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Introduction

What is this talk about?

Cographs: nice class of graphs (definition on next slide), well-understood
from a combinatorial/algorithmic point of view.

Here: a probabilistic/large network perspective on cographs. In particular,
we will describe graphon limits of three models of random cographs.

Motivations:
Simple models which have some nontrivial graphon limit and limiting
dynamics in the space of graphons.
Probabilistic work around Erdős-Hajnal conjecture.
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Introduction

Cographs (1/2)

Let G be a graph. A duplication operation consist in
choosing a vertex of G ;
adding a new vertex v ′ with the same neighbours as v ;
possibly connect v and v ′.
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Introduction

Cographs (1/2)

Let G be a graph. A duplication operation consist in
choosing a vertex of G ;
adding a new vertex v ′ with the same neighbours as v ;
possibly connect v and v ′.

Definition
A cograph is a graph that can be obtained starting from the one-vertex
graph and iterating duplication operations.
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Introduction

Cographs (2/2)

Observation: the path P4 is not a cograph.

Proposition (direct characterization of cographs, Corneil–Lerchs–Stewart
Burlingham ’81)

A graph is a cograph if it one cannot find four (distinct) vertices
v1,v2,v3,v4 of G such that the induced graph G [v1,v2,v3,v4] is P4.

A (disconnected) cograph These are not cographs

Cographs are well-studied: many other characterizations, recognition
algorithms, tree decomposition, . . .
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Introduction

Models of random cographs

1 Gn: uniform random cograph with n vertices;

2 Hp
n : constructed recursively by duplicating a uniform random vertex in

Hp
n−1 and connecting the two new vertices with probability p in [0,1]

(starting with Hp
1 = •).

3 X p
n (t): obtained by duplicating a uniform random vertex (connecting

the two new vertices with proba p) and then deleting a uniform
random vertex in X p

n (t−1), starting with any graph X p
n (0) with n

vertices.

Motivations:
1. random graph theory (probabilistic work around Erdős-Hajnal
conjecture) ;
3. similar model with other combinatorial objects (partitions) coming from
population dynamics ;
2. appears in the study of 3.
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Introduction

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set {0, . . . ,n−1}, we associate its
rescaled adjacency matrix/pixel picture WG : [0,1]2 → [0,1]

WG (x ,y)=
{
1 if {bnxc,bnyc} ∈EG ;
0 otherwise.
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Introduction

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set {0, . . . ,n−1}, we associate its
rescaled adjacency matrix/pixel picture WG : [0,1]2 → [0,1]

WG (x ,y)=
{
1 if {bnxc,bnyc} ∈EG ;
0 otherwise.

Idea: a sequence of graphs Gn if the associated functions WGn

converge. . .

Yes, but
it’s better to use an adhoc norm

‖W ‖� = sup
S ,T⊆[0,1]

∣∣∣∣∫
S×T

W (x ,y)dxdy

∣∣∣∣ .

The function depends on the labelling of the vertices. We quotient by
the relation

(W ∼W ′)
def⇐⇒∃ϕ Lebesgue-preserving :W (ϕ(x),ϕ(y))=W ′(x ,y).

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 6 / 21



Introduction

A short course on graphons (1/2)

Graph function: with a graph G on vertex-set {0, . . . ,n−1}, we associate its
rescaled adjacency matrix/pixel picture WG : [0,1]2 → [0,1]

WG (x ,y)=
{
1 if {bnxc,bnyc} ∈EG ;
0 otherwise.

Idea: a sequence of graphs Gn if the associated functions WGn

converge. . . Yes, but
it’s better to use an adhoc norm

‖W ‖� = sup
S ,T⊆[0,1]

∣∣∣∣∫
S×T

W (x ,y)dxdy

∣∣∣∣ .

The function depends on the labelling of the vertices. We quotient by
the relation

(W ∼W ′)
def⇐⇒∃ϕ Lebesgue-preserving :W (ϕ(x),ϕ(y))=W ′(x ,y).

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 6 / 21



Introduction

A short course on graphons (2/2)

Theorem (Borgs, Chayes, Lovász, Sós, Vesztergombi, ’08)

The following are equivalent
WGn

converges to W ;
All subgraph proportions in Gn converge to some explicit functional of
W , e.g.

# edges in Gn(|V (Gn)|
2

) →
∫
[0,1]2

W (x ,y)dxdy ,

#triangles in Gn(|V (Gn)|
3

) →
∫
[0,1]2

W (x ,y)W (y ,z)W (z ,x)dxdydz ,

. . .

It gives a nice notion of limits for large graph;
Introduced in 2006, and used a lot in large network analysis since then
(even though real-life networks tend to be sparse).
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Uniform random cographs

First part

The static model

uniform random cographs
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Uniform random cographs

Limit of uniform random cographs

Theorem (Bouvel–Bassino–F.–Gerin–Maazoun–Pierrot ’22, Stufler ’22)

Let Gn be a uniform random (either labeled or unlabeled) cograph with n
vertices. Then WGn

converges in distribution to a random graphon W Br ,
which we call Brownian cographon.

Construction of W Br : start from a Brow-
nian excursion e with i.i.d. balanced signs
(S(m)) on local minima m of e and set

W Br (x ,y)=
1 if S

(
argmin[x ,y ] e

)
=⊕;

0 if S
(
argmin[x ,y ] e

)
=ª.

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

Adjacency matrix of a large
uniform cograph (with a well-
chosen order of vertices)

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 9 / 21



Uniform random cographs

Limit of uniform random cographs

Theorem (Bouvel–Bassino–F.–Gerin–Maazoun–Pierrot ’22, Stufler ’22)

Let Gn be a uniform random (either labeled or unlabeled) cograph with n
vertices. Then WGn

converges in distribution to a random graphon W Br ,
which we call Brownian cographon.

Construction of W Br : start from a Brow-
nian excursion e with i.i.d. balanced signs
(S(m)) on local minima m of e and set

W Br (x ,y)=
1 if S

(
argmin[x ,y ] e

)
=⊕;

0 if S
(
argmin[x ,y ] e

)
=ª.

x

e(x)
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Uniform random cographs

Heuristic for the theorem
A cograph G is encoded by a
decorated tree T ;

∪

∪ ∪

+ +

Vertices in G correspond to
leaves in T ;
Vertices v1 and v2 are
connected if their youngest
common ancestor is
decorated by ⊕;

The limit of T is Aldous’
Continuum Random Tree T∞,
coded by a Brownian excursion e;

Leaves of T∞ form a measure 1
subset of [0,1];
Youngest common ancestor
between x and y correspond to
argmin[x ,y ] e. Thus x , y are linked
in W Br if S(argmin[x ,y ] e)=⊕.

Note: in the discrete, decorations alternate; in the continuous, they are
independent.
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Uniform random cographs

Some consequences

Corollary

The edge proportion |E (Gn)|/
(n
2
)
in a uniform random cograph Gn with n

vertices converges to a non-trivial random variable Λ.

Proposition (Bouvel–Bassino–F.–Gerin–Maazoun–Pierrot ’22)

The normalized degree dv
n of a uniform random vertex v in a uniform

random cograph on n vertices is asymptotically uniform in [0,1].

Proposition (Bouvel–Bassino–Drmota–F.–Gerin–Maazoun–Pierrot ’22)

The largest independent set in a uniform random cograph of size n has size
oP(n).

All these statements use an extension of the considered notion to graphons,
some continuity property and some analysis of the Brownian cographon.
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Uniform random cographs

Erdős-Hajnal conjecture and the probabilistic version (1/2)

Erdős-Hajnal conjecture (’89)

Fix a graph H. There exists ε= ε(H) such that every H-free graph contains
a homogeneous set of size nε.

homogeneous set = clique or independent set
Without "H-free" constraints, optimal bound is log(n) (classical Ramsey
theory).

Theorem (Kang–McDiarmid–Reed–Scott, ’14)

For a large family of graphs H, the exists b = b(H) such that a uniform
random H-free graph contains a homogeneous set of size bn (with high
probability).
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Uniform random cographs

Erdős-Hajnal conjecture and the probabilistic version (2/2)

Question (KMRS, ’14)

Does there exists b > 0 such that a uniform random H-free graph Gn

contains a homogeneous set of size bn with high probability?

Answer
No! We have seen that the largest independent set in Gn has size oP(n).
By symmetry, the largest clique has also size oP(n), and, therefore, the
largest independent set.
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Recursive random cographs

Second model

A dynamic model

with increasing size:

recursive random cographs

The model (reminder): Hp
n is constructed recursively by duplicating a

uniform random vertex in Hp
n−1 and connecting the two new vertices with

probability p in [0,1] (starting with Hp
1 = •).
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Recursive random cographs

A convergence result

Theorem (F., Rivera–Lopez, ’23)

Hp
n converges almost surely to a random graphon W p

rec , which we call the
recursive cographon of paramter p.

Adjacency matrices of H1/2
10 , H1/2

100 and H
1/2
1000

in a single realization of the process (H1/2
n )n≥1.
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Recursive random cographs

Construction of the limit

Let (Ui )i≥0 be a sequence of i.i.d. uniform random variables in [0,1],
and (Si )i≥0 be a sequence of i.i.d. random signs in {⊕,ª}.

For x < y in [0,1] let ix ,y be the smallest index i s.t. Ui ∈ [x ,y). Then set

W p
rec =

{
1 if Six ,y =⊕;
0 otherwise.

Comparison with W Br : no Brownian structure behind, the minima of the
Brownian excursion are replaced by the Ui .

Note. Such differences between uniform/recursive structures had been
observed earlier on other objects: trees, triangulations of the disk, . . .
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Recursive random cographs

Uniform vs Recursive

Proposition (F., Rivera–Lopez, ’23)

The distributions of the Brownian and recursive cographon are mutually
singular.

i.e. we can exhibit a set X of graphons such that
P[WBr ∈X ]= 0= 1−P[W p

rec ∈X ].

In fact X =
{
W s.t. ∃ε : W constant on [0,ε]× [1−ε,1]

}
works!

uniform recursive
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Recursive random cographs

Proof strategy for Hp
n

a.s .−→W p
rec .

Difficulty: since we want a.s. convergence, we need to realize the process
(Hp

n )n≥1 et the limit W p
rec on the same probability space.

Solution: take Ui , Si as above, and for each n, let
Kp
n be the following graph

vertices ↔ intervals defined by cutting [0,1]
at U1, . . . ,Un−1;

edges: {I ,J} is an edge iff the U with
smallest index between I and J has a
⊕ sign.

U3 U1U2

I0 I1 I2 I3	 ⊕ ⊕

I0

I1

I2

I3
Kp

4

0 1

Lemma 1

Kp
n

a.s .−→W p
rec .

Lemma 2

(Kp
n )n≥1

law= (Hp
n )n≥1.

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 18 / 21



Recursive random cographs

Proof strategy for Hp
n

a.s .−→W p
rec .

Difficulty: since we want a.s. convergence, we need to realize the process
(Hp

n )n≥1 et the limit W p
rec on the same probability space.

Solution: take Ui , Si as above, and for each n, let
Kp
n be the following graph

vertices ↔ intervals defined by cutting [0,1]
at U1, . . . ,Un−1;

edges: {I ,J} is an edge iff the U with
smallest index between I and J has a
⊕ sign.

U3 U1U2

I0 I1 I2 I3	 ⊕ ⊕

I0

I1

I2

I3
Kp

4

0 1

Lemma 1

Kp
n

a.s .−→W p
rec .

Lemma 2

(Kp
n )n≥1

law= (Hp
n )n≥1.

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 18 / 21



Recursive random cographs

Proof strategy for Hp
n

a.s .−→W p
rec .

Difficulty: since we want a.s. convergence, we need to realize the process
(Hp

n )n≥1 et the limit W p
rec on the same probability space.

Solution: take Ui , Si as above, and for each n, let
Kp
n be the following graph

vertices ↔ intervals defined by cutting [0,1]
at U1, . . . ,Un−1;

edges: {I ,J} is an edge iff the U with
smallest index between I and J has a
⊕ sign.

U3 U1U2

I0 I1 I2 I3	 ⊕ ⊕

I0

I1

I2

I3
Kp

4

0 1

Lemma 1

Kp
n

a.s .−→W p
rec .

Lemma 2

(Kp
n )n≥1

law= (Hp
n )n≥1.

V. Féray (CNRS, IECL) Random cographs VISS, 2023–05 18 / 21



Up-down chain on cographs

Third model

A dynamic model

with constant size:

up down chain on cographs

The model (reminder) : X p
n (t) obtained by duplicating a uniform random

vertex (connecting the two new vertices with proba p) and then deleting a
uniform random vertex in X p

n (t−1),
starting with any graph X p

n (0) with n vertices.
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Up-down chain on cographs

A simulation of the updown chain

Simulation of the updown chain for n= 1000, p = 1/2,
and t ∈ {0,1,2,3,4,5} ·50000.
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Up-down chain on cographs

Asymptotics of up-down chains

Theorem (F., Rivera-Lopez, in preparation)

Fix a sequence X p
n (0) of (possibly random) initial configurations, and

assume that X p
n (0) converges (in distribution) to a (possibly random)

graphon W (0).
Then X p

n (bn2tc) converges in distribution to some non-trivial Feller process
F p with initial distribution W (0) in the Skorohod space D([0,+∞).

What we know about F p?
Subgraph density of non-cograph patterns decay exponentially fast
with an explicit rate;
The stationary distribution of F p is the random recursive cograph
W p

rec ;
Hopefully more soon (ergodicity, path continuity, ...). . .
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