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Representation of tableaux as bead configurations
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Construction. If T(x,y) =t for some y, then we put a bead on thread x at
height t. Then Hy(x,t) is the number of beads below t on thread x.
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Representation of tableaux as bead configurations
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Construction. If T(x,y) =t for some y, then we put a bead on thread x at
height t. Then Hy(x,t) is the number of beads below t on thread x.
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Thm 1 — asymptotic density of beads at (x, t) is ﬁ%(Uc(x, t)).
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The heart N\
example -
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Top left: A°. Top right: the boundary of the liquid region, i.e. where
Thm 1 predicts a positive density of beads.
Bottom line: the surface, bead configuration, and height function
associated to a uniform random tableau of shape n-A° for n=100
(N =130000).
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The pipe .
example
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Top left: A°. Top right: the boundary of the liquid region, i.e. where
Thm 1 predicts a positive density of beads.

Bottom line: the surface, bead configuration, and height function
associated to a uniform random tableau of shape n-A° for n=6
(N =59400).
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Zoom on the pipe example
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-
Why are there discontinuities ?
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@ There is a discontinuity because for some x, t— H(x,t) is constant on
some interval in the middle, i.e. along a vertical line we have an
intermediate zone without beads.
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@ There is a discontinuity because for some x, t— H(x,t) is constant on
some interval in the middle, i.e. along a vertical line we have an
intermediate zone without beads.

@ This happens when the tangent at the cusp is not vertical (both
curves at a cusp have the same tangent, think at y2 = x3).
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@ There is a discontinuity because for some x, t— H(x,t) is constant on
some interval in the middle, i.e. along a vertical line we have an
intermediate zone without beads.

@ This happens when the tangent at the cusp is not vertical (both
curves at a cusp have the same tangent, think at y2 = x3).

e To find the criterium for continuity (Theorem 2), it “suffices” to
compute the tangent at the cusps.
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Our main tool: Poissonized tableaux. . .
A Poissonized tableau T of shape A is a function T : A — [0,1] with the
same monotonicity condition as standard tableaux.

Note: the set of Poissonized tableaux is a subset of [0,1]* with non-empty

interior, hence it makes sense to take a uniform random Poissonized
tableau of shape A.

Let M, be the associated bead configuration.
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|
.and determinantal point processes

Theorem (Gorin, Rahman, '19)

M, is a determinantal point process on Z x [0,1] with correlation kernel

(tl _ t2)X1_X2_1
Ki((x1,t1), (x2,2)) = Ly >0, t1<t m

f F;L X2+Z) r(—W) (1—t2)z(1—t1)w
217r v, FAxi=1=w) T(z+1) z+w+xo—x; +1

dwdz,

where the double contour integral runs over counterclockwise paths y,, and
Yz such that

® Y is inside y; ;
@ vy, and y, contain all the integers in [0,£(1)—1+x1] and in

[0,A1 —1—xy] respectively;

1
Xo—x1+1

and F(z) :=T(u+1) [[°, 4L

i=1 u=Aj+i"

V. Féray (CNRS, IECL) Random tableaux Cortipom, 2023-07 8/11
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Finding the asymptotics of the kernel

o Let xy =xo =xgV N, t1 = tr = ty, then the integrand is asymptotically
equivalent to
e vRSws(zn h(W, 2)
Inty (W, Z) = N~/2eVN(S(W)-5(2)) 1722/
ntw(W,2) € Z-W

where
S(U)=g(U)-Ulog(1-to) X" g(x0—nai+U)+ L2, g(xo—nbi+U);
(g(2) = zlog(z))

This uses essentially Stirling equivalent for the gamma function. ..
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|
Finding the asymptotics of the kernel

e Standard idea: move the contour such that S(W)-5(Z) <0 as.

Yellow/white region: small/large values of ReS(U).
The two contours can only meet at a point where S'(U) =0
(— critical equation).
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|
Finding the asymptotics of the kernel

e Standard idea: move the contour such that S(W)-5(Z) <0 as.

Yellow/white region: small/large values of ReS(U).
The two contours can only meet at a point where S'(U) =0
(— critical equation).
@ Moving the contours yields a residue term of the form:
N2 Jy h(W, W)dW, where y goes from U to U.. But one can

27 i

compute h(W, W) =1/(1-1tp), so that we have
N-1/2
KA((Xo\/N,to),(Xo\/N,to))’: p Im(Uc).
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Discussion

@ We also have a local limit result for random tableaux, in the bulk in
windows of size O(1) x O(N~1/?).

V. Féray (CNRS, IECL) Random tableaux Cortipom, 2023-07 11/11



Discussion
@ We also have a local limit result for random tableaux, in the bulk in
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@ Question 1: can we get Tracy-Widom distribution at the edge (for
instance in a generic entry in the first row)? This was proved by
Marchal for square tableaux.
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@ Question 1: can we get Tracy-Widom distribution at the edge (for
instance in a generic entry in the first row)? This was proved by
Marchal for square tableaux.

@ Question 2: can we characterize the appearence of discontinuities
outside the multirectangular framework?

Thank you for your attention!
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