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Introduction

First example of random combinatorial structures: random

graphs
2
Erdds-Rényi model of random graphs G(n, p): 3 ‘ 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,j} is taken independently
with probability p; 5 : 7

Example : n=8,p=1/2

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10 2/23



Introduction

First example of random combinatorial structures: random

graphs
2
Erdds-Rényi model of random graphs G(n, p): 3 ! 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,j} is taken independently
with probability p; 5 7
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Example : n=8,p=1/2
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Does G contains a triangle? If yes, how many? J
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Introduction

First example of random combinatorial structures: random
graphs

2
Erdds-Rényi model of random graphs G(n, p): 3 ! 1
@ G has n vertices labelled 1,...,n; 4 > 8
@ each edge {/,j} is taken independently
with probability p; 5 7
6
Example : n=8,p=1/2
Question
Does G contains a triangle? If yes, how many? J

— we look for an asymptotic answer.
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Introduction

Second example of random combinatorial structure: random
permutation

A uniform random permutation of size 20

[9,10,5,19,7,16,18,2,14,20,17,1,6,12,8,15,11, 13, 4, 3]
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Introduction

Second example of random combinatorial structure: random
permutation

A uniform random permutation of size 20

[9,10,5,19,7,16,18,2,14,20,17,1,6,12,8,15,11,13, 4, 3]
Question

Does G contains an adjacency. If yes, how many? J

adjacency = consecutive values in consecutive places.
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Introduction

Some general motivations
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Introduction

Some general motivations

@ Biological observation: from one person to another, order of the genes
on a chromosome are the same.
From one species to another: this order changes, one can encode that
by a permutation.
Number of adjacencies measures how close the two species are.

— One has to compare with a random permutation !
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on a chromosome are the same.
From one species to another: this order changes, one can encode that
by a permutation.
Number of adjacencies measures how close the two species are.

— One has to compare with a random permutation !

@ Spectrum of random (GOE) matrices describe accurately the spectra
of heavy atoms (Wigner, 50').
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Introduction

Some general motivations

@ Biological observation: from one person to another, order of the genes
on a chromosome are the same.
From one species to another: this order changes, one can encode that
by a permutation.
Number of adjacencies measures how close the two species are.

— One has to compare with a random permutation !

@ Spectrum of random (GOE) matrices describe accurately the spectra
of heavy atoms (Wigner, 50').

@ Graphs can represent networks, e.g. internet (vertices are web pages,
edges hyperlinks).
But Erd&s-Rényi random graph is not a good model for internet (not
the good degree distribution!).
— A lot of other models of random graphs have been introduced and
studied.
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Outline of the talk

@ Presentation of the moment method

© Two facets of my work related to moment methods
@ Random permutations and small cumulants
@ Random representations
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First moment: description of the method

Lemma

Let X be a random variable with non-negative integer values (for example
X is counting something). Then

P(X =0)>1— E(X).

Proof: E(X) = S kP(X = k) > Y0  PX = k) =1 - P(X =0). [
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First moment: description of the method

Lemma

Let X be a random variable with non-negative integer values (for example
X is counting something). Then

P(X =0)>1— E(X).

Proof: E(X) = S kP(X = k) > Y0  PX = k) =1 - P(X =0). [

Corollary (first moment method)

If E(X,) tends to 0, then X, = 0 with high probability
(that is, P(X, = 0) tends to 1).
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First moment: application to triangles in random graphs

Let T, be the number of triangles in G(n, pp). Then
To= D>, Dk
{iJ.k}clnl

where
1 if G contains the triangle i, , k;
{ig.k} =

0 otherwise.
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3 G e
First moment: application to triangles in random graphs

Let T, be the number of triangles in G(n, pp). Then
To= D>, Dk
{iJ.k}clnl
where

~J1 if G contains the triangle i, j, k;
U2k 700 otherwise.

But E(Ay;j k) = p; for all {i,j, k} and thus

E(T) = 3 Eagin) = (3)6

{ik}
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3 G e
First moment: application to triangles in random graphs

Let T, be the number of triangles in G(n, pp). Then
To= D Ak
{i,k}Cln]
where
~J1 if G contains the triangle i, j, k;
U2 710 otherwise,

But E(Ay;j k) = p; for all {i,j, k} and thus

E(T) = 3 Eagin) = (3)6

{ik}

Theorem

If np, — 0, then G(n, p,) has no triangles with high probability. J
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Variant: probabilistic method applied to Ramsay number.
Fix p=1/2 and k > 1. Then consider X, the

number of sets W of k vertices in G(n,1/2) 3 '2 1
which are:
@ either a clique, all pairs of vertices of W 4 >' 8
is linked by an edge;
@ or an independent set, i.e. there is no > 6 ’

edge between two vertices of W
Example : n =8,k =3
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Variant: probabilistic method applied to Ramsay number.

Fix p=1/2 and k > 1. Then consider X, the

number of sets W of k vertices in G(n,1/2) 3 '2 1
which are:
@ either a clique, all pairs of vertices of W 4 >' 8
is linked by an edge;
@ or an independent set, i.e. there is no > 6 ’

edge between two vertices of W
Example : n =8,k =3

Then
P(X,=0)>1—E(X,) =123 <Z>
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Variant: probabilistic method applied to Ramsay number.
Fix p=1/2 and k > 1. Then consider X, the

number of sets W of k vertices in G(n,1/2) 3 '2 1
which are:
@ either a clique, all pairs of vertices of W 4 >' 8
is linked by an edge;
@ or an independent set, i.e. there is no > 6 ’

edge between two vertices of W
Example : n =8,k =3

Then
P(X,=0)>1—E(X,) =123 <Z>

Theorem (Erdés, 1947)

k
11— 21=(3) (1) > 0, then there exists a graph G with n vertices and
neither cliques nor independent sets of size k.
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Second moment: description of the method

A limpsoo E(Xp) = 00 does NOT imply lim, P(X, = 0) = 0.
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Second moment: description of the method

A limpsoo E(Xp) = 00 does NOT imply lim, P(X, = 0) = 0.

How to prove that “lim, P(X, =0) =0" 7

Idea: use variance Var(X) := E(X?) — E(X)? = E[(X — E(X))?].
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Second moment: description of the method

AN limp 00 E(Xp) = 0o does NOT imply lim, P(X, = 0) = 0.
How to prove that “lim, P(X, =0) =0" 7

Idea: use variance Var(X) := E(X?) — E(X)? = E[(X — E(X))?].
Lemma (Chebyshev's inequality)

P(IX — E(X)| > A/ Var(X)) < 1/x2.

-2
P(X = 0) < <E(X>>
Var(X)

In particular,

Proof: If Y is a non-negative r.v., then P(Y > a) < E(Y)/a.

Apply this to Y = (X — E(X))? and a = A2 Var(X) = \2E(Y). O
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Second moment: description of the method

AN limp 00 E(Xp) = 0o does NOT imply lim, P(X, = 0) = 0.
How to prove that “lim, P(X, =0) =0" 7

Idea: use variance Var(X) := E(X?) — E(X)? = E[(X — E(X))?].
Lemma (Chebyshev's inequality)

P(IX — E(X)| > A/ Var(X)) < 1/x2.

-2
P(X = 0) < (E(X))
Var(X)

In particular,

Second moment method

If \/Var(X,)/E(Xs) — 0, then X,, > 0 with high probability.
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Second moment: application to triangles in random graphs

Recall that E(T,) ~ cn3p3. But

2
Var(T,) = E[(To — E(T»))?] = E Z Agijry — E(Dgijny)
{ij.k}
= > E[(Apjw —E(Bpjn) - (A — EAg )]
{iJj,k}
{i" i’ K"}
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Second moment: application to triangles in random graphs

Recall that E(T,) ~ cn3p3. But

2
Var(T,) = E[(To — E(T»))?] = E Z Agijry — E(Dgijny)
{ij.k}
= > E[(Apjw —E(Bpjn) - (A — EAg )]
{iJj,k}
{i" i’ K"}

o if {i,j,k} and {/’,/’, k'} do not share an edge,
then Ay and Ay i iy are independent and E[...] is zero.

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10 10 / 23



Second moment: application to triangles in random graphs

Recall that E(T,) ~ cn3p3. But

2
Var(T,) = E[(To — E(T»))?] = E Z Agijry — E(Dgijny)
{ij.k}
= > E[(Apjw —E(Bpjn) - (A — EAg )]
{lJ k}
{i" i’ K"}

o if {i,j,k} and {/’,/’, k'} do not share an edge,
then Ay and Ay i iy are independent and E[...] is zero.

But this is true for most of the terms in the sum! One can show:

Theorem

If np, — oo, then \/Var(T,)/E(T,) tends to 0 and thus G(n, p,) contains
a triangle with high probab|||ty
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Transition

@ To prove that our random structure does not contain a given type of

substructure:
set X, the number of these substructures X,, = Z ly.

Compute E(X,) by linearity and show that it tends to 0.
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Transition

@ To prove that our random structure does not contain a given type of
substructure:
set X, the number of these substructures X,, = Z ly.

Compute E(X,) by linearity and show that it tends to 0.

@ To prove that our random structure does contain a given type of
substructure:
consider E(X?) (or Var(X,)), expand, use linearity of expectation and
independence and show that

lim /Var(T,)/E(T,) = 0.

n—oo
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Transition

@ To prove that our random structure does not contain a given type of
substructure:
set X, the number of these substructures X,, = Z ly.

Compute E(X,) by linearity and show that it tends to 0.

@ To prove that our random structure does contain a given type of
substructure:
consider E(X?) (or Var(X,)), expand, use linearity of expectation and
independence and show that

lim /Var(T,)/E(T,) = 0.

n—oo

Question

In the case where there is a triangle with high probability, how many are
there ?

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10 11 / 23




Moment method Gaussian fluctuations by moments

Number of triangles in random graphs: a simulation

Here is a histogram number of triangles in 5000 independent random
graphs G(20, .4).

0.025
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Moment method Gaussian fluctuations by moments

Number of triangles in random graphs: a simulation

Here is a histogram number of triangles in 5000 independent random
graphs G(20, .4).

0.025

O.OOO20 20

Theorem (Rucinski, 1988)

If np, — oo and n?(1 — p,) — oo, then T, is asymptotically Gaussian.
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Gaussian fluctuations by moments
The moment method

Theorem (the moment method)
Let X, be a sequence of random variable and N a standard normal random
variable. If for each ¢ > 1,

lim E(X%) = E(NY),

n—oo

then X,, converges to N in distribution.

Remark:

1-3---(2m—1) if £ =2mis even;

E(N%) = .
0 if ¢ is odd.
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Ear I e 2 (7 e
Sketch of proof of Rucinski theorem

Let T, be the number of triangles in G(n, p,) and X, = Tn—E(Tn) Then

Var(Th)
1
A o 1
E(Xn) = Var( T,,)ﬁ/2E ((Tn E(Tn)) )
But T, — E(Th) = > Agijky — E(Agijky)- Thus
{{ij,k}}
Var(T,)2E(Xp) = ) E{(A{fl,jl,kl} — E(Aij k)
oS!
o < (Biegoby — EBiguk) |
{ig.dg.ke}
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Ear I e 2 (7 e
Sketch of proof of Rucinski theorem

Let T, be the number of triangles in G(n, p,) and X, = %((;—")) Then

E(X7)

= \WE ((Tn - E(Tn))e)

But Tn — E( Tn) = Z A{,"Lk} — E(A{’Jvk}) ThUS
i k1Y

Var(T,)2E(Xp) = ) E{(A{fl,jl,kl} — E(Aij k)
{i11:ki}
o < (Biegoby — EBiguk) |

{igsig-ke}

Because of independence, most of the terms vanish. .. One has to study
asymptotics carefully and find lim E(X%) = E(NY).
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Gaussian fluctuations by moments
A TCL for the number of prime divisors

Each integer X > 1 writes uniquely as a product of primes:

18984 = 23 % 3 % 7 % 113.

Theorem (Erdés, Kac, 1940)

Let D, be the number of prime divisors of a uniform random integer
between 1 and n. Then
.: D, — E(Dy)

ni= T —— —7d
Var(Dy,)
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Moment method Gaussian fluctuations by moments

1 if p divides n;

Dy = Z lp(n) where lp(n) — I p IYI es n
p prime 0 OtherWIse.
p<n

As usual, we want to compute E(D%), we expand and use linearity. . .
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Moment method Gaussian fluctuations by moments

1 if p divides n;

Dn= 3 Ip(n) where I,(n) = _
p prime 0 OtherWlse.
p<n

As usual, we want to compute E(D%), we expand and use linearity. . .

No independence, but, for distinct primes,

1 n 1
E(lyy ...l )==|———| ~ —_—
o - Ip) ”{Pl-'-PkJ PL ... Pk
what we would have
if Ip, ...l were independent

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10

16 / 23



Moment method Gaussian fluctuations by moments

1 if p divides n;
Dh= 3 Iy(n) where I,(n) = p A
p prime 0 OtherW|Se.
p<n
As usual, we want to compute E(D%), we expand and use linearity. . .

No independence, but, for distinct primes,

1 n 1
E(’Pl“'lpk): \‘le ~ _—

n|p1...pk PL- . Pk
what we would have
if Ip, ...l were independent

So
E(D}) ~ E(Yy),

where Y, is a sum of independent copies of the /,. It converge after
normalization to a normal law.
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Moment method Gaussian fluctuations by moments

1 if p divides n;
Dy = E /p(n) where lp(n) — I p IYI es n
p prime 0 OtherWIse.
p<n

As usual, we want to compute E(D%), we expand and use linearity. . .

No independence, but, for distinct primes,

1 n 1
E(’Pl“'lpk): \‘le ~ _—

n|p1...pk PL- . Pk
what we would have
if Ip, ...l were independent

So
E(Dy) ~ E(Yy),
where Y, is a sum of independent copies of the /,. It converge after

normalization to a normal law.

= D, also converges after normalization to a normal law.
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Moment method Gaussian fluctuations by moments

Number of prime divisors: a simulation

n = 28511235679461510605581038657982805983853648817939444953417128836
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Moment method Gaussian fluctuations by moments

Number of prime divisors: a simulation

n = 28511235679461510605581038657982805983853648817939444953417128836

In(In(n)) ~ 5, but the empirical mean is 2.5.

Erdés-Kac theorem is an asymptotic result!
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[GETR LANWAYCS Random permutations and small cumulants

Random permutations and non independence

Definition
A permutation of n is a word with letters from 1 to n, which contains
exactly one each letter.

A uniform random permutation of size 20:
[9,10,5,19,7,16,18,2,14,20,17,1,6,12,8,15,11,13, 4, 3]

The first element oy is uniform between 1 and n. Also the second o>, ...
But they are not independent.

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10 18 / 23



[GETR LANWAYCS Random permutations and small cumulants

Measuring their dependence

Set 0] = 01/n, b = o2/n. Their covariance is

Cov(01,03) := E(01 03) — E(01)E(03) =

Small correlation!

V. Féray (I-Math, UZH) Random combinatorial structures
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[GETR LANWAYCS Random permutations and small cumulants

Measuring their dependence
Set 0] = 01/n, b = o2/n. Their covariance is

Cov(o},03) 1= E(01 03) — E(01)E(03) = --- = O(1/n).
Small correlation! Let us compute the 3rd cumulant:

r3(01,0%,03) = E(01 03 03) — E(0103)E(03) — - - +2E(07) E(02) E(03)
= = 0(1/m).
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[GETR LANWAYCS Random permutations and small cumulants

Measuring their dependence

Set 0] = 01/n, b = o2/n. Their covariance is
Cov(o},03) 1= E(01 03) — E(01)E(03) = --- = O(1/n).
Small correlation! Let us compute the 3rd cumulant:
k3(01, 09, 03) = E(0 05 03) — E(0 05)E(03) — - - - +2E(07) E(0%) E(03)
=...= O(l/nz).

In general, ry(of,...,0)) = O(n=“1) (F., 2013)

V. Féray (I-Math, UZH) Random combinatorial structures Antrittsvorlesung 2014-10 19 / 23



[GETR LANWAYCS Random permutations and small cumulants

Measuring their dependence

Set 0] = 01/n, b = o2/n. Their covariance is
Cov(o},03) 1= E(01 03) — E(01)E(03) = --- = O(1/n).
Small correlation! Let us compute the 3rd cumulant:
k3(01, 09, 03) = E(0 05 03) — E(0 05)E(03) — - - - +2E(07) E(0%) E(03)
=...= O(l/nz).

In general, ry(of,...,0)) = O(n=“1) (F., 2013)

For “local” statistics, allows to use moment method as if o1,02,... were
independent.

Example: the number of adjacencies is asymptotically Poisson distributed!
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[GETR LANWAYCS Random permutations and small cumulants

Measuring their dependence

Set 0] = 01/n, b = o2/n. Their covariance is
Cov(o},03) 1= E(01 03) — E(01)E(03) = --- = O(1/n).
Small correlation! Let us compute the 3rd cumulant:
k3(01, 09, 03) = E(0 05 03) — E(0 05)E(03) — - - - +2E(07) E(0%) E(03)
=...= O(l/nz).

In general, ry(of,...,0)) = O(n=“1) (F., 2013)

For “local” statistics, allows to use moment method as if o1,02,... were
independent.

Small cumulants also appear in random graphs with fixed number of edges,
random orthogonal /unitary matrices, ...
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Closer to my work Random representations

Partitions

Definition

A partition (of n) is a non-increasing list of integer (of sum n). J

Example : (4,3,1) is a partition of 8.

Representation as Young diagram :
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Closer to my work Random representations

Plancherel measure

Representation theory of symmetric group associates to each partition A of
n a vector space V), called representation, such that

Z (dim V)% = n!

Apartition
of n

We consider Plancherel measure on partitions of size n:

(dim V)\)2
n! '

P(\) =

This defines a model for a random partition of size n, but not uniform.
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Closer to my work Random representations

Random partitions under Plancherel measure: simulation

(©Notices of the AMS, Feb. 2011, front cover.

Nice limit shape!
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Closer to my work Random representations

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)
1 ifo=id;
0 otherwise.’

where Y are irreducible characters.

We would like to use moment method and compute E({°*(0)™).
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Closer to my work Random representations

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)
1 ifo=id;
0 otherwise.’

where Y are irreducible characters.

We would like to use moment method and compute E({°*(0)™).
“Solution”: express ¥*(c)™ as a linear combination of irreducible characters.

This is a classical kind of question in algebraic combinatorics!
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Closer to my work Random representations

Moment method on characters

Lemma (easy algebraic statement rewritten in probabilistic terms)
1 ifo=id;
0 otherwise.’

where Y are irreducible characters.

We would like to use moment method and compute E({°*(0)™).
“Solution”: express ¥*(c)™ as a linear combination of irreducible characters.
This is a classical kind of question in algebraic combinatorics!

Algebraic combinatorics provides a lot of non-trivial probabilistic models
that can be analysed by moment method — integrable probability.
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