - E(T_n) = \sum_{\{\{i,j,k\}\}} \Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})$. Thus
$$\operatorname{Var}(T_n)^{\ell/2} E(X_n^{\ell}) = \sum_{\substack{\{i_1,j_1,k_1\}\\ \vdots\\ \{i_\ell,j_\ell,k_\ell\}}} E\left[\left(\Delta_{\{i_1,j_1,k_1\}} - E(\Delta_{\{i_1,j_1,k_1\}})\right) \cdots \left(\Delta_{\{i_\ell,j_\ell,k_\ell\}} - E(\Delta_{\{i_\ell,j_\ell,k_\ell\}})\right)\right]$$

Sketch of proof of Ruciński theorem

Let T_n be the number of triangles in $G(n, p_n)$ and $X_n = \frac{T_n - E(T_n)}{\sqrt{Var(T_n)}}$. Then

$$E(X_n^{\ell}) = \frac{1}{\operatorname{Var}(T_n)^{\ell/2}} E\left((T_n - E(T_n))^{\ell}\right)$$

ut $T_n - E(T_n) = \sum_{\{\{i,j,k\}\}} \Delta_{\{i,j,k\}} - E(\Delta_{\{i,j,k\}})$. Thus
$$\operatorname{Var}(T_n)^{\ell/2} E(X_n^{\ell}) = \sum_{\substack{\{i_1,j_1,k_1\}\\ \vdots\\ \{i_\ell,j_\ell,k_\ell\}}} E\left[\left(\Delta_{\{i_1,j_1,k_1\}} - E(\Delta_{\{i_\ell,j_\ell,k_\ell\}})\right)\right]$$

Because of independence, most of the terms vanish... One has to study asymptotics carefully and find $\lim E(X_n^{\ell}) = E(N^{\ell})$.

B

A TCL for the number of prime divisors

Each integer $X \ge 1$ writes uniquely as a product of primes:

$$18984 = 2^3 * 3 * 7 * 113.$$

Theorem (Erdős, Kac, 1940)

Let D_n be the number of prime divisors of a uniform random integer between 1 and n. Then

$$X_n := \frac{D_n - E(D_n)}{\sqrt{Var(D_n)}} \longrightarrow_d N.$$

$$D_n = \sum_{\substack{p \text{ prime} \\ p \leq n}} I_p(n) \text{ where } I_p(n) = \begin{cases} 1 & \text{ if } p \text{ divides } n; \\ 0 & \text{ otherwise.} \end{cases}$$

As usual, we want to compute $E(D_n^{\ell})$, we expand and use linearity...

$$D_n = \sum_{\substack{p \text{ prime} \\ p \leq n}} I_p(n) \text{ where } I_p(n) = \begin{cases} 1 & \text{ if } p \text{ divides } n; \\ 0 & \text{ otherwise.} \end{cases}$$

Γ

V. Féray (I-Math, UZH)

As usual, we want to compute $E(D_n^{\ell})$, we expand and use linearity... No independence, but, for distinct primes,

$$E(I_{p_1} \dots I_{p_k}) = \frac{1}{n} \left\lfloor \frac{n}{p_1 \dots p_k} \right\rfloor \simeq \underbrace{\frac{1}{p_1 \dots p_k}}_{\text{what we would have}}$$
what we would have
if $I_{p_1} \dots I_{p_k}$ were independent

$$D_n = \sum_{\substack{p \text{ prime} \\ p \leq n}} I_p(n) \text{ where } I_p(n) = \begin{cases} 1 & \text{ if } p \text{ divides } n; \\ 0 & \text{ otherwise.} \end{cases}$$

As usual, we want to compute $E(D_n^{\ell})$, we expand and use linearity... No independence, but, for distinct primes,

$$E(I_{p_1} \dots I_{p_k}) = \frac{1}{n} \left\lfloor \frac{n}{p_1 \dots p_k} \right\rfloor \simeq \underbrace{\frac{1}{p_1 \dots p_k}}_{\text{what we would have}}$$
what we would have
if $I_{p_1} \dots I_{p_k}$ were independent

So

$$E(D_n^\ell)\simeq E(Y_n^\ell),$$

where Y_n is a sum of independent copies of the I_p . It converge after normalization to a normal law.

$$D_n = \sum_{\substack{p \text{ prime} \\ p \leq n}} I_p(n) \text{ where } I_p(n) = \begin{cases} 1 & \text{ if } p \text{ divides } n; \\ 0 & \text{ otherwise.} \end{cases}$$

As usual, we want to compute $E(D_n^{\ell})$, we expand and use linearity... No independence, but, for distinct primes,

$$E(I_{p_1} \dots I_{p_k}) = \frac{1}{n} \left\lfloor \frac{n}{p_1 \dots p_k} \right\rfloor \simeq \underbrace{\frac{1}{p_1 \dots p_k}}_{\text{what we would have}}$$
what we would have
if $I_{p_1} \dots I_{p_k}$ were independent

So

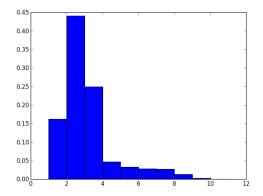
$$E(D_n^\ell)\simeq E(Y_n^\ell),$$

where Y_n is a sum of independent copies of the I_p . It converge after normalization to a normal law.

 $\Rightarrow D_n$ also converges after normalization to a normal law.

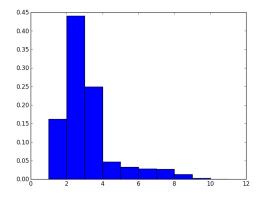
Number of prime divisors: a simulation

n = 28511235679461510605581038657982805983853648817939444953417128836



Number of prime divisors: a simulation

n = 28511235679461510605581038657982805983853648817939444953417128836



 $\ln(\ln(n)) \sim 5$, but the empirical mean is 2.5. Erdős-Kac theorem is an asymptotic result!

V. Féray (I-Math, UZH)

Random combinatorial structures Ant

Random permutations and non independence

Definition

A permutation of n is a word with letters from 1 to n, which contains exactly one each letter.

A uniform random permutation of size 20:

[9, 10, 5, 19, 7, 16, 18, 2, 14, 20, 17, 1, 6, 12, 8, 15, 11, 13, 4, 3]

The first element σ_1 is uniform between 1 and *n*. Also the second σ_2, \ldots But they are not independent.

Set $\sigma_1' = \sigma_1/n$, $\sigma_2' = \sigma_2/n$. Their *covariance* is

$$\operatorname{Cov}(\sigma_1', \sigma_2') := E(\sigma_1' \sigma_2') - E(\sigma_1')E(\sigma_2') = \cdots = O(1/n).$$

Small correlation!

Set $\sigma'_1 = \sigma_1/n$, $\sigma'_2 = \sigma_2/n$. Their *covariance* is

$$\operatorname{Cov}(\sigma'_1,\sigma'_2) := E(\sigma'_1\sigma'_2) - E(\sigma'_1)E(\sigma'_2) = \cdots = O(1/n).$$

Small correlation! Let us compute the 3rd cumulant:

$$\kappa_3(\sigma'_1, \sigma'_2, \sigma'_3) = E(\sigma'_1 \sigma'_2 \sigma'_3) - E(\sigma'_1 \sigma'_2)E(\sigma'_3) - \dots + 2E(\sigma'_1)E(\sigma'_2)E(\sigma'_3)$$
$$= \dots = O(1/n^2).$$

Set $\sigma'_1 = \sigma_1/n$, $\sigma'_2 = \sigma_2/n$. Their *covariance* is

$$\mathsf{Cov}(\sigma_1',\sigma_2'):=\mathsf{E}(\sigma_1'\,\sigma_2')-\mathsf{E}(\sigma_1')\mathsf{E}(\sigma_2')=\cdots=\mathsf{O}(1/n).$$

Small correlation! Let us compute the 3rd cumulant:

$$\kappa_3(\sigma'_1, \sigma'_2, \sigma'_3) = E(\sigma'_1 \sigma'_2 \sigma'_3) - E(\sigma'_1 \sigma'_2)E(\sigma'_3) - \dots + 2E(\sigma'_1)E(\sigma'_2)E(\sigma'_3)$$
$$= \dots = O(1/n^2).$$

In general, $\kappa_\ell(\sigma'_1,\ldots,\sigma'_\ell)=O(n^{-\ell+1})$ (F., 2013)

Set $\sigma_1' = \sigma_1/n$, $\sigma_2' = \sigma_2/n$. Their *covariance* is

$$\operatorname{Cov}(\sigma_1', \sigma_2') := E(\sigma_1' \sigma_2') - E(\sigma_1')E(\sigma_2') = \cdots = O(1/n).$$

Small correlation! Let us compute the 3rd cumulant:

$$\kappa_3(\sigma'_1, \sigma'_2, \sigma'_3) = E(\sigma'_1 \sigma'_2 \sigma'_3) - E(\sigma'_1 \sigma'_2)E(\sigma'_3) - \dots + 2E(\sigma'_1)E(\sigma'_2)E(\sigma'_3)$$
$$= \dots = O(1/n^2).$$

In general, $\kappa_\ell(\sigma'_1,\ldots,\sigma'_\ell) = O(n^{-\ell+1})$ (F., 2013)

For "local" statistics, allows to use moment method as if $\sigma_1, \sigma_2, \ldots$ were independent.

Example: the number of adjacencies is asymptotically Poisson distributed!

Set $\sigma_1' = \sigma_1/n$, $\sigma_2' = \sigma_2/n$. Their *covariance* is

$$\operatorname{Cov}(\sigma_1', \sigma_2') := E(\sigma_1' \sigma_2') - E(\sigma_1')E(\sigma_2') = \cdots = O(1/n).$$

Small correlation! Let us compute the 3rd cumulant:

$$\kappa_3(\sigma'_1, \sigma'_2, \sigma'_3) = E(\sigma'_1 \sigma'_2 \sigma'_3) - E(\sigma'_1 \sigma'_2)E(\sigma'_3) - \dots + 2E(\sigma'_1)E(\sigma'_2)E(\sigma'_3)$$
$$= \dots = O(1/n^2).$$

In general, $\kappa_\ell(\sigma'_1,\ldots,\sigma'_\ell) = O(n^{-\ell+1})$ (F., 2013)

For "local" statistics, allows to use moment method as if $\sigma_1, \sigma_2, \ldots$ were independent.

Small cumulants also appear in random graphs with fixed number of edges, random orthogonal/unitary matrices, ...

V. Féray (I-Math, UZH)

Partitions

Definition

A partition (of n) is a non-increasing list of integer (of sum n).

Example : (4, 3, 1) is a partition of 8.

Representation as Young diagram :

Plancherel measure

Representation theory of symmetric group associates to each partition λ of n a vector space V_{λ} , called representation, such that

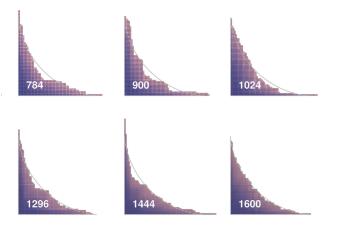
$$\sum_{\substack{\lambda \text{ partition} \\ \text{of } n}} (\dim V_{\lambda})^2 = n!$$

We consider Plancherel measure on partitions of size n:

$$P(\lambda) = rac{(\dim V_{\lambda})^2}{n!}.$$

This defines a model for a random partition of size n, but not uniform.

Random partitions under Plancherel measure: simulation



©Notices of the AMS, Feb. 2011, front cover.

Nice limit shape!

V. Féray (I-Math, UZH)

Random combinatorial structures

s Antrittsvorlesung 2014–10 22 / 23

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)

$${\sf E}(\hat{\chi}^ullet(\sigma)) = egin{cases} 1 & ext{if } \sigma = ext{id}; \ 0 & ext{otherwise}. \end{cases},$$

where $\hat{\chi}$ are irreducible characters.

We would like to use moment method and compute $E(\hat{\chi}^{\bullet}(\sigma)^m)$.

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)

$${\sf E}(\hat{\chi}^ullet(\sigma)) = egin{cases} 1 & ext{if } \sigma = ext{id}; \ 0 & ext{otherwise}. \end{cases},$$

where $\hat{\chi}$ are irreducible characters.

We would like to use moment method and compute $E(\hat{\chi}^{\bullet}(\sigma)^m)$.

"Solution": express $\hat{\chi}^{\bullet}(\sigma)^m$ as a linear combination of irreducible characters.

This is a classical kind of question in algebraic combinatorics!

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)

$${\sf E}(\hat{\chi}^ullet(\sigma)) = egin{cases} 1 & ext{if } \sigma = ext{id}; \ 0 & ext{otherwise}. \end{cases},$$

where $\hat{\chi}$ are irreducible characters.

We would like to use moment method and compute $E(\hat{\chi}^{\bullet}(\sigma)^m)$.

"Solution": express $\hat{\chi}^{\bullet}(\sigma)^m$ as a linear combination of irreducible characters.

This is a classical kind of question in algebraic combinatorics!

Algebraic combinatorics provides a lot of non-trivial probabilistic models that can be analysed by moment method \rightarrow integrable probability.