Graphon limits of static and dynamic models of random cographs

Valentin Féray joint work with F. Bassino, M. Bouvel, L. Gerin, M. Maazoun, A. Pierrot and K. Rivera-Lopez

CNRS, Institut Élie Cartan de Lorraine (IECL)

Virtual Informal Systems Seminar, online, May 12th, 2023

What is this talk about?

Cographs: nice class of graphs (definition on next slide), well-understood from a combinatorial/algorithmic point of view.

Here: a probabilistic/large network perspective on cographs. In particular, we will describe *graphon limits* of three models of random cographs.

What is this talk about?

Cographs: nice class of graphs (definition on next slide), well-understood from a combinatorial/algorithmic point of view.

Here: a probabilistic/large network perspective on cographs. In particular, we will describe *graphon limits* of three models of random cographs.

Motivations:

- Simple models which have some nontrivial graphon limit and limiting dynamics in the space of graphons.
- Probabilistic work around Erdős-Hajnal conjecture.

Cographs (1/2)

Let G be a graph. A duplication operation consist in

- choosing a vertex of G;
- adding a new vertex v' with the same neighbours as v;
- possibly connect v and v'.

Cographs (1/2)

Let G be a graph. A duplication operation consist in

- choosing a vertex of G;
- adding a new vertex v' with the same neighbours as v;
- possibly connect v and v'.

Definition

A cograph is a graph that can be obtained starting from the one-vertex graph and iterating duplication operations.

Cographs (2/2)

Observation: the path P_4 is not a cograph.

Cographs (2/2)

Observation: the path P_4 is not a cograph.

Proposition (direct characterization of cographs, Corneil–Lerchs–Stewart Burlingham '81)

A graph is a cograph if it one **cannot** find four (distinct) vertices v_1, v_2, v_3, v_4 of G such that the induced graph $G[v_1, v_2, v_3, v_4]$ is P_4 .

Cographs (2/2)

Observation: the path P_4 is not a cograph.

Proposition (direct characterization of cographs, Corneil–Lerchs–Stewart Burlingham '81)

A graph is a cograph if it one **cannot** find four (distinct) vertices v_1, v_2, v_3, v_4 of G such that the induced graph $G[v_1, v_2, v_3, v_4]$ is P_4 .

A (disconnected) cograph

These are not cographs

Cographs are well-studied: many other characterizations, recognition algorithms, tree decomposition, ...

Models of random cographs

- G_n : uniform random cograph with *n* vertices;
- X^p_n(t): obtained by duplicating a uniform random vertex (connecting the two new vertices with proba p) and then deleting a uniform random vertex in X^p_n(t−1), starting with any graph X^p_n(0) with n vertices.

Models of random cographs

- G_n : uniform random cograph with *n* vertices;
- 3 $X_n^p(t)$: obtained by duplicating a uniform random vertex (connecting the two new vertices with proba p) and then deleting a uniform random vertex in $X_n^p(t-1)$, starting with any graph $X_n^p(0)$ with n vertices.

Motivations:

- 1. random graph theory (probabilistic work around Erdős-Hajnal conjecture) ;
- 3. similar model with other combinatorial objects (partitions) coming from population dynamics ;
- 2. appears in the study of 3.

V. Féray (CNRS, IECL)

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set $\{0, ..., n-1\}$, we associate its rescaled adjacency matrix/pixel picture $W_G : [0,1]^2 \rightarrow [0,1]$

$$W_G(x,y) = \begin{cases} 1 & \text{if } \{\lfloor nx \rfloor, \lfloor ny \rfloor\} \in E_G; \\ 0 & \text{otherwise.} \end{cases}$$

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set $\{0, ..., n-1\}$, we associate its rescaled adjacency matrix/pixel picture $W_G : [0,1]^2 \rightarrow [0,1]$

$$W_G(x,y) = \begin{cases} 1 & \text{if } \{\lfloor nx \rfloor, \lfloor ny \rfloor\} \in E_G; \\ 0 & \text{otherwise.} \end{cases}$$

Idea: a sequence of graphs G_n if the associated functions W_{G_n} converge...

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set $\{0, ..., n-1\}$, we associate its rescaled adjacency matrix/pixel picture $W_G : [0,1]^2 \rightarrow [0,1]$

$$W_G(x,y) = \begin{cases} 1 & \text{if } \{\lfloor nx \rfloor, \lfloor ny \rfloor\} \in E_G; \\ 0 & \text{otherwise.} \end{cases}$$

Idea: a sequence of graphs G_n if the associated functions W_{G_n} converge... Yes, but

• it's better to use an adhoc norm

$$\|W\|_{\Box} = \sup_{S, T \subseteq [0,1]} \left| \int_{S \times T} W(x, y) dx dy \right|.$$

• The function depends on the labelling of the vertices. We quotient by the relation

$$(W \sim W') \stackrel{\text{def}}{\longleftrightarrow} \exists \varphi \text{ Lebesgue-preserving} : W(\varphi(x), \varphi(y)) = W'(x, y).$$

A short course on graphons (2/2)

Theorem (Borgs, Chayes, Lovász, Sós, Vesztergombi, '08)

. . .

The following are equivalent

- W_{G_n} converges to W;
- All subgraph proportions in G_n converge to some explicit functional of W, e.g.

$$\frac{\# \text{ edges in } G_n}{\binom{|V(G_n)|}{2}} \to \int_{[0,1]^2} W(x,y) dx dy,$$

$$\frac{\# \text{triangles in } G_n}{\binom{|V(G_n)|}{3}} \to \int_{[0,1]^2} W(x,y) W(y,z) W(z,x) dx dy dz,$$

A short course on graphons (2/2)

Theorem (Borgs, Chayes, Lovász, Sós, Vesztergombi, '08)

The following are equivalent

- W_{G_n} converges to W;
- All subgraph proportions in G_n converge to some explicit functional of W, e.g.

$$\frac{\# \text{ edges in } G_n}{\binom{|V(G_n)|}{2}} \to \int_{[0,1]^2} W(x,y) dx dy,$$

$$\frac{\# \text{triangles in } G_n}{\binom{|V(G_n)|}{3}} \to \int_{[0,1]^2} W(x,y) W(y,z) W(z,x) dx dy dz,$$

It gives a nice notion of limits for large graph;

. . .

• Introduced in 2006, and used a lot in large network analysis since then (even though real-life networks tend to be sparse).

V. Féray (CNRS, IECL)

Random cographs

First part

The static model uniform random cographs

Limit of uniform random cographs

Theorem (Bouvel-Bassino-F.-Gerin-Maazoun-Pierrot '22, Stufler '22)

Let G_n be a uniform random (either labeled or unlabeled) cograph with n vertices. Then W_{G_n} converges in distribution to a random graphon W_{Br} , which we call Brownian cographon.

Limit of uniform random cographs

Theorem (Bouvel-Bassino-F.-Gerin-Maazoun-Pierrot '22, Stufler '22)

Let G_n be a uniform random (either labeled or unlabeled) cograph with n vertices. Then W_{G_n} converges in distribution to a random graphon W_{Br} , which we call Brownian cographon.

Construction of
$$W_{Br}$$
: start from a Brow-
nian excursion \mathfrak{e} with i.i.d. balanced signs
 $(S(m))$ on local minima m of \mathfrak{e} and set
 $W_{Br}(x,y) = \begin{cases} 1 & \text{if } S\left(\operatorname{argmin}_{[x,y]}\mathfrak{e}\right) = \oplus; \\ 0 & \text{if } S\left(\operatorname{argmin}_{[x,y]}\mathfrak{e}\right) = \Theta. \end{cases}$

V. Féray (CNRS, IECL)

Limit of uniform random cographs

Theorem (Bouvel-Bassino-F.-Gerin-Maazoun-Pierrot '22, Stufler '22)

Let G_n be a uniform random (either labeled or unlabeled) cograph with n vertices. Then W_{G_n} converges in distribution to a random graphon W_{Br} , which we call Brownian cographon.

V. Féray (CNRS, IECL)

Heuristic for the theorem

• A cograph G is encoded by a decorated tree T;

- Vertices in *G* correspond to leaves in *T*;
- Vertices v₁ and v₂ are connected if their youngest common ancestor is decorated by ⊕;

Heuristic for the theorem

• A cograph *G* is encoded by a decorated tree *T*;

- Vertices in *G* correspond to leaves in *T*;
- Vertices v₁ and v₂ are connected if their youngest common ancestor is decorated by ⊕;

• The limit of T is Aldous' Continuum Random Tree T_{∞} , coded by a Brownian excursion e;

- Leaves of T_∞ form a measure 1 subset of [0, 1];
- Youngest common ancestor between x and y correspond to argmin_[x,y] e. Thus x, y are linked in W_{Br} if S(argmin_[x,y] e) = ⊕.

Heuristic for the theorem

• A cograph *G* is encoded by a decorated tree *T*;

- Vertices in *G* correspond to leaves in *T*;
- Vertices v₁ and v₂ are connected if their youngest common ancestor is decorated by ⊕;

• The limit of T is Aldous' Continuum Random Tree T_{∞} , coded by a Brownian excursion e;

- Leaves of T_{∞} form a measure 1 subset of [0, 1];
- Youngest common ancestor between x and y correspond to argmin_[x,y] e. Thus x, y are linked in W_{Br} if S(argmin_[x,y] e) = ⊕.

Note: in the discrete, decorations alternate; in the continuous, they are independent.

V. Féray (CNRS, IECL)

Random cographs

Some consequences

Corollary

The edge proportion $|E(G_n)|/{\binom{n}{2}}$ in a uniform random cograph G_n with n vertices converges to a non-trivial random variable Λ .

Some consequences

Corollary

The edge proportion $|E(G_n)|/{\binom{n}{2}}$ in a uniform random cograph G_n with n vertices converges to a non-trivial random variable Λ .

Proposition (Bouvel-Bassino-F.-Gerin-Maazoun-Pierrot '22)

The normalized degree $\frac{d_v}{n}$ of a uniform random vertex \mathbf{v} in a uniform random cograph on n vertices is asymptotically uniform in [0,1].

Proposition (Bouvel-Bassino-Drmota-F.-Gerin-Maazoun-Pierrot '22) The largest independent set in a uniform random cograph of size n has size $o_P(n)$. Some consequences

Corollary

The edge proportion $|E(G_n)|/{\binom{n}{2}}$ in a uniform random cograph G_n with n vertices converges to a non-trivial random variable Λ .

Proposition (Bouvel-Bassino-F.-Gerin-Maazoun-Pierrot '22)

The normalized degree $\frac{d_{\mathbf{v}}}{n}$ of a uniform random vertex \mathbf{v} in a uniform random cograph on n vertices is asymptotically uniform in [0,1].

Proposition (Bouvel-Bassino-Drmota-F.-Gerin-Maazoun-Pierrot '22) The largest independent set in a uniform random cograph of size n has size

 $o_P(n)$.

All these statements use an extension of the considered notion to graphons, some continuity property and some analysis of the Brownian cographon.

V. Féray (CNRS, IECL)

Erdős-Hajnal conjecture and the probabilistic version (1/2)

Erdős-Hajnal conjecture ('89)

Fix a graph *H*. There exists $\varepsilon = \varepsilon(H)$ such that every *H*-free graph contains a homogeneous set of size n^{ε} .

homogeneous set = clique or independent set Without "*H*-free" constraints, optimal bound is log(n) (classical Ramsey theory). Erdős-Hajnal conjecture and the probabilistic version (1/2)

Erdős-Hajnal conjecture ('89)

Fix a graph *H*. There exists $\varepsilon = \varepsilon(H)$ such that every *H*-free graph contains a homogeneous set of size n^{ε} .

Theorem (Loebl-Reed-Scott-Thomason-Thomassé, '14)

Fix a graph H. There exists $\varepsilon = \varepsilon(H)$ such that a uniform random H-free graph contains a homogeneous set of size n^{ε} (with high probability).

Erdős-Hajnal conjecture and the probabilistic version (1/2)

Erdős-Hajnal conjecture ('89)

Fix a graph *H*. There exists $\varepsilon = \varepsilon(H)$ such that every *H*-free graph contains a homogeneous set of size n^{ε} .

Theorem (Loebl-Reed-Scott-Thomason-Thomassé, '14)

Fix a graph H. There exists $\varepsilon = \varepsilon(H)$ such that a uniform random H-free graph contains a homogeneous set of size n^{ε} (with high probability).

Theorem (Kang-McDiarmid-Reed-Scott, '14)

For a large family of graphs H, the exists b = b(H) such that a uniform random H-free graph contains a homogeneous set of size bn (with high probability).

Erdős-Hajnal conjecture and the probabilistic version (2/2)

Question (KMRS, '14)

Does there exists b > 0 such that a uniform random *H*-free graph G_n contains a homogeneous set of size *bn* with high probability?

Erdős-Hajnal conjecture and the probabilistic version (2/2)

Question (KMRS, '14)

Does there exists b > 0 such that a uniform random *H*-free graph G_n contains a homogeneous set of size *bn* with high probability?

Answer

No! We have seen that the largest independent set in G_n has size $o_P(n)$. By symmetry, the largest clique has also size $o_P(n)$, and, therefore, the largest independent set.

Second model

A dynamic model with increasing size: recursive random cographs

The model (reminder): H_n^p is constructed recursively by duplicating a uniform random vertex in H_{n-1}^p and connecting the two new vertices with probability p in [0,1] (starting with $H_1^p = \bullet$).

A convergence result

Theorem (F., Rivera-Lopez, '23)

 H_n^p converges almost surely to a random graphon \boldsymbol{W}_{rec}^p , which we call the recursive cographon of paramter p.

V. Féray (CNRS, IECL)

Construction of the limit

Let $(U_i)_{i\geq 0}$ be a sequence of i.i.d. uniform random variables in [0,1], and $(S_i)_{i\geq 0}$ be a sequence of i.i.d. random signs in $\{\oplus, \ominus\}$.

For x < y in [0,1] let $i_{x,y}$ be the smallest index *i* s.t. $U_i \in [x,y)$. Then set

$$\boldsymbol{W}_{rec}^{p} = \begin{cases} 1 & \text{if } S_{i_{x,y}} = \oplus; \\ 0 & \text{otherwise.} \end{cases}$$

Construction of the limit

Let $(U_i)_{i\geq 0}$ be a sequence of i.i.d. uniform random variables in [0,1], and $(S_i)_{i\geq 0}$ be a sequence of i.i.d. random signs in $\{\oplus, \ominus\}$.

For x < y in [0,1] let $i_{x,y}$ be the smallest index i s.t. $U_i \in [x, y)$. Then set

$$\boldsymbol{W}_{rec}^{p} = \begin{cases} 1 & \text{if } S_{i_{x,y}} = \oplus; \\ 0 & \text{otherwise.} \end{cases}$$

Comparison with W_{Br} : no Brownian structure behind, the minima of the Brownian excursion are replaced by the U_i .

Note. Such differences between uniform/recursive structures had been observed earlier on other objects: trees, triangulations of the disk, ...

Uniform vs Recursive

Proposition (F., Rivera-Lopez, '23)

The distributions of the Brownian and recursive cographon are mutually singular.

i.e. we can exhibit a set X of graphons such that

 $\mathbb{P}[W_{Br} \in X] = 0 = 1 - \mathbb{P}[W_{rec}^{p} \in X].$

Uniform vs Recursive

Proposition (F., Rivera-Lopez, '23)

The distributions of the Brownian and recursive cographon are mutually singular.

i.e. we can exhibit a set X of graphons such that $\mathbb{P}[W_{Br} \in X] = 0 = 1 - \mathbb{P}[W_{rec}^{p} \in X].$

V. Féray (CNRS, IECL)

Proof strategy for $H_n^p \xrightarrow{a.s.} W_{rec}^p$.

Difficulty: since we want a.s. convergence, we need to realize the process $(H_n^p)_{n\geq 1}$ et the limit W_{rec}^p on the same probability space.

Proof strategy for $H_n^p \xrightarrow{a.s.} W_{rec}^p$.

Difficulty: since we want a.s. convergence, we need to realize the process $(H_n^p)_{n\geq 1}$ et the limit W_{rec}^p on the same probability space.

Solution: take U_i , S_i as above, and for each n, let $\bigcup_{\substack{0 \\ I_0 \\ i \\ I_0 \\ i \\ I_1 \\ i \\ I_1 \\ i \\ I_1 \\ i \\ I_2 \\ I_1 \\$

vertices \leftrightarrow intervals defined by cutting [0,1] at U_1, \ldots, U_{n-1} ;

edges: $\{I, J\}$ is an edge iff the U with smallest index between I and J has a \oplus sign.

Proof strategy for $H_n^p \xrightarrow{a.s.} W_{rec}^p$.

Difficulty: since we want a.s. convergence, we need to realize the process $(H_n^p)_{n\geq 1}$ et the limit W_{rec}^p on the same probability space.

Solution: take U_i , S_i as above, and for each n, let K_n^p be the following graph vertices \leftrightarrow intervals defined by cutting [0,1]at U_1, \dots, U_{n-1} ; edges: $\{I, J\}$ is an edge iff the U with smallest index between I and J has a \oplus sign. U_2 U_3 U_1 I_1 U_2 U_3 U_1 I_1 U_2 I_3 I_4 I_2 I_4 I_4 I_4 I_4 I_5 I_4 I_5 I_5 I_6 I_6

Lemma 1

$K_n^p \xrightarrow{a.s.} W_{rec}^p$.

Lemma 2

$$(K_n^p)_{n\geq 1} \stackrel{law}{=} (H_n^p)_{n\geq 1}.$$

Third model

A dynamic model with constant size: up down chain on cographs

The model (reminder) : $X_n^p(t)$ obtained by duplicating a uniform random vertex (connecting the two new vertices with proba p) and then deleting a uniform random vertex in $X_n^p(t-1)$, starting with *any* graph $X_n^p(0)$ with *n* vertices.

A simulation of the updown chain

Simulation of the updown chain for n = 1000, p = 1/2, and $t \in \{0, 1, 2, 3, 4, 5\} \cdot 50000$.

V. Féray (CNRS, IECL)

Random cographs

Asymptotics of up-down chains

Theorem (F., Rivera-Lopez, in preparation)

Fix a sequence $X_n^p(0)$ of (possibly random) initial configurations, and assume that $X_n^p(0)$ converges (in distribution) to a (possibly random) graphon W(0). Then $X_n^p(\lfloor n^2 t \rfloor)$ converges in distribution to some non-trivial Feller process F^p with initial distribution W(0) in the Skorohod space $\mathcal{D}([0, +\infty))$.

Asymptotics of up-down chains

Theorem (F., Rivera-Lopez, in preparation)

Fix a sequence $X_n^p(0)$ of (possibly random) initial configurations, and assume that $X_n^p(0)$ converges (in distribution) to a (possibly random) graphon W(0). Then $X_n^p(\lfloor n^2 t \rfloor)$ converges in distribution to some non-trivial Feller process F^p with initial distribution W(0) in the Skorohod space $\mathcal{D}([0, +\infty))$.

What we know about F^{p} ?

- Subgraph density of non-cograph patterns decay exponentially fast with an explicit rate;
- The stationary distribution of F^p is the random recursive cograph W^p_{rec} ;
- Hopefully more soon (ergodicity, path continuity, ...)...