An introduction to shifted symmetric functions

Valentin Féray

CNRS, Institut Élie Cartan de Lorraine (IECL)

Mini-conférence CORTIPOM, Paris, juin 2022

General introduction on shifted Schur functions:

- analogues of the celebrated Schur functions;
- they satisfy a powerful vanishing property;
- nice extension to the Jack/Macdonald setting.

Shifted symmetric function: definition

Definition

A polynomial $f(x_1, ..., x_N)$ is shifted symmetric if it is symmetric in $x_1 - 1, x_2 - 2, ..., x_N - N$.

Example:
$$p_k^{\star}(x_1, ..., x_N) = \sum_{i=1}^N (x_i - i)^k$$
.

Shifted symmetric function: definition

Definition

A polynomial $f(x_1, ..., x_N)$ is shifted symmetric if it is symmetric in $x_1 - 1, x_2 - 2, ..., x_N - N$.

Example:
$$p_k^*(x_1,...,x_N) = \sum_{i=1}^N (x_i - i)^k$$
.

Shifted symmetric function: sequence $f_N(x_1, ..., x_N)$ of shifted symmetric polynomials with

$$f_{N+1}(x_1, \dots, x_N, 0) = f_N(x_1, \dots, x_N).$$

Example: $p_k^{\star} = \sum_{i \ge 1} [(x_i - i)^k - (-i)^k].$

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation:
$$\mu = (\mu_1 \ge \cdots \ge \mu_\ell)$$
 partition.
 $(x \downarrow k) := x(x-1) \dots (x-k+1);$

Definition (Shifted Schur function s_{μ}^{\star})

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = rac{\det(x_i+N-i\mid \mu_j+N-j)}{\det(x_i+N-i\mid N-j)}$$

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation:
$$\mu = (\mu_1 \ge \cdots \ge \mu_\ell)$$
 partition.
 $(x \downarrow k) := x(x-1) \dots (x-k+1);$

Definition (Shifted Schur function s_{μ}^{\star})

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = rac{\det(x_i+N-i\mid \mu_j+N-j)}{\det(x_i+N-i\mid N-j)}$$

Example:

$$s_{(2,1)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2 x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 - x_1 x_2 - x_1 x_3 + x_2^2 - x_2 x_3 + 2 x_3^2 - 2 x_2 - 6 x_3$$

The top degree term of s^{\star}_{μ} is the standard Schur function s_{μ} .

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

 $F(\lambda) := F(\lambda_1, \ldots, \lambda_\ell).$

Theorem (Vanishing properties of s^{\star}_{μ} (OO '98))

Vanishing characterization s_{μ}^{\star} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s_{\mu}^{\star}(\lambda) = \delta_{\lambda,\mu}H(\lambda)$, where $H(\lambda)$ is the hook product of λ .

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

 $F(\lambda) := F(\lambda_1, \ldots, \lambda_\ell).$

Theorem (Vanishing properties of s^{\star}_{μ} (OO '98))

Vanishing characterization s^{\star}_{μ} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda)$, where $H(\lambda)$ is the hook product of λ .

Extra vanishing property Moreover, $s^{\star}_{\mu}(\lambda) = 0$, unless $\lambda \supseteq \mu$.

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = rac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}.$$

Call
$$M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$$
.
If $\lambda_j < \mu_j$ for some j , then $M_{j,j} = 0$,

· · .			
	0		
		•)

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = rac{\det(\lambda_i + N - i | \mu_j + N - j)}{\det(\lambda_i + N - i | N - j)}.$$

Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$. If $\lambda_j < \mu_j$ for some *j*, then $M_{j,j} = 0$, but also all the entries in the bottom left corner.

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = rac{\det(\lambda_i + N - i | \mu_j + N - j)}{\det(\lambda_i + N - i | N - j)}.$$

Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$. If $\lambda_j < \mu_j$ for some j, then $M_{j,j} = 0$, but also all the entries in the bottom left corner. $\Rightarrow \det(M_{i,j}) = 0$. $\left(\begin{array}{cccc} \cdot & & & \\ 0 & 0 & & \\ 0 & 0 & \cdot & \\ 0 & 0 & & \end{array}\right)$

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = rac{\det(\lambda_i + N - i | \mu_j + N - j)}{\det(\lambda_i + N - i | N - j)}.$$

Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$. If $\lambda_j < \mu_j$ for some *j*, then $M_{j,j} = 0$, but also all the entries in the bottom left corner. $\Rightarrow \det(M_{i,j}) = 0$

$$\Rightarrow \det(M_{i,j}) = 0.$$

Therefore $s^{\star}_{\mu}(\lambda) = 0$ as soon as $\lambda \not\supseteq \mu$.

Proof of the extra-vanishing property. By definition, $s_{\mu}^{\star}(\lambda) = \frac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}$. Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$. If $\lambda_j < \mu_j$ for some j, then $M_{j,j} = 0$, but also all the entries in the bottom left corner. $\Rightarrow \det(M_{i,j}) = 0$. Therefore $s_{\mu}^{\star}(\lambda) = 0$ as soon as $\lambda \not\supseteq \mu$.

To compute $s^*_{\mu}(\mu)$, we get a triangular matrix, the determinant is the product of diagonal entries and we recognize the hook product. (Exercise!)

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s^{\star}_{\mu}$ as linear combination of s^{\star}_{ν} :

$${\cal G} = \sum_{
u: |
u| \leq |\mu|} c_
u \, s^\star_
u.$$

V. Féray (CNRS, IECL)

(1)

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$G = \sum_{
u: |
u| \le |
\mu|} c_
u \, s^\star_
u.$$
 (1)

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$0=G(
ho)=\sum_{
u:|
u|\leq|\mu|}c_
u\,s_
u^\star(
ho)=c_
ho\,s_
ho^\star(
ho)
eq 0.$$

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$G = \sum_{\nu:|\nu| \le |\mu|} c_{\nu} s_{\nu}^{\star}. \tag{1}$$

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$0=G(
ho)=\sum_{
u:|
u|\leq|\mu|}c_{
u}\,s_{
u}^{\star}(
ho)=c_{
ho}\,s_{
ho}^{\star}(
ho)
eq 0.$$

Contradiction $\Rightarrow G = 0$, i.e. $F = s_{\mu}^{\star}$.

Theorem (Goulden-Greene '94, OO'98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

where the sum runs over reverse^a semi-std Young tableaux T, and if $\Box = (i, j)$, then $c(\Box) = j - i$ (called content).

afilling with decreasing columns and weakly decreasing rows

Example:

$$s_{(2,1)}^{\star}(x_1, x_2) = x_2(x_2 - 1)(x_1 + 1) + x_2(x_1 - 1)(x_1 + 1)$$

$$2 2 1$$

$$1$$

Theorem (Goulden-Greene '94, OO'98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

where the sum runs over reverse^a semi-std Young tableaux T, and if $\Box = (i, j)$, then $c(\Box) = j - i$ (called content).

^afilling with decreasing columns and weakly decreasing rows

- extends the classical combinatorial interpretation of Schur function (that we recover by taking top degree terms);
- completely independent proof, via the vanishing theorem (see next slide).

A combinatorial formula for s_{μ}^{\star}

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric:

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric:

it is sufficient to check that it is symmetric in $x_i - i$ and $x_{i+1} - i - 1$. Thus we can focus on the boxes containing *i* and j := i + 1 in the tableau and reduce the general case to $\mu = (1, 1)$ and $\mu = (k)$. Then it's easy.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric: OK.

it is sufficient to check that it is symmetric in $x_i - i$ and $x_{i+1} - i - 1$. Thus we can focus on the boxes containing *i* and j := i + 1 in the tableau and reduce the general case to $\mu = (1, 1)$ and $\mu = (k)$. Then it's easy.

The compatibility $RHS(x_1, ..., x_N, 0) = RHS(x_1, ..., x_N)$ is straigthforward.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

② RHS |_{x_i:=λ_i} = 0 if λ ⊉ μ.
We will prove: for each *T*, some factor
$$a_□|_{x_i:=λ_i} := λ_T(□) - c(□) \text{ vanishes.}$$

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

factor

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric: OK.

• $a_{(1,1)} > 0;$

•
$$\lambda_i' < \mu_i' \; \Rightarrow \; \textbf{\textit{a}}_{(1,i)} \leq \textbf{0};$$

• $(a_{(1,k)})_{k\geq 1}$ can only decrease by 1 at each step.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric: OK.

3 RHS
$$|_{x_i:=\lambda_i} = 0$$
 if $\lambda \not\supseteq \mu$.
We will prove: for each T , some factor $a_{\Box}|_{x_i:=\lambda_i} := \lambda_{T(\Box)} - c(\Box)$ vanishes.

- $a_{(1,1)} > 0;$
- $\lambda_i' < \mu_i' \; \Rightarrow \; \textbf{a}_{(1,i)} \leq \textbf{0};$
- $(a_{(1,k)})_{k\geq 1}$ can only decrease by 1 at each step.
- **③** Normalization: compare the coefficients of $x_1^{\lambda_1} \dots x_N^{\lambda_N}$.

A positivity result

We cannot expect positivity in the basis $x_1^{b_1} \dots x_{\ell}^{b_{\ell}}$, as for Schur functions, since $s_{\mu}^*(\lambda)$ for many partitions λ .

Theorem (Alexandersson, F., '17) $s^{\star}_{\mu}(x_1, \dots, x_n)$ expands with nonnegative rational coefficients in the basis $\left((x_1 - x_2)_{b_1} \cdots (x_{\ell-1} - x_{\ell})_{b_{\ell}-1}(x_{\ell})_{b_{\ell}}\right)_{b_1,\dots,b_{\ell} \ge 0}$.

Note: it does not follows from the combinatorial interpretation.

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nwarrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s_{\mu}^{\star}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|) = \sum_{\nu: |\nu|\leq |\mu|+1} c_{\nu}s_{\nu}^{\star}(x_1,\ldots,x_N),$$

for some constants c_{ν} .

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s^\star_\mu(x_1,\ldots,x_N)\left(x_1+\cdots+x_N-|\mu|
ight)=\sum_{
u:\,|
u|\leq|\mu|+1}c_
u s^\star_
u(x_1,\ldots,x_N),$$

for some constants c_{ν} .

• LHS vanishes for $x_i = \lambda_i$ and $|\lambda| \le |\mu| \Rightarrow c_{\nu} = 0$ if $|\nu| \le |\mu|$. (Same argument as to prove uniqueness.)

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s^{\star}_{\mu}(x_1,\ldots,x_N)\left(x_1+\cdots+x_N-|\mu|
ight)=\sum_{
u:\,|
u|\leq|\mu|+1}c_{
u}s^{\star}_{
u}(x_1,\ldots,x_N),$$

for some constants c_{ν} .

- LHS vanishes for $x_i = \lambda_i$ and $|\lambda| \le |\mu| \Rightarrow c_{\nu} = 0$ if $|\nu| \le |\mu|$. (Same argument as to prove uniqueness.)
- Look at top-degree term (and use Pieri rule for usual Schur functions): \Rightarrow for $|\nu| = |\mu| + 1$, we have $c_{\nu} = \delta_{\nu} \ltimes_{\mu}$.

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Example

$$\lambda = (3, 3, 1) \supset \mu = (2, 1)$$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)} = \lambda$.

Example

$$\lambda = (3,3,1) \supset \mu = (2,1)$$

$$1 4 \leftrightarrow (2,1) \nearrow (2,2) \nearrow (3,2) \nearrow (3,2,1) \nearrow (3,3,1)$$

$$3$$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)} = \lambda$. The number of skew standard tableau of shape λ/μ is denoted $f^{\lambda/\mu}$.

Example

$$\lambda = (3,3,1) \supset \mu = (2,1)$$

$$2$$

$$1 \quad 4 \quad \leftrightarrow \quad (2,1) \nearrow (2,2) \nearrow (3,2) \nearrow (3,2,1) \nearrow (3,3,1)$$

$$3$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)\cdots(x_1+\cdots+x_N-|\mu|-r+1)$$

=
$$\sum_{\substack{\nu^{(1)},\ldots,\nu^{(r)}:\\ \mu\neq\nu^{(1)}\neq\cdots\neq\nu^{(r)}}}s^{\star}_{\nu^{(r)}}(x_1,\ldots,x_N)$$

V. Féray (CNRS, IECL)

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule $s^*_{\mu}(x_1, \dots, x_N)(x_1 + \dots + x_N - |\mu|) \cdots (x_1 + \dots + x_N - |\mu| - r + 1)$

$$= \sum_{\substack{\nu^{(1)}, \dots, \nu^{(r)}:\\ \mu \nearrow \nu^{(1)} \xrightarrow{\cdots} \xrightarrow{\nu^{(r)}}}} s_{\nu^{(r)}}^{\star}(x_1, \dots, x_N) = \sum_{\nu: |\nu| = |\mu| + r} f^{\nu/\mu} s_{\nu}^{\star}(x_1, \dots, x_N).$$

V. Féray (CNRS, IECL)

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule

$$s^{\star}_{\mu}(x_{1},...,x_{N})(x_{1}+\cdots+x_{N}-|\mu|)\cdots(x_{1}+\cdots+x_{N}-|\mu|-r+1) = \sum_{\substack{
u^{(1)},...,
u^{(r)}:\\
\mu
eq
u^{(1)},\dots,
u^{(r)}:\\
\mu
eq
u^{(1)},\dots,
u^{(r)}:\\
\mu
eq
u^{(1)},\dots,
u^{(r)}:\\
\mu
eq
u^{(1)}=|\mu|+r
eq
u^$$

We evaluate at $x_i = \lambda_i$. The only surviving term corresponds to $\nu = \lambda$.

Shifted Littlewood–Richardson coefficients

Definition

The shifted Littlewood-Richardson coefficients are coefficients $c^{\rho}_{\mu,\nu}$ defined by:

$$s^\star_\mu \, s^\star_
u = \sum_{
ho: |
ho| \leq |\mu| + |
u|} c^
ho_{\mu,
u} s^\star_
ho \, .$$

Note: when $|\rho| = |\mu| + |\nu|$, then $c^{\rho}_{\mu,\nu}$ is a Littlewood-Richardson coefficient, but $c^{\rho}_{\mu,\nu}$ is defined more generally when $|\rho| < |\mu| + |\nu|$.

Vanishing property

Shifted Littlewood-Richardson coefficients

Using the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

$$c^{
ho}_{\mu,
u} = rac{1}{|
ho| - |
u|} \left(\sum_{
u^+ \nwarrow
u} c^{
ho}_{\mu,
u^+} - \sum_{
ho^-
earrow
ho} c^{
ho^-}_{\mu,
u}
ight)$$

Allows to compute all $c^{\rho}_{\mu,\nu}$ by induction on $|\rho| - |\nu|$ (μ being fixed).

Vanishing property

Shifted Littlewood-Richardson coefficients

Using the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

$$c^{
ho}_{\mu,
u} = rac{1}{|
ho| - |
u|} \left(\sum_{
u^+ \nwarrow
u} c^{
ho}_{\mu,
u^+} - \sum_{
ho^-
earrow
ho} c^{
ho^-}_{\mu,
u}
ight)$$

Allows to compute all $c^{\rho}_{\mu,\nu}$ by induction on $|\rho| - |\nu|$ (μ being fixed).

Next slide: combinatorial formula for $c^{\rho}_{\mu,\nu}$. Proof strategy: show that it satisfies the same induction relation.

Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, '99, Molev '09)

$$c^{
ho}_{\mu,
u} = \sum_{T,R} \operatorname{wt}(T,R),$$

T: reverse semi-standard tableau with R: sequence

 $\nu \nearrow \nu^{(1)} \cdots \nearrow \nu^{(r)} = \rho.$

(The barred entries of T indicate in which row is the box $\nu^{(i+1)}/\nu^{(i)}$, so that R is in fact determined by T.)

$$\operatorname{wt}(T,R) := \prod_{\Box \text{ unbarred}} [
u_{T(\Box)}^{(k)} - c(\Box)],$$

where $k = \ldots$

This contains the usual Littlewood-Richardson rule (only barred entries).

V. Féray (CNRS, IECL)

Shifted Schur functions

Extensions

Similar theories exist for:

- *P*-Schur functions;
- Jack and Macdonald symmetric functions (see next slides);
- shifted momomial symmetric functions and monomial quasi-symmetric functions.

Problem

Find some deformation of Schur quasi-symmetric functions with nice vanishing properties.

I spend some time on it (with Kelvin Rivera-Lopez), without success...

α shifted symmetric functions

Definition

A polynomial $f(x_1, \ldots, x_N)$ is α -shifted symmetric if it is symmetric in $x_1 - \frac{1}{\alpha}, x_2 - \frac{2}{\alpha}, \ldots, x_N - \frac{N}{\alpha}$.

Examples:
$$p_k^{\star}(x_1,\ldots,x_N) = \sum_{i=1}^N \left(x_i - \frac{i}{\alpha}\right)^k$$
.

$$\begin{tabular}{|c|c|c|c|c|} \hline \alpha = 1 & {\rm gives} \\ {\rm previous} & {\rm case}. \end{tabular}$$

α shifted symmetric functions

Definition

A polynomial $f(x_1, \ldots, x_N)$ is α -shifted symmetric if it is symmetric in $x_1 - \frac{1}{\alpha}, x_2 - \frac{2}{\alpha}, \ldots, x_N - \frac{N}{\alpha}$.

Examples:
$$p_k^{\star}(x_1,\ldots,x_N) = \sum_{i=1}^N (x_i - \frac{i}{\alpha})^k$$
.

 α -shifted symmetric function: sequence $f_N(x_1, \ldots, x_N)$ of shifted symmetric polynomials with

$$f_{N+1}(x_1, \dots, x_N, 0) = f_N(x_1, \dots, x_N)$$

Examples: $p_k^{\star} = \sum_{i \ge 1} \left[(x_i - \frac{i}{\alpha})^k - (\frac{-i}{\alpha})^k \right].$

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),\star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu}\alpha^{-|\mu|}H'_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H'_{\alpha}(\lambda)$: deformation of the hook product.

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),\star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu}\alpha^{-|\mu|}H'_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H'_{\alpha}(\lambda)$: deformation of the hook product.

Note on the proof: looking for $P_{\mu}^{(\alpha),\star}$ under the form $\sum_{|\nu| \le |\mu|} c_{\nu} p_{\nu}^{\star}$ the conditions $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu} H_{\alpha}(\lambda)$ defines a square system of linear equations in indeterminates c_{ν} . We need to prove that it is non-degenerate...

Shifted Jack polynomials

Proposition (Sahi, '94)

Let μ be a partition. There exists a unique α -shifted symmetric function $P_{\mu}^{(\alpha),\star}$ of degree at most $|\mu|$ such that $P_{\mu}^{(\alpha),\star}(\lambda) = \delta_{\lambda,\mu}\alpha^{-|\mu|}H'_{\alpha}(\lambda)$ for $|\lambda| \leq |\mu|$.

 $H'_{\alpha}(\lambda)$: deformation of the hook product.

Theorem (Knop-Sahi '96, Okounkov '98)

•
$$P_{\mu}^{(\alpha),\star}(\lambda) = 0$$
 if $\lambda \not\supseteq \mu$ (extra-vanishing property);

- **2** in general, $P_{\mu}^{(\alpha),*}(\lambda)$ counts α -weighted skew SYT.
- the top degree component of $P_{\mu}^{(\alpha),\star}$ is the usual Jack polynomial $P_{\mu}^{(\alpha)}$.

 $P_{\mu}^{(\alpha),\star}$ is called shifted Jack polynomials (because of 3.)

No determinantal formula as for shifted Schur functions!...

V. Féray (CNRS, IECL)

Shifted Schur functions

t shifted symmetric functions

Definition

A polynomial $f(y_1, \ldots, y_N)$ is *t*-shifted symmetric if it is symmetric in $y_1 t^{-1}$, $y_2 t^{-2}$, ..., $y_N t^{-N}$.

Examples:
$$p_k^{\star}(y_1, ..., y_N) = \sum_{i=1}^N (y_i t^{-i})^k$$
.

t shifted symmetric functions

Definition

A polynomial $f(y_1, \ldots, y_N)$ is *t*-shifted symmetric if it is symmetric in $y_1 t^{-1}$, $y_2 t^{-2}$, ..., $y_N t^{-N}$.

Examples:
$$p_k^{\star}(y_1, ..., y_N) = \sum_{i=1}^N (y_i t^{-i})^k$$
.

t-shifted symmetric function: sequence $f_N(y_1, \ldots, y_N)$ of shifted symmetric polynomials with

$$f_{N+1}(y_1, \dots, y_N, 1) = f_N(y_1, \dots, y_N)$$

Examples: $p_k^{\star} = \sum_{i \ge 1} \left[(y_i^k - 1) t^{-ki} \right].$

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)

Let μ be a partition. There exists a unique *t*-shifted symmetric function $P_{\mu}^{(q,t),\star}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq |\mu|$,

 $\mathcal{P}^{(q,t),\star}_{\mu}(q^{\lambda_1},q^{\lambda_2},\dots)=\delta_{\lambda,\mu}\mathcal{H}_{(q,t)}(\lambda).$

 $H_{(q,t)}(\lambda)$: deformation of the hook product.

Shifted Macdonald polynomials

Proposition (Sahi '96, Knop '97)

Let μ be a partition. There exists a unique *t*-shifted symmetric function $P_{\mu}^{(q,t),\star}$ of degree at most $|\mu|$ such that, for $|\lambda| \leq |\mu|$,

 $P^{(q,t),\star}_{\mu}(q^{\lambda_1},q^{\lambda_2},\dots)=\delta_{\lambda,\mu}H_{(q,t)}(\lambda).$

 $H_{(q,t)}(\lambda)$: deformation of the hook product.

Theorem (Sahi' 96, Knop '97, Okounkov '98)

- $P^{(q,t),\star}_{\mu}(\lambda) = 0$ if $\lambda \not\supseteq \mu$ (extra-vanishing property);
- (2) the top degree component of $P_{\mu}^{(q,t),\star}$ is the usual Macdonald polynomial $P_{\mu}^{(q,t)}$ evaluated in $y_1, y_2t^{-1}, \dots, y_nt^{-n}$.

 $P^{(q,t),\star}_{\mu}$ is called shifted Macdonald polynomial.

Note: no interpretation of $P^{(q,t),\star}_{\mu}(\lambda)$ as counting weighted SYTs!

Vanishing property

Positivite expansion in the Jack case

Conjecture (Alexandersson, F., '17)

 $P_{\mu}^{(\alpha),\star}(x_1,\ldots,x_n) \text{ expands with nonnegative rational coefficients in the basis} \left(\alpha^*(x_1-x_2)_{b_1}\cdots(x_{\ell-1}-x_\ell)_{b_\ell-1}(x_\ell)_{b_\ell} \right)_{a,b_1,\ldots,b_\ell \ge 0}.$

Theorem (Naqvi, Sahi, Sergel, '21, conjectured by Knop–Sahi. '96)

 $(-1)^{|\mu|}H^{(\alpha)}_{\mu}P^{\star}_{\mu}(-x_1-n+1,-x_2-n+2,\ldots,-x_n)$ expands with nonnegative integer coefficients as a polynomial in *a*, x_1 , x_2 , ..., x_{n-1} , x_n .

(In the case $\alpha = 1$, Naqvi–Sahi–Sergel theorem follows from the tableau interpretation.)

V. Féray (CNRS, IECL)

Vanishing property

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu,
u}^{
ho, (lpha)}$ by

$$\mathcal{P}_{\mu}^{(lpha),\star} \, \mathcal{P}_{
u}^{(lpha),\star} = \sum_{
ho: |
ho| \leq |\mu| + |
u|} c_{\mu,
u}^{
ho,(lpha)} \, \mathcal{P}_{
ho}^{(lpha),\star}$$

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu,\nu}^{\rho,(\alpha)}$ by $P_{\mu}^{(\alpha),\star} P_{\nu}^{(\alpha),\star} = \sum_{\rho:|\rho| \le |\mu|+|\nu|} c_{\mu,\nu}^{\rho,(\alpha)} P_{\rho}^{(\alpha),\star}$

Conjecture (Alexandersson, F., '19)

 $\alpha^{|\mu|+|\nu|-|\rho|-2}H_{\alpha}(\mu)H_{\alpha}(\nu)H_{\alpha}'(\rho)c_{\mu,\nu}^{\rho,(\alpha)}$ is a polynomial in α with nonnegative integer coefficients.

This implies a conjecture of Stanley ('89, still open), on Jack-Littlewood Richardson coefficients.

Shifted Jack-Littlewood Richardson coefficients

Define $c_{\mu,\nu}^{\rho,(\alpha)}$ by $P_{\mu}^{(\alpha),\star} P_{\nu}^{(\alpha),\star} = \sum_{\rho:|\rho| \le |\mu|+|\nu|} c_{\mu,\nu}^{\rho,(\alpha)} P_{\rho}^{(\alpha),\star}$

Conjecture (Alexandersson, F., '19)

 $\alpha^{|\mu|+|\nu|-|\rho|-2}H_{\alpha}(\mu) H_{\alpha}(\nu) H'_{\alpha}(\rho)c^{\rho,(\alpha)}_{\mu,\nu}$ is a polynomial in α with nonnegative integer coefficients.

We have an induction relation, as in the Schur case

$$oldsymbol{c}^{
ho,(lpha)}_{\mu,
u} = rac{1}{|
ho|-|
u|} \left(\sum_{
u^{igata},
u^+} \psi_{
u^+/
u}' oldsymbol{c}^{
ho,(lpha)}_{\mu,
u^+} - \sum_{
ho^-
earrow
ho} \psi_{
ho/
ho^-}' oldsymbol{c}^{
ho^-}_{\mu,
u}
ight),$$

but no combinatorial interpretation of this relation.

V. Féray (CNRS, IECL)

Thank you for your attention!