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Goal of the talk

General introduction on shifted Schur functions:

analogues of the celebrated Schur functions;

they satisfy a powerful vanishing property;

nice extension to the Jack/Macdonald setting.
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Shifted Schur functions

Shifted symmetric function: definition

Definition
A polynomial f (x1, . . . , xN) is shifted symmetric if it is symmetric in
x1 − 1, x2 − 2, . . . , xN − N.

Example: p⋆
k(x1, . . . , xN) =

∑N
i=1(xi − i)k .

Shifted symmetric function: sequence fN(x1, . . . , xN) of shifted symmetric
polynomials with

fN+1(x1, . . . , xN , 0) = fN(x1, . . . , xN).

Example: p⋆
k =

∑
i≥1

[
(xi − i)k − (−i)k].
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Shifted Schur functions

Shifted Schur functions (Okounkov, Olshanski, ’98)

Notation: µ = (µ1 ≥ · · · ≥ µℓ) partition.
(x ⇂ k) := x(x − 1) . . . (x − k + 1);

Definition (Shifted Schur function s⋆µ)

s⋆µ(x1, . . . , xN) =
det(xi + N − i ⇂ µj + N − j)

det(xi + N − i ⇂ N − j)

Example:

s(2,1)(x1, x2, x3) = x2
1 x2 + x2

1 x3 + x1 x2
2 + 2 x1 x2 x3 + x1 x2

3 + x2
2 x3 + x2 x2

3

− x1 x2 − x1 x3 + x2
2 − x2 x3 + 2 x2

3 − 2 x2 − 6 x3

The top degree term of s⋆µ is the standard Schur function sµ.
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Shifted symmetric functions Vanishing property

The vanishing characterization

If λ is a partition (or Young diagram) of length ℓ and F a shifted
symmetric function, we denote

F (λ) := F (λ1, . . . , λℓ).

Theorem (Vanishing properties of s⋆µ (OO ’98))
Vanishing characterization s⋆µ is the unique shifted symmetric function of

degree at most |µ| such that s⋆µ(λ) = δλ,µH(λ),
where H(λ) is the hook product of λ.

Extra vanishing property Moreover, s⋆µ(λ) = 0, unless λ ⊇ µ.
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Shifted symmetric functions Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

By definition, s⋆µ(λ) =
det(λi+N−i⇂µj+N−j)
det(λi+N−i⇂N−j) .

Call Mi ,j = (λi + N − i ⇂ µj + N − j).
If λj < µj for some j , then Mj,j = 0,

but also all the entries in the bottom left corner.
⇒ det(Mi ,j) = 0.


. . .

0
. . .



Therefore s⋆µ(λ) = 0 as soon as λ ̸⊇ µ.

To compute s⋆µ(µ), we get a triangular matrix, the determinant is the
product of diagonal entries and we recognize the hook product. (Exercise!)
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Shifted symmetric functions Vanishing property

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most |µ|.
Assume that for each λ of size at most µ,

F (λ) = s⋆µ(λ) = δλ,µH(λ).

Write G := F − s⋆µ as linear combination of s⋆ν :

G =
∑

ν:|ν|≤|µ|

cν s⋆ν . (1)

Assume G ̸= 0, and choose ρ minimal for inclusion such that cρ ̸= 0.
We evaluate (1) in ρ:

0 = G(ρ) =
∑

ν:|ν|≤|µ|

cν s⋆ν (ρ) = cρ s⋆ρ(ρ) ̸= 0.

Contradiction ⇒ G = 0, i.e. F = s⋆µ.
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Shifted symmetric functions Vanishing property

A combinatorial formula for s⋆µ

Theorem (Goulden-Greene ’94, OO’98)

s⋆µ(x1, . . . , xN) =
∑
T

∏
□∈T

(xT (□)−c(□)).

where the sum runs over reversea semi-std Young tableaux T ,
and if □ = (i , j), then c(□) = j − i (called content).

afilling with decreasing columns and weakly decreasing rows

Example:
s⋆(2,1)(x1, x2) = x2 (x2 − 1) (x1 + 1) + x2 (x1 − 1) (x1 + 1)

2 2
1

2 1
1
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where the sum runs over reversea semi-std Young tableaux T ,
and if □ = (i , j), then c(□) = j − i (called content).
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extends the classical combinatorial interpretation of Schur function
(that we recover by taking top degree terms);
completely independent proof, via the vanishing theorem (see next
slide).
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Shifted symmetric functions Vanishing property

A combinatorial formula for s⋆µ

To prove: s⋆µ(x1, . . . , xN) =
∑
T

∏
□∈T

(xT (□)−c(□)).

Sketch of proof via the vanishing characterization.
1 RHS is shifted symmetric:

OK.

2 RHS
∣∣
xi :=λi

= 0 if λ ̸⊇ µ.

We will prove: for each T , some factor
a□

∣∣
xi :=λi

:= λT (□) − c(□) vanishes.

a(1,1) > 0;

λ′i < µ′
i ⇒ a(1,i) ≤ 0;

(a(1,k))k≥1 can only decrease by 1 at each step.

>0 ≤0

3 Normalization: compare the coefficients of xλ1
1 . . . xλN

N .
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Shifted symmetric functions Vanishing property

A positivity result

We cannot expect positivity in the basis xb1
1 . . . xbℓ

ℓ , as for Schur functions,
since s⋆µ(λ) for many partitions λ.

Theorem (Alexandersson, F., ’17)
s⋆µ(x1, . . . , xn) expands with nonnegative rational coefficients in the basis(

(x1 − x2)b1 · · · (xℓ−1 − xℓ)bℓ−1(xℓ)bℓ

)
b1,...,bℓ≥0

.

Note: it does not follows from the combinatorial interpretation.

V. Féray (CNRS, IECL) Shifted Schur functions Paris, 2022–06 10 / 24



Shifted symmetric functions Vanishing property

Pieri rule for shifted Schur functions

Proposition (OO ’98)

s⋆µ(x1, . . . , xN) (x1 + · · ·+ xN − |µ|) =
∑

ν: ν↖µ

s⋆ν (x1, . . . , xN),

where ν ↖ µ means ν ⊃ µ and |ν| = |µ|+ 1.

Sketch of proof.
Since the LHS is shifted symmetric of degree |µ|+ 1, we have

s⋆µ(x1, . . . , xN) (x1 + · · ·+ xN − |µ|) =
∑

ν: |ν|≤|µ|+1
cνs⋆ν (x1, . . . , xN),

for some constants cν .
LHS vanishes for xi = λi and |λ| ≤ |µ| ⇒ cν = 0 if |ν| ≤ |µ|.
(Same argument as to prove uniqueness.)
Look at top-degree term (and use Pieri rule for usual Schur
functions): ⇒ for |ν| = |µ|+ 1, we have cν = δν↖µ.
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Shifted symmetric functions Vanishing property

Skew standard tableaux

Definition
Let λ and µ be Young diagrams with λ ⊂ µ. A skew standard tableau of
shape λ/µ is a filling of λ/µ with integers from 1 to r = |λ| − |µ| with
increasing rows and columns.

Alternatively, it is a sequence µ↗ µ(1) ↗ · · · ↗ µ(r) = λ.
The number of skew standard tableau of shape λ/µ is denoted f λ/µ.

Example
λ = (3, 3, 1) ⊃ µ = (2, 1)

2
1 4

3

↔ (2, 1) ↗ (2, 2) ↗ (3, 2) ↗ (3, 2, 1) ↗ (3, 3, 1)
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λ = (3, 3, 1) ⊃ µ = (2, 1)

2
1 4

3
↔ (2, 1) ↗ (2, 2) ↗ (3, 2) ↗ (3, 2, 1) ↗ (3, 3, 1)
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Skew standard tableaux and shifted Schur functions

Proposition (OO ’98)
If λ ⊇ µ, then

s⋆µ(λ) =
H(λ)

(|λ| − |µ|)!
f λ/µ.

Proof.
Set r = |λ| − |µ| We iterate r times the Pieri rule

s⋆µ(x1, . . . , xN)(x1 + · · ·+ xN − |µ|) · · · (x1 + · · ·+ xN − |µ| − r + 1)

=
∑

ν(1),...,ν(r):
µ↗ν(1)↗···↗ν(r)

s⋆
ν(r) (x1, . . . , xN)

=
∑

ν: |ν|=|µ|+r
f ν/µs⋆ν (x1, . . . , xN) .

We evaluate at xi = λi . The only surviving term corresponds to ν = λ.
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Shifted Littlewood–Richardson coefficients

Definition
The shifted Littlewood-Richardson coefficients are coefficients cρ

µ,ν defined
by:

s⋆µ s⋆ν =
∑

ρ:|ρ|≤|µ|+|ν|

cρ
µ,νs⋆ρ

Note: when |ρ| = |µ|+ |ν|, then cρ
µ,ν is a Littlewood-Richardson

coefficient, but cρ
µ,ν is defined more generally when |ρ| < |µ|+ |ν|.
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Shifted Littlewood-Richardson coefficients

Using the vanishing theorem, one can prove

Proposition (Molev–Sagan ’99)

cρ
µ,ν =

1
|ρ| − |ν|

 ∑
ν+↖ν

cρ
µ,ν+ −

∑
ρ−↗ρ

cρ−
µ,ν


Allows to compute all cρ

µ,ν by induction on |ρ| − |ν| (µ being fixed).

Next slide: combinatorial formula for cρ
µ,ν .

Proof strategy: show that it satisfies the same induction relation.
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Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, ’99, Molev ’09)

cρ
µ,ν =

∑
T ,R

wt(T ,R),

T: reverse semi-standard tableau with
barred entries

3̄ 3̄ 1 1̄
2 1̄
1̄

R: sequence

ν ↗ ν(1) · · · ↗ ν(r) = ρ.

(The barred entries of T indicate in
which row is the box ν(i+1)/ν(i), so
that R is in fact determined by T .)

wt(T ,R) :=
∏

□ unbarred

[
ν
(k)
T (□) − c(□)

]
,

where k = . . .

This contains the usual Littlewood-Richardson rule (only barred entries).
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Extensions

Similar theories exist for:
P-Schur functions;
Jack and Macdonald symmetric functions (see next slides);
shifted momomial symmetric functions and monomial
quasi-symmetric functions.

Problem
Find some deformation of Schur quasi-symmetric functions with nice
vanishing properties.

I spend some time on it (with Kelvin Rivera-Lopez), without success. . .
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α shifted symmetric functions

Definition
A polynomial f (x1, . . . , xN) is α-shifted symmetric if it is symmetric in
x1 − 1

α , x2 − 2
α , . . . , xN − N

α .

Examples: p⋆
k(x1, . . . , xN) =

∑N
i=1

(
xi − i

α

)k . �
�

�


α = 1 gives
previous case.

α-shifted symmetric function: sequence fN(x1, . . . , xN) of shifted
symmetric polynomials with

fN+1(x1, . . . , xN , 0) = fN(x1, . . . , xN).

Examples: p⋆
k =

∑
i≥1

[
(xi − i

α)
k − (−i

α )k].
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Shifted Jack polynomials

Proposition (Sahi, ’94)
Let µ be a partition. There exists a unique α-shifted symmetric function
P(α),⋆
µ of degree at most |µ| such that P(α),⋆

µ (λ) = δλ,µα
−|µ|H ′

α(λ) for
|λ| ≤ |µ|.

H ′
α(λ): deformation of the hook product.

Note on the proof: looking for P(α),⋆
µ under the form

∑
|ν|≤|µ| cνp⋆

ν the
conditions P(α),⋆

µ (λ) = δλ,µHα(λ) defines a square system of linear
equations in indeterminates cν . We need to prove that it is
non-degenerate. . .

Theorem (Knop-Sahi ’96, Okounkov ’98)

1 P(α),⋆
µ (λ) = 0 if λ ̸⊃ µ (extra-vanishing property);

2 in general, P(α),⋆
µ (λ) counts α-weighted skew SYT.

3 the top degree component of P(α),⋆
µ is the usual Jack polynomial P(α)

µ .

P(α),⋆
µ is called shifted Jack polynomials (because of 3.)

No determinantal formula as for shifted Schur functions!. . .
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t shifted symmetric functions

Definition
A polynomial f (y1, . . . , yN) is t-shifted symmetric if it is symmetric in
y1 t−1, y2 t−2, . . . , yN t−N .

Examples: p⋆
k(y1, . . . , yN) =

∑N
i=1

(
yi t−i)k .

t-shifted symmetric function: sequence fN(y1, . . . , yN) of shifted
symmetric polynomials with

fN+1(y1, . . . , yN , 1) = fN(y1, . . . , yN).

Examples: p⋆
k =

∑
i≥1

[
(yk

i − 1) t−ki].
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Shifted Macdonald polynomials

Proposition (Sahi ’96, Knop ’97)
Let µ be a partition. There exists a unique t-shifted symmetric function
P(q,t),⋆
µ of degree at most |µ| such that, for |λ| ≤ |µ|,

P(q,t),⋆
µ (qλ1 , qλ2 , . . . ) = δλ,µH(q,t)(λ).

H(q,t)(λ): deformation of the hook product.

Theorem (Sahi’ 96, Knop ’97, Okounkov ’98)
1 P(q,t),⋆

µ (λ) = 0 if λ ̸⊃ µ (extra-vanishing property);
2 the top degree component of P(q,t),⋆

µ is the usual Macdonald
polynomial P(q,t)

µ evaluated in y1, y2t−1, . . . , ynt−n.

P(q,t),⋆
µ is called shifted Macdonald polynomial.

Note: no interpretation of P(q,t),⋆
µ (λ) as counting weighted SYTs!
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Positivite expansion in the Jack case

Conjecture (Alexandersson, F., ’17)

P(α),⋆
µ (x1, . . . , xn) expands with nonnegative rational coefficients in the

basis (
αa(x1 − x2)b1 · · · (xℓ−1 − xℓ)bℓ−1(xℓ)bℓ

)
a,b1,...,bℓ≥0

.

Theorem (Naqvi, Sahi, Sergel, ’21, conjectured by Knop–Sahi. ’96)

(−1)|µ|H(α)
µ P⋆

µ(−x1 − n + 1,−x2 − n + 2, . . . ,−xn) expands with
nonnegative integer coefficients as a polynomial in a, x1, x2, . . . , xn−1, xn.

(In the case α = 1, Naqvi–Sahi–Sergel theorem follows from the tableau
interpretation.)
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Shifted Jack-Littlewood Richardson coefficients

Define cρ,(α)
µ,ν by

P(α),⋆
µ P(α),⋆

ν =
∑

ρ:|ρ|≤|µ|+|ν|

cρ,(α)
µ,ν P(α),⋆

ρ

Conjecture (Alexandersson, F., ’19)

α|µ|+|ν|−|ρ|−2Hα(µ)Hα(ν)H ′
α(ρ)c

ρ,(α)
µ,ν is a polynomial in α with

nonnegative integer coefficients.

This implies a conjecture of Stanley (’89, still open), on Jack-Littlewood
Richardson coefficients.
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µ P(α),⋆

ν =
∑
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cρ,(α)
µ,ν P(α),⋆

ρ

Conjecture (Alexandersson, F., ’19)

α|µ|+|ν|−|ρ|−2Hα(µ)Hα(ν)H ′
α(ρ)c

ρ,(α)
µ,ν is a polynomial in α with

nonnegative integer coefficients.

We have an induction relation, as in the Schur case

cρ,(α)
µ,ν =

1
|ρ| − |ν|

 ∑
ν↖ν+

ψ′
ν+/νcρ,(α)

µ,ν+ −
∑
ρ−↗ρ

ψ′
ρ/ρ−cρ−

µ,ν

 ,

but no combinatorial interpretation of this relation.
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Thank you for
your attention!
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