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Introduction

A problem in enumerative geometry

We consider two self-avoiding closed curves in the plane crossing
generically (no multiple crossing points, no tangeant points).

Problem
How many (non-isomorphic) configurations are there with n intersection
points?

V. Féray (CNRS, IECL) Meandric systems Warsaw, 2022–04 3 / 25



Introduction

A problem in enumerative geometry

We consider two self-avoiding closed curves in the plane crossing
generically (no multiple crossing points, no tangeant points).

Problem
How many (non-isomorphic) configurations are there with n intersection
points?

Figure taken from an article of Henri Poincaré, 1912.
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Introduction

Combinatorial reformulation

To avoid symmetries, we root configurations at one intersection point,
specifying one of the curve and a direction. The resulting object is called a
meander.

→ we can then label intersection points

and transform the marked curve
into a straight line.
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Introduction

Combinatorial reformulation

To avoid symmetries, we root configurations at one intersection point,
specifying one of the curve and a direction. The resulting object is called a
meander.
→ we can then label intersection points and transform the marked curve
into a straight line.

1 2 3 4 5 6 7 8

Combinatorially, a meander is described by two non-crossing pair-partitions,
such that the (multi-)graph they induce is connected.
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Introduction

Counting meanders

Let fn be the number of meanders with n intersection points.

Easy: Catn ≤ fn ≤Cat2n, where Catn = 1
n+1

(2n
n

)
. In particular, fn grows

exponentially.

Conjecture (Di Francesco–Golinelli–Guitter, ’00): fn ∼C Ann−α, with

α= 29+p
145

12
.

(Based on theoretical physics heuristics; it matches precisely numerical
estimates.)
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Introduction

A related (but easier!) problem

Call meandric system a pair of non-crossing pair-partition and write cc(M)
for its number of components.

Question (Goulden, Nica, Puder, ’20)

Let Mn be a uniform random meandric system with n intersection point.
What is its average number of components E(cc(Mn)) ?

“It must behave like c ·n for some c ∈ (.17, .5).”

Theorem (F., Thévenin, ’22)

There exists a constant κ (defined in terms of the so-called infinite noodle
of Curien–Kozma–Sidoravicius–Tournier) such that cc(Mn)

n converges to κ
in probability. Moreover, κ ∈ (0.207,0.292).

Note: Kargin (’20) suggests that cc(Mn) is asymptotically normal but we
cannot prove this.
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Meandric systems

1 Meanders, meandric systems and our main theorem

2 Meandric systems and non crossing partitions

3 The infinite noodle and the proof of the main result

4 Open problems
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Meandric systems

Non-crossing partitions

Definition
A partition π= {B1, . . . ,Br } of the set {1, . . . ,n} is noncrossing if we cannot
find i < j < k < ` such that i and k are in a block B of π, and j and ` in
another block B ′ 6=B .

The set NC (4) of noncrossing partitions of {1, . . . ,4}, ordered by refinement.
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Meandric systems

From non-crossing partition to non-crossing pair partitions

Consider a non-crossing partition π.

We associate with it a non-crossing
partition. Starting with two non-crossing partitions π,ρ give a meander
M(π,ρ).

1 2 3 4 5 6 7 8 9 10

Proposition (Goulden–Nica–Puder, ’20)

The graph distance between two noncrossing partitions π and ρ in the
Hasse diagram of NC (n) is n−cc(M(π,ρ)).
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Meandric systems

Our main results in terms of noncrossing partitions

We denote dHn
the graph distance in the Hasse diagram of NC (n)

Theorem (F., Thévenin, ’22)

Let ρ and π be two independent uniform random partitions of n, we have

d(ρ,π)

n
→ 1−κ.

Comparison:
other metric spaces where the 2-point distance concentrates: complete
binary tree, d-dimensional hypercube.

if 0 is the partition into singletons, then one can prove d(ρ,0)
n → 1

2 .
→ the root is not a typical point (as in the hypercube) and it is not
close to geodesics between uniform random points (as in the complete
binary tree).
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Proof ideas

1 Meanders, meandric systems and our main theorem

2 Meandric systems and non crossing partitions

3 The infinite noodle and the proof of the main result

4 Open problems
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Proof ideas

A simple lemma

If M is a meandric system and i in {1, . . . ,2n}, denote Ci (M) the
component of M containing i .

Lemma
Let M be a meandric system of size n and in a uniform random integer in
{1, . . . ,2n}. Then

cc(M)
n = 2 ·E[ 1

|Cin (M)|
]
.

Proof.

E
[ 1
|Cin (M)|

]= 1
2n

(∑2n
i=1

1
|Ci (M)|

)
, and each component of M contributes 1 to

the sum.

Consequence: 1
nE

[
cc(Mn)

]= 2 ·E[ 1
|Cin (Mn)|

]
, where (Mn, in) is a uniform

random “marked meandric system”.
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Proof ideas

Why is the lemma interesting?

Reminder:
1
nE

[
cc(Mn)

]= 2 ·E[ 1
|Cin (Mn)|

]
.

The LHS involves a global quantity of Mn (number of components), but
the RHS is (most of the time) a local quantity.

Here local means that if we know Mn on a neighbourhood of in, we might
be able to compute |Cin(Mn)|.
Question
What does Mn look like in the neighbourhood of a random point in? In
probabilistic words, what is the local limit of (Mn, in) (or
Benjamini–Schramm limit of Mn)?
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Proof ideas

Path encoding and local limits

Noncrossing pair partitions are in bijection with Dyck paths.

Hence
meandric systems are in bijection with pairs of Dyck paths.

Fact: locally, a uniform random Dyck path “looks like” an unconditioned
random walk.
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Proof ideas

The limiting object (definition)

Take two bi-infinite sequences of independent uniform random symbols
in {→,←};

Connect → and ← in the unique noncrossing way (independently
above and below the line). We get an “infinite meandric system” M∞.

0

This model has been introduced recently in
[CKST19] N. Curien, G. Kozma, V. Sidoravicius, and L. Tournier.
Uniqueness of the infinite noodle, Ann. Inst. Henri Poincaré D,
Comb. Phys. Interact. (AIHPD), 6(2):221–238, 2019.
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Proof ideas

The limiting object (existence of infinite cluster?)

In [CKST19], the infinite noodle is considered with a percolation point of
view, i.e. the authors consider the following question:

Question (CKST, ’19)

Are there some infinite clusters in the infinite noodle M∞?

Easy fact 1 (from ergodic theory): the number n∞(M∞) of infinite clusters
is a.s. constant.

Theorem (CKST, ’19)

n∞(M∞)= 0 a.s. or n∞(M∞)= 1 a.s.

Furthermore it is conjectured that n∞(M∞)= 0 a.s.

Easy fact 2: (n∞(M∞)= 0 a.s.) ⇔ (C0(M∞)<+∞ a.s.)
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Proof ideas

Local convergence of uniform random meandric system

Proposition (F., Thévenin, ’22)

Let (Mn, in) be a uniform random “marked meandric system” of size n.
Then (Mn, in) converges locally in distribution to (M∞,0) in the sense
that, for each fixed R > 0, the restriction Mn /[in−R , in+R] converges in
distribution to M∞/[−R ,R].

This was essentially already known once rephrased in terms of Dyck paths.

We are interested in 1
nE

[
cc(Mn)

]= 2 ·E[ 1
|Cin (Mn)|

]
Lemma (F., Thévenin, ’22)

The functional (M ,r) 7→ 1
|Cr (M)| is continuous on the set of complete

marked meandric systems.

“Complete” means without open arcs (we need to consider meandric
systems with open arcs to take restrictions and define the local topology).

V. Féray (CNRS, IECL) Meandric systems Warsaw, 2022–04 17 / 25
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Proof ideas

Back to the proof of the main theorem

We know that
(Mn, in) converges in distribution to (M∞,0);
The map (M ,r) 7→ 1

|Cr (M)| is continuous on the set of complete marked
meandric systems;
(M∞,0) is almost surely complete.

By the mapping theorem, 1
|Cin (Mn)| converges in distribution to 1

|C0(M∞)| .

These are bounded r.v., hence they converge also in expectation:

1
n E

[
cc(Mn)

]= 2

E
[ 1
|Cin (Mn)|

]→

2

E
[ 1
|C0(M∞)|

]
.

Note: we do not know whether |C0(M∞)| < +∞ a.s or not.
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Note: we do not know whether |C0(M∞)| < +∞ a.s or not.
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Proof ideas

How to prove convergence in probability and not only in
expectation?

We prove a stronger version of the local convergence, called quenched
Benjamini-Schramm convergence.
In words, we associate to any meandric system M a measure

µM = 1
2n

2n∑
i=1

δ(M ,i)

and we prove the convergence of the random measure µMn
to the

deterministic measure Law((M∞,0)).

We apply a random measure version of the mapping theorem.
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Proof ideas

Another probabilistic interpretaiton of κ

Lemma

κ := 2E
[ 1
|C0(M∞)|

]= 2P[L0(M∞)],

where L0(M∞) is the event “0 is the left-most element in its component in
M∞”.

Proof.
Conditioning on the size of C0(M∞), by translation invariance, 0 has
probability 1

|C0(M∞)| to be the left-most element in its component.

Corollary

Denote R0(M∞) the event “both arrows attached to 0 point to the right”.
We have

κ≤ 2P
(
R0(M∞)

)= 0.5.
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Proof ideas

A combinatorial formula for κ (1/2)

For a meander C , we denote F (C ) its set of faces (connected components
of the complement):

0 1 2 3 4 5F1
F2

F3

F4

F5

F6

Proposition (F., Thévenin, ’22)

κ=
∞∑
k=1

1
k

∑
C∈M(1),k

pC ,

where M(1),k is the set of meanders of size 2k and

pC = 2−4k+1k
∑

`1,...,`2k−1≥0

( ∏
F∈ F (C)

Cat`I (F ) 2
−2`I (F )

)
.

Idea: pC is the probability that C0(M∞) is isomorphic to C .
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Proof ideas

A combinatorial formula for κ (2/2)

For C = (which is the only meander of size 2), we have

pC = 1
8

∞∑
`=0

Cat2`2
−4` = 2

π
− 1
2
≈ 0.137

For C = (which is the only meander of size 4, up to vertical

symmetry), we have

pC = 1
64

·
( ∑
`2≥0

Cat`2 2
−2`2

)
·
( ∑
`1,`3≥0

Cat`1Cat`3Cat`1+`3 2
−4`1−4`3

)

= 1
64

·2 ·
(
8− 64

3π

)
= 1
4
− 2
3π

≈ 0.038

No simple formulas for larger meanders. . . But we can use the formula to
get lower bounds on κ (though it seems to converge slowly).
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Open problems

1 Meanders, meandric systems and our main theorem

2 Meandric systems and non crossing partitions

3 The infinite noodle and the proof of the main result

4 Open problems

V. Féray (CNRS, IECL) Meandric systems Warsaw, 2022–04 23 / 25



Open problems

Question
Find

β := lim
n→+∞

− log
(
P(|C0(M∞)| = 2k)

)
log(2k)

I don’t even know if β<+∞, i.e. if P(|C0(M∞)| = 2k) decays polynomially
fast or not.

Computer experiment (Scherrer, ’21, private communication): β≈ 1.24

Question (Kargin, ’20)

What is the size of the largest component of a uniform random meandric
system?

Conjecture (Kargin, ’20): Θ(nα), with α≈ 4/5.

They do not look like standard critical exponents. A naive heuristics (first
moment estimates) suggests that αβ= 1.
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Open problems

Thank you for
your attention!
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