An introduction to shifted symmetric functions

Valentin Féray

CNRS, Institut Élie Cartan de Lorraine (IECL)
Mini-conférence CORTIPOM, Paris, juin 2022

Goal of the talk

General introduction on shifted Schur functions:

- analogues of the celebrated Schur functions;
- they satisfy a powerful vanishing property;
- nice extension to the Jack/Macdonald setting.

Shifted symmetric function: definition

Definition

A polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ is shifted symmetric if it is symmetric in $x_{1}-1, x_{2}-2, \ldots, x_{N}-N$.

Example: $p_{k}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{i=1}^{N}\left(x_{i}-i\right)^{k}$.

Shifted symmetric function: definition

Definition

A polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ is shifted symmetric if it is symmetric in $x_{1}-1, x_{2}-2, \ldots, x_{N}-N$.

Example: $p_{k}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{i=1}^{N}\left(x_{i}-i\right)^{k}$.
Shifted symmetric function: sequence $f_{N}\left(x_{1}, \ldots, x_{N}\right)$ of shifted symmetric polynomials with

$$
f_{N+1}\left(x_{1}, \ldots, x_{N}, 0\right)=f_{N}\left(x_{1}, \ldots, x_{N}\right)
$$

Example: $p_{k}^{\star}=\sum_{i \geq 1}\left[\left(x_{i}-i\right)^{k}-(-i)^{k}\right]$.

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation: $\mu=\left(\mu_{1} \geq \cdots \geq \mu_{\ell}\right)$ partition.

$$
(x \downharpoonright k):=x(x-1) \ldots(x-k+1)
$$

Definition (Shifted Schur function s_{μ}^{\star})

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left(x_{i}+N-i \downharpoonright \mu_{j}+N-j\right)}{\operatorname{det}\left(x_{i}+N-i \downharpoonright N-j\right)}
$$

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation: $\mu=\left(\mu_{1} \geq \cdots \geq \mu_{\ell}\right)$ partition.

$$
(x \downharpoonright k):=x(x-1) \ldots(x-k+1)
$$

Definition (Shifted Schur function s_{μ}^{\star})

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\frac{\operatorname{det}\left(x_{i}+N-i \downharpoonright \mu_{j}+N-j\right)}{\operatorname{det}\left(x_{i}+N-i \downharpoonright N-j\right)}
$$

Example:

$$
\begin{aligned}
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} & x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2} \\
& -x_{1} x_{2}-x_{1} x_{3}+x_{2}^{2}-x_{2} x_{3}+2 x_{3}^{2}-2 x_{2}-6 x_{3}
\end{aligned}
$$

The top degree term of s_{μ}^{\star} is the standard Schur function s_{μ}.

The vanishing characterization

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

$$
F(\lambda):=F\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) .
$$

Theorem (Vanishing properties of s_{μ}^{\star} (OO '98))
Vanishing characterization s_{μ}^{\star} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda)$, where $H(\lambda)$ is the hook product of λ.

The vanishing characterization

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

$$
F(\lambda):=F\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) .
$$

Theorem (Vanishing properties of s_{μ}^{\star} (OO '98))
Vanishing characterization s_{μ}^{\star} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda)$, where $H(\lambda)$ is the hook product of λ.

Extra vanishing property Moreover, $s_{\mu}^{\star}(\lambda)=0$, unless $\lambda \supseteq \mu$.

The vanishing characterization

Proof of the extra-vanishing property.
By definition, $s_{\mu}^{\star}(\lambda)=\frac{\operatorname{det}\left(\lambda_{i}+N-i\left\lfloor\mu_{j}+N-j\right)\right.}{\operatorname{det}\left(\lambda_{i}+N-i \backslash N-j\right)}$.
Call $M_{i, j}=\left(\lambda_{i}+N-i \downharpoonright \mu_{j}+N-j\right)$.
If $\lambda_{j}<\mu_{j}$ for some j, then $M_{j, j}=0$,

The vanishing characterization

Proof of the extra-vanishing property.
By definition, $s_{\mu}^{\star}(\lambda)=\frac{\operatorname{det}\left(\lambda_{i}+N-i\left\lfloor\mu_{j}+N-j\right)\right.}{\operatorname{det}\left(\lambda_{i}+N-i \mid N-j\right)}$.
Call $M_{i, j}=\left(\lambda_{i}+N-i \downharpoonright \mu_{j}+N-j\right)$.
If $\lambda_{j}<\mu_{j}$ for some j, then $M_{j, j}=0$, but also all the entries in the bottom left corner.

$$
\left(\begin{array}{ccc}
\ddots & & \\
0 & 0 & \\
0 & 0 & \ddots \\
0 & 0 &
\end{array}\right)
$$

The vanishing characterization

Proof of the extra-vanishing property.
By definition, $s_{\mu}^{\star}(\lambda)=\frac{\operatorname{det}\left(\lambda_{i}+N-i\left\lfloor\mu_{j}+N-j\right)\right.}{\operatorname{det}\left(\lambda_{i}+N-i \backslash N-j\right)}$.
Call $M_{i, j}=\left(\lambda_{i}+N-i \downharpoonright \mu_{j}+N-j\right)$.
If $\lambda_{j}<\mu_{j}$ for some j, then $M_{j, j}=0$,
but also all the entries in the bottom left corner.
$\Rightarrow \operatorname{det}\left(M_{i, j}\right)=0$.

$$
\left(\begin{array}{ccc}
\ddots & & \\
0 & 0 & \\
0 & 0 & \ddots \\
0 & 0 &
\end{array}\right)
$$

The vanishing characterization

Proof of the extra-vanishing property.
By definition, $s_{\mu}^{\star}(\lambda)=\frac{\operatorname{det}\left(\lambda_{i}+N-i\left\lfloor\mu_{j}+N-j\right)\right.}{\operatorname{det}\left(\lambda_{i}+N-i \backslash N-j\right)}$.
Call $M_{i, j}=\left(\lambda_{i}+N-i \downharpoonright \mu_{j}+N-j\right)$.
If $\lambda_{j}<\mu_{j}$ for some j, then $M_{j, j}=0$,
but also all the entries in the bottom left corner.

$$
\Rightarrow \operatorname{det}\left(M_{i, j}\right)=0
$$

Therefore $s_{\mu}^{\star}(\lambda)=0$ as soon as $\lambda \nsupseteq \mu$.

$$
\left(\begin{array}{ccc}
\ddots & & \\
0 & 0 & \\
0 & 0 & \ddots \\
0 & 0 &
\end{array}\right)
$$

The vanishing characterization

Proof of the extra-vanishing property.
By definition, $s_{\mu}^{\star}(\lambda)=\frac{\operatorname{det}\left(\lambda_{i}+N-i \backslash \mu_{j}+N-j\right)}{\operatorname{det}\left(\lambda_{i}+N-i \backslash N-j\right)}$.
Call $M_{i, j}=\left(\lambda_{i}+N-i \downharpoonright \mu_{j}+N-j\right)$.
If $\lambda_{j}<\mu_{j}$ for some j, then $M_{j, j}=0$,
but also all the entries in the bottom left corner.

$$
\Rightarrow \operatorname{det}\left(M_{i, j}\right)=0
$$

Therefore $s_{\mu}^{\star}(\lambda)=0$ as soon as $\lambda \nsupseteq \mu$.

To compute $s_{\mu}^{\star}(\mu)$, we get a triangular matrix, the determinant is the product of diagonal entries and we recognize the hook product. (Exercise!)

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ,

$$
F(\lambda)=s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda) .
$$

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ,

$$
F(\lambda)=s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda) .
$$

Write $G:=F-s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$
\begin{equation*}
G=\sum_{\nu:|\nu| \leq|\mu|} c_{\nu} s_{\nu}^{\star} . \tag{1}
\end{equation*}
$$

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most $|\mu|$.
Assume that for each λ of size at most μ,

$$
F(\lambda)=s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda) .
$$

Write $G:=F-s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$
\begin{equation*}
G=\sum_{\nu:|\nu| \leq|\mu|} c_{\nu} s_{\nu}^{\star} . \tag{1}
\end{equation*}
$$

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$
0=G(\rho)=\sum_{\nu:|\nu| \leq|\mu|} c_{\nu} s_{\nu}^{\star}(\rho)=c_{\rho} s_{\rho}^{\star}(\rho) \neq 0 .
$$

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most $|\mu|$.
Assume that for each λ of size at most μ,

$$
F(\lambda)=s_{\mu}^{\star}(\lambda)=\delta_{\lambda, \mu} H(\lambda) .
$$

Write $G:=F-s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$
\begin{equation*}
G=\sum_{\nu:|\nu| \leq|\mu|} c_{\nu} s_{\nu}^{\star} . \tag{1}
\end{equation*}
$$

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$
0=G(\rho)=\sum_{\nu:|\nu| \leq|\mu|} c_{\nu} s_{\nu}^{\star}(\rho)=c_{\rho} s_{\rho}^{\star}(\rho) \neq 0 .
$$

Contradiction $\Rightarrow G=0$, i.e. $F=s_{\mu}^{\star}$.

A combinatorial formula for s_{μ}^{\star}

Theorem (Goulden-Greene '94, OO'98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) .
$$

where the sum runs over reverse ${ }^{a}$ semi-std Young tableaux T, and if $\square=(i, j)$, then $c(\square)=j-i$ (called content).
${ }^{\text {a }}$ filling with decreasing columns and weakly decreasing rows
Example:

$$
\begin{gathered}
s_{(2,1)}^{\star}\left(x_{1}, x_{2}\right)=x_{2}\left(x_{2}-1\right)\left(x_{1}+1\right)+x_{2}\left(x_{1}-1\right)\left(x_{1}+1\right) \\
\begin{array}{|l|l|}
\hline 2 & 2 \\
\hline 1 & \begin{array}{|c|c|}
\hline 2 & 1 \\
\hline 1 & \\
\hline
\end{array}
\end{array}
\end{gathered}
$$

A combinatorial formula for s_{μ}^{\star}

Theorem (Goulden-Greene '94, OO'98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) .
$$

where the sum runs over reverse ${ }^{a}$ semi-std Young tableaux T, and if $\square=(i, j)$, then $c(\square)=j-i$ (called content).
${ }^{\text {a }}$ filling with decreasing columns and weakly decreasing rows

- extends the classical combinatorial interpretation of Schur function (that we recover by taking top degree terms);
- completely independent proof, via the vanishing theorem (see next slide).

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric:

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric:
it is sufficient to check that it is symmetric in $x_{i}-i$ and $x_{i+1}-i-1$. Thus we can focus on the boxes containing i and $j:=i+1$ in the tableau and reduce the general case to $\mu=(1,1)$ and $\mu=(k)$.

Then it's easy.

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric: OK.
it is sufficient to check that it is symmetric in $x_{i}-i$
and $x_{i+1}-i-1$. Thus we can focus on the boxes containing i and $j:=i+1$ in the tableau and reduce the general case to $\mu=(1,1)$ and $\mu=(k)$.

Then it's easy.
The compatibility $\operatorname{RHS}\left(x_{1}, \ldots, x_{N}, 0\right)=\operatorname{RHS}\left(x_{1}, \ldots, x_{N}\right)$ is straigthforward.

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric: OK.
(2) RHS $\left.\right|_{x_{i}=\lambda_{i}}=0$ if $\lambda \nsupseteq \mu$.

We will prove: for each T, some factor $\left.a_{\square}\right|_{x_{i}:=\lambda_{i}}:=\lambda_{T(\square)}-c(\square)$ vanishes.

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric: OK.
(2) RHS $\left.\right|_{x_{i}=\lambda_{i}}=0$ if $\lambda \nsupseteq \mu$.

We will prove: for each T, some factor $\left.a_{\square}\right|_{x_{i}:=\lambda_{i}}:=\lambda_{T(\square)}-c(\square)$ vanishes.

- $a_{(1,1)}>0$;
- $\lambda_{i}^{\prime}<\mu_{i}^{\prime} \Rightarrow a_{(1, i)} \leq 0$;
- $\left(a_{(1, k)}\right)_{k \geq 1}$ can only decrease by 1 at each step.

A combinatorial formula for s_{μ}^{\star}

$$
\text { To prove: } s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{T} \prod_{\square \in T}\left(x_{T(\square)}-c(\square)\right) \text {. }
$$

Sketch of proof via the vanishing characterization.
(1) RHS is shifted symmetric: OK.
(2) RHS $\left.\right|_{x_{i}=\lambda_{i}}=0$ if $\lambda \nsupseteq \mu$.

We will prove: for each T, some factor $\left.a_{\square}\right|_{x_{i}:=\lambda_{i}}:=\lambda_{T(\square)}-c(\square)$ vanishes.

- $a_{(1,1)}>0$;
- $\lambda_{i}^{\prime}<\mu_{i}^{\prime} \Rightarrow a_{(1, i)} \leq 0$;
- $\left(a_{(1, k)}\right)_{k \geq 1}$ can only decrease by 1 at each step.

(3) Normalization: compare the coefficients of $x_{1}^{\lambda_{1}} \ldots x_{N}^{\lambda_{N}}$.

A positivity result

We cannot expect positivity in the basis $x_{1}^{b_{1}} \ldots x_{\ell}^{b_{\ell}}$, as for Schur functions, since $s_{\mu}^{\star}(\lambda)$ for many partitions λ.

Theorem (Alexandersson, F., '17)
$s_{\mu}^{\star}\left(x_{1}, \ldots, x_{n}\right)$ expands with nonnegative rational coefficients in the basis

$$
\left(\left(x_{1}-x_{2}\right)_{b_{1}} \cdots\left(x_{\ell-1}-x_{\ell}\right)_{b_{\ell}-1}\left(x_{\ell}\right)_{b_{\ell}}\right)_{b_{1}, \ldots, b_{\ell} \geq 0}
$$

Note: it does not follows from the combinatorial interpretation.

Pieri rule for shifted Schur functions

Proposition (OO '98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu: \nu \nwarrow \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right),
$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu|=|\mu|+1$.

Pieri rule for shifted Schur functions

Proposition (OO '98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu: \nu \nwarrow \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right),
$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu|=|\mu|+1$.
Sketch of proof.
Since the LHS is shifted symmetric of degree $|\mu|+1$, we have

$$
\begin{aligned}
& \qquad s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu:|\nu| \leq|\mu|+1} c_{\nu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right), \\
& \text { for some constants } c_{\nu} .
\end{aligned}
$$

Pieri rule for shifted Schur functions

Proposition (OO '98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu: \nu \nwarrow \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right),
$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu|=|\mu|+1$.
Sketch of proof.
Since the LHS is shifted symmetric of degree $|\mu|+1$, we have

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu:|\nu| \leq|\mu|+1} c_{\nu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right),
$$

for some constants c_{ν}.

- LHS vanishes for $x_{i}=\lambda_{i}$ and $|\lambda| \leq|\mu| \Rightarrow c_{\nu}=0$ if $|\nu| \leq|\mu|$.
(Same argument as to prove uniqueness.)

Pieri rule for shifted Schur functions

Proposition (OO '98)

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu: \nu \nwarrow \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right),
$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu|=|\mu|+1$.
Sketch of proof.
Since the LHS is shifted symmetric of degree $|\mu|+1$, we have

$$
s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right)=\sum_{\nu:|\nu| \leq|\mu|+1} c_{\nu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right)
$$

for some constants c_{ν}.

- LHS vanishes for $x_{i}=\lambda_{i}$ and $|\lambda| \leq|\mu| \Rightarrow c_{\nu}=0$ if $|\nu| \leq|\mu|$. (Same argument as to prove uniqueness.)
- Look at top-degree term (and use Pieri rule for usual Schur functions): $\quad \Rightarrow$ for $|\nu|=|\mu|+1$, we have $c_{\nu}=\delta_{\nu \nwarrow ~}{ }_{\mu}$.

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ / μ is a filling of λ / μ with integers from 1 to $r=|\lambda|-|\mu|$ with increasing rows and columns.

Example
$\lambda=(3,3,1) \supset \mu=(2,1)$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ / μ is a filling of λ / μ with integers from 1 to $r=|\lambda|-|\mu|$ with increasing rows and columns.
Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)}=\lambda$.

Example
$\lambda=(3,3,1) \supset \mu=(2,1)$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ / μ is a filling of λ / μ with integers from 1 to $r=|\lambda|-|\mu|$ with increasing rows and columns.
Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)}=\lambda$. The number of skew standard tableau of shape λ / μ is denoted $f^{\lambda / \mu}$.

Example

$$
\lambda=(3,3,1) \supset \mu=(2,1)
$$

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If $\lambda \supseteq \mu$, then

$$
s_{\mu}^{\star}(\lambda)=\frac{H(\lambda)}{(|\lambda|-|\mu|)!} f^{\lambda / \mu} .
$$

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If $\lambda \supseteq \mu$, then

$$
s_{\mu}^{\star}(\lambda)=\frac{H(\lambda)}{(|\lambda|-|\mu|)!} f^{\lambda / \mu} .
$$

Proof.
Set $r=|\lambda|-|\mu|$ We iterate r times the Pieri rule

$$
\begin{aligned}
& s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right) \cdots\left(x_{1}+\cdots+x_{N}-|\mu|-r+1\right) \\
& \quad=\sum_{\substack{\left.\nu^{(1)}, \ldots, \nu^{(r)} \\
\mu \not \lambda_{\nu}(1)<\cdots \not\right)_{\nu}(r)}} s_{\nu(r)}^{\star}\left(x_{1}, \ldots, x_{N}\right)
\end{aligned}
$$

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If $\lambda \supseteq \mu$, then

$$
s_{\mu}^{\star}(\lambda)=\frac{H(\lambda)}{(|\lambda|-|\mu|)!} f^{\lambda / \mu} .
$$

Proof.
Set $r=|\lambda|-|\mu|$ We iterate r times the Pieri rule

$$
\begin{aligned}
& s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right) \cdots\left(x_{1}+\cdots+x_{N}-|\mu|-r+1\right) \\
& =\sum_{\nu^{(1)}, \ldots, \nu^{(r)}:} s_{\nu^{\star}(r)}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{\nu:|\nu|=|\mu|+r} f^{\nu / \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right) . \\
& \mu \not \nearrow_{\nu}(1) \nearrow \ldots \nearrow_{\nu}(r)
\end{aligned}
$$

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If $\lambda \supseteq \mu$, then

$$
s_{\mu}^{\star}(\lambda)=\frac{H(\lambda)}{(|\lambda|-|\mu|)!} f^{\lambda / \mu}
$$

Proof.
Set $r=|\lambda|-|\mu|$ We iterate r times the Pieri rule

$$
\begin{aligned}
& s_{\mu}^{\star}\left(x_{1}, \ldots, x_{N}\right)\left(x_{1}+\cdots+x_{N}-|\mu|\right) \cdots\left(x_{1}+\cdots+x_{N}-|\mu|-r+1\right) \\
& \quad=\sum_{\substack{\nu^{(1)}, \ldots, \nu^{(r)} \\
\mu \not \lambda_{\nu}(1)<\cdots \nmid \nu(r)}} s_{\nu(r)}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{\nu:|\nu|=|\mu|+r} f^{\nu / \mu} s_{\nu}^{\star}\left(x_{1}, \ldots, x_{N}\right) .
\end{aligned}
$$

We evaluate at $x_{i}=\lambda_{i}$. The only surviving term corresponds to $\nu=\lambda$.

Shifted Littlewood-Richardson coefficients

Definition

The shifted Littlewood-Richardson coefficients are coefficients $c_{\mu, \nu}^{\rho}$ defined by:

$$
s_{\mu}^{\star} s_{\nu}^{\star}=\sum_{\rho:|\rho| \leq|\mu|+|\nu|} c_{\mu, \nu}^{\rho} s_{\rho}^{\star}
$$

Note: when $|\rho|=|\mu|+|\nu|$, then $c_{\mu, \nu}^{\rho}$ is a Littlewood-Richardson coefficient, but $c_{\mu, \nu}^{\rho}$ is defined more generally when $|\rho|<|\mu|+|\nu|$.

Shifted Littlewood-Richardson coefficients

Using the vanishing theorem, one can prove
Proposition (Molev-Sagan '99)

$$
c_{\mu, \nu}^{\rho}=\frac{1}{|\rho|-|\nu|}\left(\sum_{\nu^{+} \nwarrow \nu} c_{\mu, \nu^{+}}^{\rho}-\sum_{\rho^{-} \nearrow \rho} c_{\mu, \nu}^{\rho^{-}}\right)
$$

Allows to compute all $c_{\mu, \nu}^{\rho}$ by induction on $|\rho|-|\nu|$ (μ being fixed).

Shifted Littlewood-Richardson coefficients

Using the vanishing theorem, one can prove
Proposition (Molev-Sagan '99)

$$
c_{\mu, \nu}^{\rho}=\frac{1}{|\rho|-|\nu|}\left(\sum_{\nu^{+} \nwarrow \nu} c_{\mu, \nu^{+}}^{\rho}-\sum_{\rho^{-} \nearrow \rho} c_{\mu, \nu}^{\rho^{-}}\right)
$$

Allows to compute all $c_{\mu, \nu}^{\rho}$ by induction on $|\rho|-|\nu|$ (μ being fixed).
Next slide: combinatorial formula for $c_{\mu, \nu}^{\rho}$.
Proof strategy: show that it satisfies the same induction relation.

Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, '99, Molev '09)

$$
c_{\mu, \nu}^{\rho}=\sum_{T, R} \mathrm{wt}(T, R),
$$

T : reverse semi-standard tableau with barred entries

R : sequence

$$
\nu \nearrow \nu^{(1)} \ldots \nearrow \nu^{(r)}=\rho .
$$

(The barred entries of T indicate in which row is the box $\nu^{(i+1)} / \nu^{(i)}$, so that R is in fact determined by T.)

$$
\mathrm{wt}(T, R):=\prod_{\square \text { unbarred }}\left[\nu_{T(\square)}^{(k)}-c(\square)\right],
$$

where $k=\ldots$
This contains the usual Littlewood-Richardson rule (only barred entries).

Extensions

Similar theories exist for:

- P-Schur functions;
- Jack and Macdonald symmetric functions (see next slides);
- shifted momomial symmetric functions and monomial quasi-symmetric functions.

Problem

Find some deformation of Schur quasi-symmetric functions with nice vanishing properties.

I spend some time on it (with Kelvin Rivera-Lopez), without success. . .

α shifted symmetric functions

Definition

A polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ is α-shifted symmetric if it is symmetric in $x_{1}-\frac{1}{\alpha}, x_{2}-\frac{2}{\alpha}, \ldots, x_{N}-\frac{N}{\alpha}$.

Examples: $p_{k}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{i=1}^{N}\left(x_{i}-\frac{i}{\alpha}\right)^{k}$.

$$
\begin{gathered}
\alpha=1 \text { gives } \\
\text { previous case. }
\end{gathered}
$$

α shifted symmetric functions

Definition

A polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ is α-shifted symmetric if it is symmetric in $x_{1}-\frac{1}{\alpha}, x_{2}-\frac{2}{\alpha}, \ldots, x_{N}-\frac{N}{\alpha}$.

Examples: $p_{k}^{\star}\left(x_{1}, \ldots, x_{N}\right)=\sum_{i=1}^{N}\left(x_{i}-\frac{i}{\alpha}\right)^{k}$.

$$
\alpha=1 \text { gives }
$$

previous case.
α-shifted symmetric function: sequence $f_{N}\left(x_{1}, \ldots, x_{N}\right)$ of shifted symmetric polynomials with

$$
f_{N+1}\left(x_{1}, \ldots, x_{N}, 0\right)=f_{N}\left(x_{1}, \ldots, x_{N}\right)
$$

Examples: $p_{k}^{\star}=\sum_{i \geq 1}\left[\left(x_{i}-\frac{i}{\alpha}\right)^{k}-\left(\frac{-i}{\alpha}\right)^{k}\right]$.

Shifted Jack polynomials

Proposition (Sahi, '94)
Let μ be a partition. There exists a unique α-shifted symmetric function $P_{\mu}^{(\alpha), \star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha), \star}(\lambda)=\delta_{\lambda, \mu} \alpha^{-|\mu|} H_{\alpha}^{\prime}(\lambda)$ for $|\lambda| \leq|\mu|$.
$H_{\alpha}^{\prime}(\lambda)$: deformation of the hook product.

Shifted Jack polynomials

Proposition (Sahi, '94)
Let μ be a partition. There exists a unique α-shifted symmetric function $P_{\mu}^{(\alpha), \star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha), \star}(\lambda)=\delta_{\lambda, \mu} \alpha^{-|\mu|} H_{\alpha}^{\prime}(\lambda)$ for $|\lambda| \leq|\mu|$.
$H_{\alpha}^{\prime}(\lambda)$: deformation of the hook product.
Note on the proof: looking for $P_{\mu}^{(\alpha), \star}$ under the form $\sum_{|\nu| \leq|\mu|} c_{\nu} p_{\nu}^{\star}$ the conditions $P_{\mu}^{(\alpha), \star}(\lambda)=\delta_{\lambda, \mu} H_{\alpha}(\lambda)$ defines a square system of linear equations in indeterminates c_{ν}. We need to prove that it is non-degenerate. . .

Shifted Jack polynomials

Proposition (Sahi, '94)
Let μ be a partition. There exists a unique α-shifted symmetric function $P_{\mu}^{(\alpha), \star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha), \star}(\lambda)=\delta_{\lambda, \mu} \alpha^{-|\mu|} H_{\alpha}^{\prime}(\lambda)$ for $|\lambda| \leq|\mu|$.
$H_{\alpha}^{\prime}(\lambda)$: deformation of the hook product.
Theorem (Knop-Sahi '96, Okounkov '98)
(1) $P_{\mu}^{(\alpha), \star}(\lambda)=0$ if $\lambda \not \supset \mu$ (extra-vanishing property);
(2) in general, $P_{\mu}^{(\alpha), \star}(\lambda)$ counts α-weighted skew SYT.
(3) the top degree component of $P_{\mu}^{(\alpha), \star}$ is the usual Jack polynomial $P_{\mu}^{(\alpha)}$.
$P_{\mu}^{(\alpha), \star}$ is called shifted Jack polynomials (because of 3 .)
No determinantal formula as for shifted Schur functions!...

t shifted symmetric functions

Definition

A polynomial $f\left(y_{1}, \ldots, y_{N}\right)$ is t-shifted symmetric if it is symmetric in $y_{1} t^{-1}, y_{2} t^{-2}, \ldots, y_{N} t^{-N}$.

Examples: $p_{k}^{\star}\left(y_{1}, \ldots, y_{N}\right)=\sum_{i=1}^{N}\left(y_{i} t^{-i}\right)^{k}$.

t shifted symmetric functions

Definition

A polynomial $f\left(y_{1}, \ldots, y_{N}\right)$ is t-shifted symmetric if it is symmetric in $y_{1} t^{-1}, y_{2} t^{-2}, \ldots, y_{N} t^{-N}$.

Examples: $p_{k}^{\star}\left(y_{1}, \ldots, y_{N}\right)=\sum_{i=1}^{N}\left(y_{i} t^{-i}\right)^{k}$.
t-shifted symmetric function: sequence $f_{N}\left(y_{1}, \ldots, y_{N}\right)$ of shifted symmetric polynomials with

$$
f_{N+1}\left(y_{1}, \ldots, y_{N}, 1\right)=f_{N}\left(y_{1}, \ldots, y_{N}\right)
$$

Examples: $p_{k}^{\star}=\sum_{i \geq 1}\left[\left(y_{i}^{k}-1\right) t^{-k i}\right]$.

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)
Let μ be a partition. There exists a unique t-shifted symmetric function $P_{\mu}^{(q, t), \star}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq|\mu|$,

$$
P_{\mu}^{(q, t), \star}\left(q^{\lambda_{1}}, q^{\lambda_{2}}, \ldots\right)=\delta_{\lambda, \mu} H_{(q, t)}(\lambda) .
$$

$H_{(q, t)}(\lambda)$: deformation of the hook product.

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)
Let μ be a partition. There exists a unique t-shifted symmetric function $P_{\mu}^{(q, t), \star}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq|\mu|$,

$$
P_{\mu}^{(q, t), \star}\left(q^{\lambda_{1}}, q^{\lambda_{2}}, \ldots\right)=\delta_{\lambda, \mu} H_{(q, t)}(\lambda) .
$$

$H_{(q, t)}(\lambda)$: deformation of the hook product.
Theorem (Sahi' 96, Knop '97, Okounkov '98)
(1) $P_{\mu}^{(q, t), \star}(\lambda)=0$ if $\lambda \not \supset \mu$ (extra-vanishing property);
(2) the top degree component of $P_{\mu}^{(q, t), \star}$ is the usual Macdonald polynomial $P_{\mu}^{(q, t)}$ evaluated in $y_{1}, y_{2} t^{-1}, \ldots, y_{n} t^{-n}$.
$P_{\mu}^{(q, t), \star}$ is called shifted Macdonald polynomial.
Note: no interpretation of $P_{\mu}^{(q, t), \star}(\lambda)$ as counting weighted SYTs!

Positivite expansion in the Jack case

Conjecture (Alexandersson, F., '17)
$P_{\mu}^{(\alpha), \star}\left(x_{1}, \ldots, x_{n}\right)$ expands with nonnegative rational coefficients in the basis

$$
\left(\alpha^{a}\left(x_{1}-x_{2}\right)_{b_{1}} \cdots\left(x_{\ell-1}-x_{\ell}\right)_{b_{\ell}-1}\left(x_{\ell}\right)_{b_{\ell}}\right)_{a, b_{1}, \ldots, b_{\ell} \geq 0}
$$

Theorem (Naqvi, Sahi, Sergel, '21, conjectured by Knop-Sahi. '96)
$(-1)^{|\mu|} H_{\mu}^{(\alpha)} P_{\mu}^{\star}\left(-x_{1}-n+1,-x_{2}-n+2, \ldots,-x_{n}\right)$ expands with nonnegative integer coefficients as a polynomial in $a, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$.
(In the case $\alpha=1$, Naqvi-Sahi-Sergel theorem follows from the tableau interpretation.)

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu, \nu}^{\rho,(\alpha)}$ by

$$
P_{\mu}^{(\alpha), \star} P_{\nu}^{(\alpha), \star}=\sum_{\rho:|\rho| \leq|\mu|+|\nu|} c_{\mu, \nu}^{\rho,(\alpha)} P_{\rho}^{(\alpha), \star}
$$

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu, \nu}^{\rho,(\alpha)}$ by

$$
P_{\mu}^{(\alpha), \star} P_{\nu}^{(\alpha), \star}=\sum_{\rho:|\rho| \leq|\mu|+|\nu|} c_{\mu, \nu}^{\rho,(\alpha)} P_{\rho}^{(\alpha), \star}
$$

Conjecture (Alexandersson, F., '19)
$\alpha^{|\mu|+|\nu|-|\rho|-2} H_{\alpha}(\mu) H_{\alpha}(\nu) H_{\alpha}^{\prime}(\rho) c_{\mu, \nu}^{\rho,(\alpha)}$ is a polynomial in α with nonnegative integer coefficients.

This implies a conjecture of Stanley ('89, still open), on Jack-Littlewood Richardson coefficients.

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu, \nu}^{\rho,(\alpha)}$ by

$$
P_{\mu}^{(\alpha), \star} P_{\nu}^{(\alpha), \star}=\sum_{\rho:|\rho| \leq|\mu|+|\nu|} c_{\mu, \nu}^{\rho,(\alpha)} P_{\rho}^{(\alpha), \star}
$$

Conjecture (Alexandersson, F., '19)
$\alpha^{|\mu|+|\nu|-|\rho|-2} H_{\alpha}(\mu) H_{\alpha}(\nu) H_{\alpha}^{\prime}(\rho) c_{\mu, \nu}^{\rho,(\alpha)}$ is a polynomial in α with nonnegative integer coefficients.

We have an induction relation, as in the Schur case

$$
c_{\mu, \nu}^{\rho,(\alpha)}=\frac{1}{|\rho|-|\nu|}\left(\sum_{\nu \nwarrow \nu^{+}} \psi_{\nu^{+} / \nu}^{\prime} c_{\mu, \nu^{+}}^{\rho,(\alpha)}-\sum_{\rho^{-} \nearrow \rho} \psi_{\rho / \rho^{-}}^{\prime} c_{\mu, \nu}^{\rho^{-}}\right),
$$

but no combinatorial interpretation of this relation.

Thank you for your attention!

