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Introduction

Definition
A cograph is a P4-free graph, i.e. not containing P4 as an induced
subgraph.

A (disconnected) cograph These are not cographs

Questions: asymptotic behaviour of a uniform random cograph
What is its graphon limit?
Existence of independent sets/cliques of linear size?

Motivations:
When studying H-free graphs, the case H =P4 is special with an
interesting limit object;
Probabilistic work around Erdős-Hajnal conjecture.
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Asymptotic enumeration of H-free graphs and cographs

First part

Asymptotic enumeration

of H-free graphs
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Asymptotic enumeration of H-free graphs and cographs

Background: enumerating H-free graphs

Fix a graph H, and consider its chromatic number k =χ(H).
Observation: if χ(G )≤ k −1, then G is H free.

Easy: There are ≥ 2
(
1− 1

k−1+o(1)
)
(n2) graphs G

with n vertices and χ(G )≤ k −1

Conclusion: ∣∣∣∣{ H-free graphs
with n vertices

}∣∣∣∣ ≥ 2
(
1− 1

k−1+o(1)
)
(n2).

→ works also if χ(H)= k (putting cliques in the blue clusters),
or if VH cannot be partitioned in s cliques and t independent sets for some
given s + t = k −1.
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Asymptotic enumeration of H-free graphs and cographs

Background: enumerating H-free graphs

Theorem (Prömel–Steger, ’92)∣∣∣∣{ H-free graphs
with n vertices

}∣∣∣∣= 2
(
1− 1

r +o(1)
)
(n2),

where r is maximal such that VH cannot be partitioned into s cliques and t
independent sets, for some (s ,t) with s + t = r .

r +1: coloring number of H.

H =P4 is one of the few cases with r = 1. Hence

cn :=
∣∣∣∣{ cographs

with n vertices

}∣∣∣∣= 2o(n
2).
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Asymptotic enumeration of H-free graphs and cographs

Background: enumerating cographs

Operations on graphs:
G1 G1G2 G2

disjoint union G1 ∪G2 join G1 +G2

Proposition (Corneil–Lerchs–Stewart Burlingham ’81)

The class of cographs is the smallest set of graphs containing the
one-vertex graph, and stable by disjoint unions and joins (cographs are
sometimes called complement-reducible graphs).

Consequence: cographs can be encoded by decorated trees

∪

∪ ∪

+ +

A cograph and the associated decorated tree

Easy to enumerate: cn ∼C n!κn n−3/2, with κ= (2 log(2)−1)−1 and some
explicit constant C (labeled case).
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Graphon limit

Second part

Graphon limit

of uniform random cographs
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Graphon limit

A general result for H-free graphs

Fix H and let Gn be a uniform H-free graph on n vertices.

Question: what is the graphon limit of Gn (if it exists)?

Theorem (Hatami, Janson, Szegedy, ’18)

Let H be a graph and take r as before. Then
any subsequential limit of Gn is supported on
the set of graphons of the following form:

0
0

1/r

1/r

1

1

...

· · ·

1/2 1/2 1/2

1/2 1/2

1/2

1/21/21/2

1/2 1/2

1/2{0,1}−valued

Reminiscent of the picture
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Graphon limit
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Let H be a graph and take r as before. Then
any subsequential limit of Gn is supported on
the set of graphons of the following form:

0
0

1/r

1/r

1

1

...

· · ·

1/2 1/2 1/2

1/2 1/2

1/2

1/21/21/2

1/2 1/2

1/2{0,1}−valued

It does not say much for H =P4 (where r = 1). In fact, all P4-free graphons
are {0,1}-valued.
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Graphon limit

Limit of uniform random cograph

Theorem (Bouvel–Bassino–F.–Gerin–Maazoun–Pierrot ’22, Stufler ’22)

Let Gn be a uniform random (either labeled or unlabeled) cograph with n
vertices. Then WGn

converges in distribution to a random graphon W Br ,
which we call Brownian cographon.

Construction of W Br : start from a Brow-
nian excursion e with i.i.d. balanced signs
(S(m)) on local minima m of e and set

W Br (x ,y)=
1 if S

(
argmin[x ,y ] e

)
=⊕;

0 if S
(
argmin[x ,y ] e

)
=ª.

x

e(x)

ẽ(ϕe,S1/2(x))

ϕe,S1/2(x)

	

⊕

	
⊕

	

Adjacency matrix of a large
uniform cograph (with a well-
chosen order of vertices)
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Graphon limit

Heuristic for the theorem
A cograph G is encoded by a
decorated tree T ;

∪

∪ ∪

+ +

Vertices in G correspond to
leaves in T ;
Vertices v1 and v2 are
connected if their youngest
common ancestor is
decorated by ⊕;

The limit of T is Aldous’
Continuum Random Tree T∞,
coded by a Brownian excursion e;

Leaves of T∞ form a measure 1
subset of [0,1];
Youngest common ancestor
between x and y correspond to
argmin[x ,y ] e. Thus x , y are linked
in W Br if S(argmin[x ,y ] e)=⊕.

Note: in the discrete, decorations alternate; in the continuous, they are
independent.
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Graphon limit

Sampling from W Br

G (n,W Br ) has vertex set [n] and i ∼ j if and only if W Br (Ui ,Uj)= 1
(U1, . . . ,Un i.i.d. unif. in [0,1]).

Proposition
Let Tn be a uniform random binary tree with n leaves and choose
independent {∪,+} decoration for its internal node. Let Hn be the
associated cograph. Then

G (n,W Br )
d=Hn.

∪

∪ +

+ +

bn

Hn

1

2

34 5

6
5

34

1

2

6
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Graphon limit

Expected degree distribution of W Br

Consider G (n,W Br ) the random graph with n vertices sampled from W Br .

Proposition (Bouvel–Bassino–F.–Gerin–Maazoun–Pierrot ’22)

The degree of vertex 1 in G (n,W Br ) is a random variable following the
uniform distribution in {0,1, . . . ,n−1}.

Corollary 1

The expected degree distribution of W Br

Law

(
E

[∫ 1

0
W Br (U ,y)dy

∣∣∣∣U])
is the uniform distribution on [0,1].

Corollary 2

The normalized degree dv
n of a uniform random vertex v in a uniform

random cograph on n vertices is asymptotically uniform in [0,1].
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Large independent sets

Third part

Independent sets

in uniform random cographs
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Large independent sets

Erdős-Hajnal conjecture and the probabilistic version

Erdős-Hajnal conjecture (’89)

Fix a graph H. There exists ε= ε(H) such that every H-free graph contains
a homogeneous set of size nε.

homogeneous set = clique or independent set

Theorem (Loebl–Reed–Scott–Thomason–Thomassé, ’14)

Fix a graph H. There exists ε= ε(H) such that a uniform random H-free
graph contains a homogeneous set of size nε (with high probability).

Theorem (Kang–McDiarmid–Reed–Scott, ’14)

For most H, the exists b = b(H) such that a uniform random H-free graph
contains a homogeneous set of size bn (with high probability).

Question (KMRS, ’14)

Does this hold for H =P4?
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Large independent sets

Large independent sets in uniform random cographs

Theorem (Bouvel–Bassino–Drmota–F.–Gerin–Maazoun–Pierrot ’22)

Let Gn be a uniform random cograph of size n.
1 There exists β0 > 0 s.t. for any β<β0, the expected number E(Xn,bβnc)

of independent sets of size bβnc in Gn grows exponentially fast.

2 The size of the largest independent set in Gn is oP(n).

Exponential growth rate of E(Xn,bβnc) as a function of β

V. Féray (CNRS, IECL) Random cographs Berkeley, 2022–09 15 / 18



Large independent sets

Large independent sets in uniform random cographs

Theorem (Bouvel–Bassino–Drmota–F.–Gerin–Maazoun–Pierrot ’22)

Let Gn be a uniform random cograph of size n.
1 There exists β0 > 0 s.t. for any β<β0, the expected number E(Xn,bβnc)

of independent sets of size bβnc in Gn grows exponentially fast.
2 The size of the largest independent set in Gn is oP(n).

From 2 , for any β> 0, we have Xn,bβnc = 0 with high probability (the
expectation is misleading).

2 answers KMRS’s question from previous slide by the negative;

Proof of 1 uses analytic combinatorics (and the tree encoding);

Proof of 2 uses the graphon limit (next few slides).
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Large independent sets

Independence number of a graphon

Definition (Hladkỳ and Rocha, ’20)

An independent set I of a graphon W is a subset I ⊆ [0,1] such that
W (x ,y)= 0 for almost all (x ,y) in I × I .
The independence number of W , denoted α(W ), is the maximum measure
of an independent set of W .

Clearly, if G is a graph with n vertices, then nα(WG ) is the maximum size
of an independent set of G .

Proposition (Hladkỳ and Rocha, ’20)

α is a lower semi-continuous function, i.e. if Wn converges to W , then
limsupα(Wn)≤α(W ).
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Large independent sets

Independence number of the Brownian cographon

We only need to prove:

Proposition

α(W Br )= 0 a.s.

Indeed, let Gn be a uniform random cograph on n vertices. Since WGn

tends to W Br and α is lower semi-continuous, it would imply WGn
→ 0.
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Large independent sets

Independence number of the Brownian cographon

Proposition

α(W Br )= 0 a.s.

Sketch of proof: we use Aldous’ self-similarity property of the Brownian
excursion

0 11U1 U2baa c

∆1

∆2

∆0

Starting from e, U1, U2, we get three independent excursions (e0,e1,e2)
scaled by random lengths (∆0,∆1,∆2).

Starting from W Br , we get three independent copies W Br
0 , W Br

1 and W Br
2

of the Brownian cographon.

V. Féray (CNRS, IECL) Random cographs Berkeley, 2022–09 17 / 18



Large independent sets

Independence number of the Brownian cographon

Proposition

α(W Br )= 0 a.s.

Sketch of proof: we use Aldous’ self-similarity property of the Brownian
excursion

0 11U1 U2baa c

∆1

∆2

∆0

Starting from e, U1, U2, we get three independent excursions (e0,e1,e2)
scaled by random lengths (∆0,∆1,∆2).
Starting from W Br , we get three independent copies W Br

0 , W Br
1 and W Br

2
of the Brownian cographon.

V. Féray (CNRS, IECL) Random cographs Berkeley, 2022–09 17 / 18



Large independent sets

Independence number of the Brownian cographon

Proposition

α(W Br )= 0 a.s.

0 11U1 U2baa c

∆1

∆2

∆0

An independent set of W Br consists of
an independent set of W Br

0 (scaled by ∆0);
if S(b)=ª, an independent set of W Br

1 (scaled by ∆1) and an
independent set of W Br

2 (scaled by ∆2);
if S(b)=⊕, an independent set of W Br

1 (scaled by ∆1) or an
independent set of W Br

2 (scaled by ∆2);
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Large independent sets

Independence number of the Brownian cographon

Proposition

α(W Br )= 0 a.s.

Therefore, we have:

α(W Br ) ≤ ∆0α(W
Br
0 )+

∆1α(W
Br
1 )+∆2α(W

Br
2 ) if S(b)=ª;

max
(
∆1α(W

Br
1 ),∆2α(W

Br
2 )

)
if S(b)=⊕.

α(W Br
0 ), α(W Br

1 ) and α(W Br
2 ) are independent copies of α(W Br ). This is

an almost sure inequality, which implies an inequality satisfied by the law of
α(W Br

0 ).

We show by a fixed point + monotonicity argument that δ0 is the only
distribution satisfying this inequality. Thus α(W Br )= 0 a.s.

We do not control the speed of convergence of α(WGn
) to 0.
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Large independent sets

Summary

enumeration graphon limit independent set

H-free (r > 1) eΘ(n
2)

0
0

1/r

1/r

1

1

...

· · ·

1/2 1/2 1/2

1/2 1/2

1/2

1/21/21/2

1/2 1/2

1/2{0,1}−valued ΘP(n)
(for most H)

cographs
en log(n)+Θ(n)

(labeled)
W Br oP(n)

Thank you for your attention

V. Féray (CNRS, IECL) Random cographs Berkeley, 2022–09 18 / 18



Large independent sets

Summary

enumeration graphon limit independent set

H-free (r > 1) eΘ(n
2)

0
0

1/r

1/r

1

1

...

· · ·

1/2 1/2 1/2

1/2 1/2

1/2

1/21/21/2

1/2 1/2

1/2{0,1}−valued ΘP(n)
(for most H)

cographs
en log(n)+Θ(n)

(labeled)
W Br oP(n)

Thank you for your attention

V. Féray (CNRS, IECL) Random cographs Berkeley, 2022–09 18 / 18


	Introduction
	Asymptotic enumeration of H-free graphs and cographs
	Graphon limit
	Large independent sets

