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What is this talk about ?

Consider some sequence of r.v. Xn (e.g., number of substructures of a
given type in some probabilistic model).

Goal: prove that some Xn satisfies is asymptotically normal, i.e.
Xn−E[Xn]√
Var(Xn)

d→N (0,1).

Available tools:

computation of characteristic functions;

Stein’s method;

moment (or cumulant) methods

Today: (weighted) dependency graphs, based on cumulants and
independence (or weak dependencies) between variables.
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Outline of the talk

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords: Markovian texts
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called "pattern" of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

(Variants: consecutive occurrences, allowing gaps of given lengths).
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Substrings in random words (1/2)
(following Flajolet, Guivarc’h, Szpankowski, and Vallée, ’01)

Let w be a random word of size n with independent (identically
distributed) letters taken in a finite alphabet A .

Fix a word u, called "pattern" of length `.

An occurrence of u in w is a `-tuple i1 < ·· · < i` s.t. wi1 = u1, . . . ,wi` = u`.

Example: two occurrences of aab in w = aabbabaab (one in blue, one
underlined)

Question
Asymptotic behaviour of the number Xn of occurrences of u in w?

Motivations: intrusion detection in computer science, discovering
meaningful strings of DNA, ...
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Dependency graphs A motivating example: substrings in random words

Substrings in random words (2/2)

Theorem (FGSV, ’01)

We have
E[Xn]∼C1n

`, Var[Xn]= (C2+o(1))n2`−1,

where C1 > 0 and C2 are computable constants.
Moreover, if C2 > 0, then Xn is asymptotically normal.

The proof of the asymptotic normality uses the method of moments.

I will sketch it using cumulants and dependency graphs (essentially the
same proof, but presented differently, and in a general context).

Notation: for I ⊆ [n], |I | = `, set YI = 1
[
u occurs at position I in w

]
.

Then Xn =∑
I∈([n]` )

YI .
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Dependency graphs An asymptotic normality criterion

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords: Markovian texts
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Dependency graphs An asymptotic normality criterion

Dependency graphs

Definition (Malyshev, ’80, Petrovskaya/Leontovich, ’82, Janson, ’88)

A graph L with vertex set A is a dependency graph for the family
{Yα,α ∈A} if the following holds for any A1,A2 ⊂A:

there is no edge
between A1 and A2

=⇒ {Yα,α ∈A1} and {Yα,α ∈A2}
are independent

Roughly: there is an edge between pairs of dependent random variables.

Example

Consider our random word problem. Let A= ([n]
`

)
and

{I1, I2} ∈EL iff I1∩ I2 6= ;.
Then L is a dependency graph for the family {YI , I ∈ ([n]

`

)
}.

�� ��Note: L is regular of degree O(n`−1)
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Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.
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Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

Example: For occurrences of u in w , we have

Nn =Θ(n`), Dn =Θ(n`−1) and σn =Θ(n`−1/2),

so that asymptotic normality follows (assuming the variance estimates!).

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 8 / 21



Dependency graphs An asymptotic normality criterion

Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (Janson, 1988)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s.
Then Xn is asymptotically normal.

In roughly the same setting, we also have bounds on the speed of
convergence and deviation estimates (see Baldi, Rinott, ’89, Rinott, ’94
and F., Méliot, Nikeghbali, ’16, ’17).
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Dependency graphs An asymptotic normality criterion

Main tool in the proof: (mixed) cumulants
Definition: mixed cumulants are multilinear functionals defined by

κr
(
X1, . . . ,Xr

)= [t1 · · ·tr ] log
(
E
[
exp

(∑r
j=1 tjXj

)])
.

Examples:

κ1(X ) :=E(X ), κ2(X ,Y ) :=Cov(X ,Y )= E(XY )−E(X )E(Y )

κ3(X ,Y ,Z ) := E(XYZ )−E(XY )E(Z )−E(XZ )E(Y )

−E(YZ )E(X )+2E(X )E(Y )E(Z ).

Note: κ`(X ) := κ`(X , . . . ,X ) is the usual cumulant of a single r.v.

If a set of variables can be split in two mutually independent sets, then
its mixed cumulant vanishes.

Let σn =
√
Var(Xn). If, for some s ≥ 3 and any r ≥ s, we have

κr (Xn)= o(σr
n), then Xn is asymptotically normal. (Janson, 1988)
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Dependency graphs An asymptotic normality criterion

Sketch of proof of Janson’s normality criterion

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded r.v.; |Yn,i | <M a.s.
we have a dependency graph Ln with maximal degree Dn−1.
we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

we assume
(
Nn
Dn

)1/s Dn
σn

→ 0 for some s ≥ 3.

Fix r ≥ 1. Then
κr (Xn)=

∑
i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

Each summand is 0, unless the induced graph Ln[i1, · · · , ir ] is connected.

→ at most (r !)2NnD
r−1
n non-zero terms, each of which is bounded by

CrM
r .
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i1,...,ir

κ(Yn,i1 , · · · ,Yn,ir ).

→ at most (r !)2NnD
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CrM
r .

|κr (Xn)| ≤Cr (r !)
2NnD

r−1
n Mr

= o
(
σr
n

)
(for r ≥ s, using the assumption)
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Dependency graphs An asymptotic normality criterion

Applications of dependency graphs to asymptotic normality
results

mathematical modelization of cell populations (Petrovskaya,
Leontovich, ’82);

subgraph counts in random graphs (Janson, Baldi, Rinott, Penrose,
’88, ’89, ’95, ’03);

Geometric probability: length of k neighbour graphs of random points,
. . . (Avram, Bertsimas, Penrose, Yukich, Bárány, Vu, ’93, ’05, ’07);

pattern occurrences in random permutations (Bóna, Janson,
Hitchenko, Nakamura, Zeilberger, Hofer, ’07, ’09, ’14, ’18).

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 11 / 21



Weighted dependency graphs Definition and an extended normality criterion

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion
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Definition and an extended normality criterion
Back to subwords: Markovian texts
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Weighted dependency graphs Definition and an extended normality criterion

Motivation: models with "weak dependencies"

In many models, we do not have independence, but only weak
dependencies:

subword occurrences in a text generated by a Markovian source;

subgraph counts in uniform random graphs with fixed number of edges
(G (n,M)) or fixed vertex degrees;
"local statistics"

∑
i1,...,ir F (i1, . . . , ir ,π(i1), . . . ,π(ir )) in a uniform

random permutation π;
statistical physics: exclusion process (SSEP), Ising model.

Goal: extend Janson’s normality criterion, to cover the above frameworks.
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Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.
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dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

L̃[α1, · · · ,αr ]: graph induced
by L̃ on vertices α1, · · · ,αr .

M
(
K

)
: Maximum weight of a

spanning tree of K (= product
of the edge weights).

In the example,
M

(
L̃[α1, · · · ,α4]

)= ε2.

L̃

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 14 / 21



Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

L̃[α1, · · · ,αr ]: graph induced
by L̃ on vertices α1, · · · ,αr .

M
(
K

)
: Maximum weight of a

spanning tree of K (= product
of the edge weights).

In the example,
M

(
L̃[α1, · · · ,α4]

)= ε2.

α3 α4

α1 α2

ε2

ε3

1

ε ε

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 14 / 21



Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

L̃[α1, · · · ,αr ]: graph induced
by L̃ on vertices α1, · · · ,αr .

M
(
K

)
: Maximum weight of a

spanning tree of K (= product
of the edge weights).

In the example,
M

(
L̃[α1, · · · ,α4]

)= ε2.

α3 α4

α1 α2

ε2

ε3

1

ε ε

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 14 / 21



Weighted dependency graphs Definition and an extended normality criterion

Weighted dependency graphs

We use weighted graphs, i.e. graphs with a weight in [0,1] on each edge
(weight 0≡ no edge).

Definition (F., ’18)

Fix C = (Cr )r≥1. A weighted graph L̃ with vertex set A is a C -weighted
dependency graph for the family {Yα,α ∈A} if, for any α1, . . . , αr in A,∣∣κ(Yα1 , · · · ,Yαr )

∣∣≤Cr M
(
L̃[α1, · · · ,αr ]

)
.

Intuition: the smaller the edge weights are, the smaller the cumulant
should be. The edge weights quantify the dependencies between variables.

Unlike for usual dependency graphs, proving that something is a
weighted dependency graph needs work!

This is a simplified version of the definition; some of the applications
need a more general but more technical version.
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Weighted dependency graphs Definition and an extended normality criterion

A normality criterion for weighted dependency graphs

Setting: for each n,
{Yn,i ,1≤ i ≤Nn} is a family of bounded random variables; |Yn,i | <M
a.s.
we have a C -weighted dependency graph L̃n with weighted maximal
degree Dn−1 (with a sequence C = (Cr )r≥1 independent of n).

we set Xn =∑Nn

i=1Yn,i and σ2
n =Var(Xn).

Theorem (F., ’18)

Assume that
(
Nn
Dn

)1/s Dn
σn

→ 0 for some integer s. Then Xn is asymptotically
normal.
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Weighted dependency graphs Definition and an extended normality criterion

Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

Convention: wtL̃(Yα,Yα)= 1.

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 16 / 21



Weighted dependency graphs Definition and an extended normality criterion

Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

Convention: wtL̃(Yα,Yα)= 1.

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 16 / 21



Weighted dependency graphs Definition and an extended normality criterion

Stability by powers

Setting:
Let {Yα, α ∈A} be r.v. with C -weighted dependency graph L̃;
fix an integer m≥ 2;
for a multiset B = {α1, · · · ,αm} of elements of A, denote

YB :=Yα1 · · ·Yαm .

Proposition

The set of r.v. {YB } has a C (m)-weighted dependency graph L̃m, where

wtL̃m(YB ,YB ′)= max
α∈B ,α′∈B ′

wtL̃(Yα,Yα′),

where C (m) depends only on C and m.

This helps in proving correctness of weighted dependency graph!
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Weighted dependency graphs Back to subwords

Transition

1 Dependency graphs
A motivating example: substrings in random words
An asymptotic normality criterion

2 Weighted dependency graphs
Definition and an extended normality criterion
Back to subwords: Markovian texts
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Weighted dependency graphs Back to subwords

A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.
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A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Concretely, this means that, for i1 < ·· · < ir ,∣∣κ(Zi1,s1 , . . . ,Zir ,sr )
∣∣≤Cr λ

ir−i1
2 .

It turns out that this was proved by Saulis and Statulevičius (’90)!
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Weighted dependency graphs Back to subwords

A weighted dependency graph for Markov chain

Setting:
Let (wi )i≥1 be an irreducible aperiodic Markov chain on a finite space
state A ;
Assume w1 is distributed with the stationary distribution π;
Set Zi ,s = 1wi=s .

Proposition
We have a weighted dependency graph L̃ with wtL̃

(
{Zi ,s ,Zj ,t }

)= |λ2|j−i (for
i < j), where λ2 is the second eigenvalue of the transition matrix.

Corollary (using the stability by product)
We have a weighted dependency graph L̃m for monomials
ZI ;S :=Zi1,s1 · · · Zim,sm , with wtL̃m(ZI ;S ,ZJ ,T )= |λ2|md(I ,J),
where md(I ,J) is the minimal distance between I and J.
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Weighted dependency graphs Back to subwords

Subword occurrences in Markovian text (1/2)

Let (wi )i≥1 be a Markov chain as before and fix a pattern (= a word) u of
length ` on A .

For I = {i1, · · · , i`} ⊂N (i1 < ·· · < i`), we set

YI = 1
[
u occurs at position I in w

]
;

=Zi1,u1 · · ·Zis ,us .

We have a weighted dependency graph for
(
YI , I ∈ ([n]

`

))
, which is a

restriction of the one for the ZI ,S .
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Weighted dependency graphs Back to subwords

Subword occurrences in Markovian text (2/2)

Let Xn =∑
I YI be the number of occurrences of u in a Markovian text w .

Recall that
(
YI , I ∈ ([n]

`

))
admits a weighted dependency graph.

Can we apply the normality criterion?

M = 1, Nn =
(n
`

)
, and. . .

degree Fix I = {i1, · · · , i`}, we have∑
J

λ
md(I ,J)
2 ≤∑

t,s

(∑
J

λ
|it−js |
2

)
≤∑

t,s

(
n

`−1

)∑
j

λ
|it−j |
2 =O(n`−1).

The maximal weighted degree Dn is O(n`−1).
variance σn =

√
Var(Xn)= (C +o(1))n`−1/2, for a computable

constant C (Bourdon, Vallée, ’01).

→ when C > 0, the normality criterion satisfied for s = 3.

Conclusion: when C > 0, the number Xn of occurrences of u in a
Markovian text w is asymptotically normal.

(Answers partially a question of Bourdon–Vallée, ’01).
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Conclusion

Dependency graphs are a powerful simple tool to prove asymptotic
normality, particularly for substructure counts in models exhibiting
some independence;

We proposed an extension to handle models without independence,
but with weak dependencies.

Plenty of applications (both for the initial framework and for the
extended one)!

Thank you for your attention!

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 21 / 21



Weighted dependency graphs Back to subwords

Conclusion

Dependency graphs are a powerful simple tool to prove asymptotic
normality, particularly for substructure counts in models exhibiting
some independence;

We proposed an extension to handle models without independence,
but with weak dependencies.

Plenty of applications (both for the initial framework and for the
extended one)!

Thank you for your attention!

V. Féray (CNRS, IECL) (Weighted) dependency graphs Luxembourg, 2022–09 21 / 21


	Dependency graphs
	A motivating example: substrings in random words
	An asymptotic normality criterion

	Weighted dependency graphs
	Definition and an extended normality criterion
	Back to subwords: Markovian texts


