Components of meandric systems and the infinite noodle

Valentin Féray joint work with Paul Thévenin (Upsalla University)

CNRS, Institut Élie Cartan de Lorraine (IECL)

Probability Seminar, Warsaw University of Technology April 26th, 2022

The infinite noodle and the proof of the main result

Open problems

A problem in enumerative geometry

We consider two self-avoiding closed curves in the plane crossing generically (no multiple crossing points, no tangeant points).

Problem

How many (non-isomorphic) configurations are there with n intersection points?

A problem in enumerative geometry

We consider two self-avoiding closed curves in the plane crossing generically (no multiple crossing points, no tangeant points).

Problem

How many (non-isomorphic) configurations are there with n intersection points?

Combinatorial reformulation

To avoid symmetries, we root configurations at one intersection point, specifying one of the curve and a direction. The resulting object is called a meander.

Combinatorial reformulation

To avoid symmetries, we root configurations at one intersection point, specifying one of the curve and a direction. The resulting object is called a meander.

 \rightarrow we can then label intersection points.

Combinatorial reformulation

To avoid symmetries, we root configurations at one intersection point, specifying one of the curve and a direction. The resulting object is called a meander.

 \rightarrow we can then label intersection points and transform the marked curve into a straight line.

Combinatorially, a meander is described by two non-crossing pair-partitions, such that the (multi-)graph they induce is connected.

Counting meanders

Let f_n be the number of meanders with n intersection points.

• Easy: $\operatorname{Cat}_n \leq f_n \leq \operatorname{Cat}_n^2$, where $\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}$. In particular, f_n grows exponentially.

Counting meanders

Let f_n be the number of meanders with n intersection points.

- Easy: $\operatorname{Cat}_n \leq f_n \leq \operatorname{Cat}_n^2$, where $\operatorname{Cat}_n = \frac{1}{n+1} \binom{2n}{n}$. In particular, f_n grows exponentially.
- Conjecture (Di Francesco–Golinelli–Guitter, '00): $f_n \sim C A^n n^{-\alpha}$, with

$$\alpha = \frac{29 + \sqrt{145}}{12}.$$

(Based on theoretical physics heuristics; it matches precisely numerical estimates.)

A related (but easier!) problem

Call meandric system a pair of non-crossing pair-partition and write cc(M) for its number of components.

Question (Goulden, Nica, Puder, '20)

Let M_n be a uniform random meandric system with n intersection point. What is its average number of components $\mathbb{E}(\operatorname{cc}(M_n))$?

"It must behave like $c \cdot n$ for some $c \in (.17, .5)$."

A related (but easier!) problem

Call meandric system a pair of non-crossing pair-partition and write cc(M) for its number of components.

Question (Goulden, Nica, Puder, '20)

Let M_n be a uniform random meandric system with n intersection point. What is its average number of components $\mathbb{E}(\operatorname{cc}(M_n))$?

"It must behave like $c \cdot n$ for some $c \in (.17, .5)$."

Theorem (F., Thévenin, '22)

There exists a constant κ (defined in terms of the so-called infinite noodle of Curien–Kozma–Sidoravicius–Tournier) such that $\frac{\operatorname{cc}(M_n)}{n}$ converges to κ in probability. Moreover, $\kappa \in (0.207, 0.292)$.

A related (but easier!) problem

Call meandric system a pair of non-crossing pair-partition and write cc(M) for its number of components.

Question (Goulden, Nica, Puder, '20)

Let M_n be a uniform random meandric system with n intersection point. What is its average number of components $\mathbb{E}(\operatorname{cc}(M_n))$?

"It must behave like $c \cdot n$ for some $c \in (.17, .5)$."

Theorem (F., Thévenin, '22)

There exists a constant κ (defined in terms of the so-called infinite noodle of Curien–Kozma–Sidoravicius–Tournier) such that $\frac{\operatorname{cc}(M_n)}{n}$ converges to κ in probability. Moreover, $\kappa \in (0.207, 0.292)$.

Note: Kargin ('20) suggests that $cc(M_n)$ is asymptotically normal but we cannot prove this.

V. Féray (CNRS, IECL)

2 Meandric systems and non crossing partitions

3 The infinite noodle and the proof of the main result

Open problems

Non-crossing partitions

Definition

A partition $\pi = \{B_1, ..., B_r\}$ of the set $\{1, ..., n\}$ is noncrossing if we cannot find $i < j < k < \ell$ such that *i* and *k* are in a block *B* of π , and *j* and ℓ in another block $B' \neq B$.

The set NC(4) of noncrossing partitions of $\{1, \ldots, 4\}$, ordered by refinement.

V. Féray (CNRS, IECL)

Consider a non-crossing partition π .

Consider a non-crossing partition π . We associate with it a non-crossing partition.

Consider a non-crossing partition π . We associate with it a non-crossing partition.

Consider a non-crossing partition π . We associate with it a non-crossing partition. Starting with two non-crossing partitions π, ρ give a meander $M(\pi, \rho)$.

Consider a non-crossing partition π . We associate with it a non-crossing partition. Starting with two non-crossing partitions π, ρ give a meander $M(\pi, \rho)$.

Consider a non-crossing partition π . We associate with it a non-crossing partition. Starting with two non-crossing partitions π, ρ give a meander $M(\pi, \rho)$.

Consider a non-crossing partition π . We associate with it a non-crossing partition. Starting with two non-crossing partitions π, ρ give a meander $M(\pi, \rho)$.

Proposition (Goulden-Nica-Puder, '20)

The graph distance between two noncrossing partitions π and ρ in the Hasse diagram of NC(n) is $n - cc(M(\pi, \rho))$.

V. Féray (CNRS, IECL)

Meandric systems

Our main results in terms of noncrossing partitions

We denote d_{H_n} the graph distance in the Hasse diagram of NC(n)

Theorem (F., Thévenin, '22)

Let ρ and π be two independent uniform random partitions of n, we have

$$\frac{d(\rho,\pi)}{n} \to 1-\kappa.$$

Our main results in terms of noncrossing partitions

We denote d_{H_n} the graph distance in the Hasse diagram of NC(n)

Theorem (F., Thévenin, '22)

Let ρ and π be two independent uniform random partitions of n, we have

$$\frac{d(\rho,\pi)}{n} \to 1-\kappa.$$

Comparison:

- other metric spaces where the 2-point distance concentrates: complete binary tree, *d*-dimensional hypercube.
- if 0 is the partition into singletons, then one can prove d(ρ,0)/n → 1/2.
 → the root is not a typical point (as in the hypercube) and it is not close to geodesics between uniform random points (as in the complete binary tree).

2 Meandric systems and non crossing partitions

3 The infinite noodle and the proof of the main result

4) Open problems

A simple lemma

If M is a meandric system and i in $\{1, ..., 2n\}$, denote $C_i(M)$ the component of M containing i.

Lemma

Let M be a meandric system of size n and i_n a uniform random integer in $\{1, ..., 2n\}$. Then

 $\frac{\operatorname{cc}(M)}{n} = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M)|}\big].$

A simple lemma

If M is a meandric system and i in $\{1,...,2n\}$, denote $C_i(M)$ the component of M containing i.

Lemma

Let M be a meandric system of size n and i_n a uniform random integer in $\{1, ..., 2n\}$. Then

 $\frac{\operatorname{cc}(M)}{n} = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M)|}\big].$

Proof.

 $\mathbb{E}\left[\frac{1}{|C_{i_n}(M)|}\right] = \frac{1}{2n} \left(\sum_{i=1}^{2n} \frac{1}{|C_i(M)|}\right), \text{ and each component of } M \text{ contributes 1 to the sum.}$

A simple lemma

If M is a meandric system and i in $\{1,...,2n\}$, denote $C_i(M)$ the component of M containing i.

Lemma

Let M be a meandric system of size n and i_n a uniform random integer in $\{1, ..., 2n\}$. Then

 $\frac{\operatorname{cc}(M)}{n} = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M)|}\big].$

Proof.

 $\mathbb{E}\left[\frac{1}{|C_{i_n}(M)|}\right] = \frac{1}{2n} \left(\sum_{i=1}^{2n} \frac{1}{|C_i(M)|}\right), \text{ and each component of } M \text{ contributes 1 to the sum.}$

Consequence: $\frac{1}{n}\mathbb{E}[cc(M_n)] = 2 \cdot \mathbb{E}[\frac{1}{|C_{i_n}(M_n)|}]$, where (M_n, i_n) is a uniform random "marked meandric system".

Why is the lemma interesting?

Reminder:

$$\frac{1}{n}\mathbb{E}\big[\mathrm{cc}(M_n)\big] = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M_n)|}\big].$$

Why is the lemma interesting?

Reminder:

$$\frac{1}{n}\mathbb{E}\big[\mathrm{cc}(M_n)\big] = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M_n)|}\big].$$

The LHS involves a global quantity of M_n (number of components), but the RHS is (most of the time) a local quantity.

Here local means that if we know M_n on a neighbourhood of i_n , we might be able to compute $|C_{i_n}(M_n)|$.

Why is the lemma interesting?

Reminder:

$$\frac{1}{n}\mathbb{E}\big[\mathrm{cc}(M_n)\big] = 2 \cdot \mathbb{E}\big[\frac{1}{|C_{i_n}(M_n)|}\big].$$

The LHS involves a global quantity of M_n (number of components), but the RHS is (most of the time) a local quantity.

Here local means that if we know M_n on a neighbourhood of i_n , we might be able to compute $|C_{i_n}(M_n)|$.

Question

What does M_n look like in the neighbourhood of a random point i_n ? In probabilistic words, what is the local limit of (M_n, i_n) (or Benjamini–Schramm limit of M_n)?

Path encoding and local limits

Noncrossing pair partitions are in bijection with Dyck paths.

Path encoding and local limits

Noncrossing pair partitions are in bijection with Dyck paths. Hence meandric systems are in bijection with pairs of Dyck paths.

Path encoding and local limits

Noncrossing pair partitions are in bijection with Dyck paths. Hence meandric systems are in bijection with pairs of Dyck paths.

Fact: locally, a uniform random Dyck path "looks like" an unconditioned random walk.

The limiting object (definition)

 Take two bi-infinite sequences of independent uniform random symbols in {→, ←};

The limiting object (definition)

- Take two bi-infinite sequences of independent uniform random symbols in {→, ←};
- Connect \rightarrow and \leftarrow in the unique noncrossing way (independently above and below the line). We get an "infinite meandric system" M_{∞} .

The limiting object (definition)

- Take two bi-infinite sequences of independent uniform random symbols in {→, ←};
- Connect \rightarrow and \leftarrow in the unique noncrossing way (independently above and below the line). We get an "infinite meandric system" M_{∞} .

This model has been introduced recently in

[CKST19] N. Curien, G. Kozma, V. Sidoravicius, and L. Tournier. Uniqueness of the infinite noodle, Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), 6(2):221–238, 2019.

The limiting object (existence of infinite cluster?)

In [CKST19], the infinite noodle is considered with a percolation point of view, i.e. the authors consider the following question:

```
Question (CKST, '19)
```

Are there some infinite clusters in the infinite noodle M_{∞} ?

Easy fact 1 (from ergodic theory): the number $n_{\infty}(M_{\infty})$ of infinite clusters is a.s. constant.

The limiting object (existence of infinite cluster?)

In [CKST19], the infinite noodle is considered with a percolation point of view, i.e. the authors consider the following question:

```
Question (CKST, '19)
```

Are there some infinite clusters in the infinite noodle M_{∞} ?

Easy fact 1 (from ergodic theory): the number $n_{\infty}(M_{\infty})$ of infinite clusters is a.s. constant.

Theorem (CKST, '19)

 $n_{\infty}(\mathbf{M}_{\infty}) = 0$ a.s. or $n_{\infty}(\mathbf{M}_{\infty}) = 1$ a.s.

Furthermore it is conjectured that $n_{\infty}(\mathbf{M}_{\infty}) = 0$ a.s.

The limiting object (existence of infinite cluster?)

In [CKST19], the infinite noodle is considered with a percolation point of view, i.e. the authors consider the following question:

```
Question (CKST, '19)
```

Are there some infinite clusters in the infinite noodle M_{∞} ?

Easy fact 1 (from ergodic theory): the number $n_{\infty}(M_{\infty})$ of infinite clusters is a.s. constant.

Theorem (CKST, '19)

 $n_{\infty}(\mathbf{M}_{\infty}) = 0$ a.s. or $n_{\infty}(\mathbf{M}_{\infty}) = 1$ a.s.

Furthermore it is conjectured that $n_{\infty}(\mathbf{M}_{\infty}) = 0$ a.s.

Easy fact 2:
$$(n_{\infty}(\boldsymbol{M}_{\infty}) = 0 \text{ a.s.}) \Leftrightarrow (C_0(\boldsymbol{M}_{\infty}) < +\infty \text{ a.s.})$$

Local convergence of uniform random meandric system

Proposition (F., Thévenin, '22)

Let $(\mathbf{M}_n, \mathbf{i}_n)$ be a uniform random "marked meandric system" of size n. Then $(\mathbf{M}_n, \mathbf{i}_n)$ converges locally in distribution to $(\mathbf{M}_{\infty}, 0)$ in the sense that, for each fixed R > 0, the restriction $\mathbf{M}_n / [\mathbf{i}_n - R, \mathbf{i}_n + R]$ converges in distribution to $\mathbf{M}_{\infty} / [-R, R]$.

This was essentially already known once rephrased in terms of Dyck paths.

Local convergence of uniform random meandric system

Proposition (F., Thévenin, '22)

Let $(\mathbf{M}_n, \mathbf{i}_n)$ be a uniform random "marked meandric system" of size n. Then $(\mathbf{M}_n, \mathbf{i}_n)$ converges locally in distribution to $(\mathbf{M}_{\infty}, 0)$ in the sense that, for each fixed R > 0, the restriction $\mathbf{M}_n / [\mathbf{i}_n - R, \mathbf{i}_n + R]$ converges in distribution to $\mathbf{M}_{\infty} / [-R, R]$.

This was essentially already known once rephrased in terms of Dyck paths.

We are interested in $\frac{1}{n}\mathbb{E}[\operatorname{cc}(M_n)] = 2 \cdot \mathbb{E}[\frac{1}{|C_{i_n}(M_n)|}]$

Local convergence of uniform random meandric system

Proposition (F., Thévenin, '22)

Let $(\mathbf{M}_n, \mathbf{i}_n)$ be a uniform random "marked meandric system" of size n. Then $(\mathbf{M}_n, \mathbf{i}_n)$ converges locally in distribution to $(\mathbf{M}_{\infty}, 0)$ in the sense that, for each fixed R > 0, the restriction $\mathbf{M}_n / [\mathbf{i}_n - R, \mathbf{i}_n + R]$ converges in distribution to $\mathbf{M}_{\infty} / [-R, R]$.

This was essentially already known once rephrased in terms of Dyck paths.

We are interested in
$$\frac{1}{n} \mathbb{E}[\operatorname{cc}(M_n)] = 2 \cdot \mathbb{E}[\frac{1}{|C_{i_n}(M_n)|}]$$

Lemma (F., Thévenin, '22)

The functional $(M, r) \mapsto \frac{1}{|C_r(M)|}$ is continuous on the set of complete marked meandric systems.

"Complete" means *without open arcs* (we need to consider meandric systems with open arcs to take restrictions and define the local topology).

V. Féray (CNRS, IECL)

Meandric systems

Warsaw, 2022–04

We know that

- $(\mathbf{M}_n, \mathbf{i}_n)$ converges in distribution to $(\mathbf{M}_\infty, 0)$;
- The map (M, r) → ¹/_{|C_r(M)|} is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

We know that

- $(\boldsymbol{M}_n, \boldsymbol{i}_n)$ converges in distribution to $(\boldsymbol{M}_{\infty}, 0)$;
- The map (M, r) → 1/|C_r(M)| is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

By the mapping theorem, $\frac{1}{|C_{i_n}(M_n)|}$ converges in distribution to $\frac{1}{|C_0(M_{\infty})|}$.

We know that

- $(\boldsymbol{M}_n, \boldsymbol{i}_n)$ converges in distribution to $(\boldsymbol{M}_{\infty}, 0)$;
- The map (M, r) → ¹/_{|C_r(M)|} is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

By the mapping theorem, $\frac{1}{|C_{i_n}(M_n)|}$ converges in distribution to $\frac{1}{|C_0(M_\infty)|}$.

These are bounded r.v., hence they converge also in expectation:

$$\mathbb{E}\big[\frac{1}{|C_{i_n}(\boldsymbol{M}_n)|}\big] \to \mathbb{E}\big[\frac{1}{|C_0(\boldsymbol{M}_\infty)|}\big].$$

We know that

- $(\boldsymbol{M}_n, \boldsymbol{i}_n)$ converges in distribution to $(\boldsymbol{M}_{\infty}, 0)$;
- The map (M, r) → 1/|C_r(M)| is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

By the mapping theorem, $\frac{1}{|C_{i_n}(M_n)|}$ converges in distribution to $\frac{1}{|C_0(M_{\infty})|}$.

These are bounded r.v., hence they converge also in expectation:

$$\frac{1}{n}\mathbb{E}[\operatorname{cc}(M_n)] = 2\mathbb{E}\left[\frac{1}{|C_{i_n}(M_n)|}\right] \to 2\mathbb{E}\left[\frac{1}{|C_0(M_\infty)|}\right].$$

We know that

- $(\mathbf{M}_n, \mathbf{i}_n)$ converges in distribution to $(\mathbf{M}_{\infty}, 0)$;
- The map (M, r) → 1/|C_r(M)| is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

By the mapping theorem, $\frac{1}{|C_{i_n}(M_n)|}$ converges in distribution to $\frac{1}{|C_0(M_{\infty})|}$.

These are bounded r.v., hence they converge also in expectation:

$$\frac{1}{n}\mathbb{E}[\operatorname{cc}(M_n)] = 2\mathbb{E}\left[\frac{1}{|C_{i_n}(M_n)|}\right] \to 2\mathbb{E}\left[\frac{1}{|C_0(M_{\infty})|}\right].$$

Note: we do not know whether $|C_0(M_{\infty})| < +\infty$ a.s or not.

We know that

- $(\mathbf{M}_n, \mathbf{i}_n)$ converges in distribution to $(\mathbf{M}_{\infty}, 0)$;
- The map (M, r) → 1/|C_r(M)| is continuous on the set of complete marked meandric systems;
- $(M_{\infty}, 0)$ is almost surely complete.

By the mapping theorem, $\frac{1}{|C_{i_n}(M_n)|}$ converges in distribution to $\frac{1}{|C_0(M_{\infty})|}$.

These are bounded r.v., hence they converge also in expectation:

$$\frac{1}{n}\mathbb{E}[\operatorname{cc}(M_n)] = 2\mathbb{E}\left[\frac{1}{|C_{i_n}(M_n)|}\right] \to 2\mathbb{E}\left[\frac{1}{|C_0(M_{\infty})|}\right].$$

Note: we do not know whether $|C_0(M_{\infty})| < +\infty$ a.s or not.

How to prove convergence in probability and not only in expectation?

• We prove a stronger version of the local convergence, called quenched Benjamini-Schramm convergence.

In words, we associate to any meandric system M a measure

$$\mu_M = \frac{1}{2n} \sum_{i=1}^{2n} \delta_{(M,i)}$$

and we prove the convergence of the random measure μ_{M_n} to the deterministic measure Law($(M_{\infty}, 0)$).

How to prove convergence in probability and not only in expectation?

• We prove a stronger version of the local convergence, called quenched Benjamini-Schramm convergence.

In words, we associate to any meandric system M a measure

$$\mu_M = \frac{1}{2n} \sum_{i=1}^{2n} \delta_{(M,i)}$$

and we prove the convergence of the random measure μ_{M_n} to the deterministic measure Law($(M_{\infty}, 0)$).

• We apply a random measure version of the mapping theorem.

Another probabilistic interpretaiton of κ

Lemma

$$\kappa := 2E\left[\frac{1}{|C_0(\boldsymbol{M}_{\infty})|}\right] = 2\mathbb{P}[L_0(\boldsymbol{M}_{\infty})],$$

where $L_0(\textbf{M}_\infty)$ is the event "0 is the left-most element in its component in \textbf{M}_∞ ".

Proof.

Conditioning on the size of $C_0(\mathbf{M}_{\infty})$, by translation invariance, 0 has probability $\frac{1}{|C_0(\mathbf{M}_{\infty})|}$ to be the left-most element in its component.

Another probabilistic interpretaiton of κ

Lemma

$$\kappa := 2E\left[\frac{1}{|C_0(\boldsymbol{M}_{\infty})|}\right] = 2\mathbb{P}[L_0(\boldsymbol{M}_{\infty})],$$

where $L_0(\textbf{M}_\infty)$ is the event "0 is the left-most element in its component in \textbf{M}_∞ ".

Proof.

Conditioning on the size of $C_0(\mathbf{M}_{\infty})$, by translation invariance, 0 has probability $\frac{1}{|C_0(\mathbf{M}_{\infty})|}$ to be the left-most element in its component.

Corollary

Denote $R_0(\mathbf{M}_{\infty})$ the event "both arrows attached to 0 point to the right". We have

$$\kappa \leq 2 \mathbb{P} \big(R_0(\boldsymbol{M}_{\infty}) \big) = 0.5.$$

V. Féray (CNRS, IECL)

A combinatorial formula for κ (1/2)

For a meander C, we denote $\mathscr{F}(C)$ its set of faces (connected components of the complement):

Proposition (F., Thévenin, '22)

$$\kappa = \sum_{k=1}^{\infty} \frac{1}{k} \sum_{C \in \mathcal{M}^{(1),k}} p_C,$$

where $M^{(1),k}$ is the set of meanders of size 2k and

$$p_{C} = 2^{-4k+1} k \sum_{\ell_{1}, \dots, \ell_{2k-1} \ge 0} \left(\prod_{F \in \mathscr{F}(C)} \operatorname{Cat}_{\ell_{I(F)}} 2^{-2\ell_{I(F)}} \right).$$

Idea: p_C is the probability that $C_0(M_{\infty})$ is isomorphic to C.

A combinatorial formula for κ (2/2)

• For $C = \bigcirc$ (which is the only meander of size 2), we have

$$p_C = \frac{1}{8} \sum_{\ell=0}^{\infty} \operatorname{Cat}_{\ell}^2 2^{-4\ell} = \frac{2}{\pi} - \frac{1}{2} \approx 0.137$$

A combinatorial formula for κ (2/2)

• For $C = \bigcirc$ (which is the only meander of size 2), we have

$$p_C = \frac{1}{8} \sum_{\ell=0}^{\infty} \operatorname{Cat}_{\ell}^2 2^{-4\ell} = \frac{2}{\pi} - \frac{1}{2} \approx 0.137$$

• For C = (which is the only meander of size 4, up to vertical symmetry), we have

$$p_{C} = \frac{1}{64} \cdot \left(\sum_{\ell_{2} \ge 0} \operatorname{Cat}_{\ell_{2}} 2^{-2\ell_{2}} \right) \cdot \left(\sum_{\ell_{1},\ell_{3} \ge 0} \operatorname{Cat}_{\ell_{1}} \operatorname{Cat}_{\ell_{3}} \operatorname{Cat}_{\ell_{1}+\ell_{3}} 2^{-4\ell_{1}-4\ell_{3}} \right)$$
$$= \frac{1}{64} \cdot 2 \cdot \left(8 - \frac{64}{3\pi} \right) = \frac{1}{4} - \frac{2}{3\pi} \approx 0.038$$

A combinatorial formula for κ (2/2)

• For $C = \bigcirc$ (which is the only meander of size 2), we have

$$\rho_C = \frac{1}{8} \sum_{\ell=0}^{\infty} \operatorname{Cat}_{\ell}^2 2^{-4\ell} = \frac{2}{\pi} - \frac{1}{2} \approx 0.137$$

• For C = (which is the only meander of size 4, up to vertical symmetry), we have

$$p_{C} = \frac{1}{64} \cdot \left(\sum_{\ell_{2} \ge 0} \operatorname{Cat}_{\ell_{2}} 2^{-2\ell_{2}} \right) \cdot \left(\sum_{\ell_{1},\ell_{3} \ge 0} \operatorname{Cat}_{\ell_{1}} \operatorname{Cat}_{\ell_{3}} \operatorname{Cat}_{\ell_{1}+\ell_{3}} 2^{-4\ell_{1}-4\ell_{3}} \right)$$
$$= \frac{1}{64} \cdot 2 \cdot \left(8 - \frac{64}{3\pi} \right) = \frac{1}{4} - \frac{2}{3\pi} \approx 0.038$$

No simple formulas for larger meanders... But we can use the formula to get lower bounds on κ (though it seems to converge slowly).

V. Féray (CNRS, IECL)

Meandric systems

Warsaw, 2022–04 22 / 25

- 2 Meandric systems and non crossing partitions
- 3 The infinite noodle and the proof of the main result

Question

Find

$$\beta := \lim_{n \to +\infty} \frac{-\log\left(\mathbb{P}(|C_0(\mathbf{M}_{\infty})| = 2k)\right)}{\log(2k)}$$

I don't even know if $\beta < +\infty$, i.e. if $\mathbb{P}(|C_0(\mathbf{M}_{\infty})| = 2k)$ decays polynomially fast or not.

Question

Find

$$\beta := \lim_{n \to +\infty} \frac{-\log\left(\mathbb{P}(|C_0(\mathbf{M}_{\infty})| = 2k)\right)}{\log(2k)}$$

I don't even know if $\beta < +\infty$, i.e. if $\mathbb{P}(|C_0(M_{\infty})| = 2k)$ decays polynomially fast or not.

Computer experiment (Scherrer, '21, private communication): $\beta \approx 1.24$

Question

Find

$$\beta := \lim_{n \to +\infty} \frac{-\log\left(\mathbb{P}(|C_0(\boldsymbol{M}_{\infty})| = 2k)\right)}{\log(2k)}$$

I don't even know if $\beta < +\infty$, i.e. if $\mathbb{P}(|C_0(\mathbf{M}_{\infty})| = 2k)$ decays polynomially fast or not.

Computer experiment (Scherrer, '21, private communication): $\beta \approx 1.24$

Question (Kargin, '20)

What is the size of the largest component of a uniform random meandric system?

Conjecture (Kargin, '20): $\Theta(n^{\alpha})$, with $\alpha \approx 4/5$.

They do not look like standard critical exponents. A naive heuristics (first moment estimates) suggests that $\alpha \beta = 1$.

Thank you for your attention!