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Introduction: two different models with similar behaviour

Plancherel measure on partitions

For a partition λ, we take

P(λ) =
dim(λ)2

n!

GUE model of random matrices
a1,1 a1,2 · · ·

a1,2
. . .

...
... · · · an,n


Hermitian matrix with independent
complex Gaussian entries above the
diagonal and real Gaussian entries on
the diagonal.

Theorem (Borodin–Okounkov–Olshanski, Okounkov, Johansson, ∼’00)
Suitably renormalized, for all k , the first rows (λ1, λ2, . . . , λk) of a random
Plancherel Young diagram have the same fluctuations as the largest
eigenvalues of a GUE matrix, i.e. they converge to the “Airy ensemble”.

Goal of the talk: discuss some other similarities and β-deformations.
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Fixed dimension (after Śniady, ’06)

Fix an integer d ≥ 1 and consider a Plancherel random Young diagram
conditioned to have at most d rows.

Permutation interpretation: we look at the RS shape of a uniform random
permutation without decreasing subsequence of length d+1 (i.e. avoiding
the pattern d+1 d · · · 1)

Theorem (Śniady, ’06)

Let λn = (λn,1, . . . , λn,d) be a Plancherel random Young diagram
conditioned to have at most d rows. Then(√

d

n
(λn,i −

n

d
)

)
1≤i≤d

converges in distribution to the eigenvalues of a traceless GUE d × d
random matrix.
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β-deformation (matrix side)

The eigenvalue of GUE random matrices have the following density
w.r.t. Lebesgue measure on {x1 ≥ x2 ≥ · · · ≥ xd}:

1
Cd

e−(x
2
1+···+x2d )

∏
i<j

(xi − xj)
2.

We define GβE ensemble as having the following density w.r.t. Lebesgue
measure on {x1 ≥ x2 ≥ · · · ≥ xd}:

1
Cd(β)

e−
β
2 (x21+···+x2d )

∏
i<j

(xi − xj)
β.

β = 1, 4: these are eigenvalues of natural models of matrices with
real/quaternionic entries.

→ huge literature on this model. . .
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β-deformation (permutation side)

The usual Plancherel mesure is defined by

P(λ) =
dim(λ)2

n!
=

n!

h2
λ

,

where
hλ =

∏
(i ,j)∈λ

(
(λi − j) + (λ′j − i) + 1

)
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β-deformation (permutation side)

The Jack-Plancherel mesure is defined by

P(λ) =
αnn!

h
(α)
λ h

′(α)
λ

,

where
h
(α)
λ =

∏
(i ,j)∈λ

(
α(λi − j) + (λ′j − i) + 1

)
h
(α)
λ =

∏
(i ,j)∈λ

(
α(λi − j) + (λ′j − i) + α

)
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λ h
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h
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h
(α)
λ =

∏
(i ,j)∈λ

(
α(λi − j) + (λ′j − i) + α

)
Remark: P(λ) = [J

(α)
λ ]pn1 , where J

(α)
λ is the (integral) Jack polynomial

indexed by λ.

V. Féray (CNRS, IECL) Random partitions and random matrices Lille, 2022–04 5 / 23



A β version of Śniady’s result (after Matsumoto, ’08)

Theorem (Matsumoto, ’08)

Let λ(α)n = (λ
(α)
n,1 , . . . , λ

(α)
n,d ) be a Jack-Plancherel random Young diagram

conditioned to have at most d rows. Then(√
αd

n
(λ

(α)
n,i −

n

d
)

)
1≤i≤d

converges in distribution to the eigenvalues of a d-dimensional traceless
GβE ensemble, where β = 2/α.

Permutation interpertation: for α = 2, λ(α)n,1 has the same distribution as
the LIS of a uniform random fixed-point free involution conditionned to
have no decreasing subsequence of length > 2d .
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Transition

The Jack-Plancherel measure seems to be a nice analogue of GβE models,
at least in the fixed dimension setting.

→ But what about the unconditioned version? We will see some results for
fluctuations of linear statistics and edge fluctuations.
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Fluctuations of linear statistics

Let M be a GUE random matrix, with eigenvalues x1 ≥ x2 ≥ · · · ≥ xn. We
let

µM =
1
n

n∑
i=1

δxi

be its empirical eigenvalue distribution. Then (Wigner, ’58), for all k

1
n

Tr(Mk) =

∫ 2

−2
xkµM(dx)→P

∫ 2

−2
xkµs−c(dx),

where µs−c(dx) = 1
2π

√
4− x2dx .

Theorem (Johansson, ’98)

Let Tk be a Chebyshev polynomial of degree k . Then, jointly for all k

Tr(Tk(M))− n

∫ 2

−2
Tk(x)µs−c(dx)→d

√
k

2 ξk ,

where ξk are independent Gaussian variables.
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Fluctuations of linear statistics (reformulated)

Another formulation of Johansson’s theorem (Ivanov, Olshanski, ’03):

µM ≡ µs−c +
1
n

∆̃(x) + o
(
n−1),

where ≡ means that equality holds when integrated over any polynomial
function of x and

∆̃(2 cos θ) =
1
2π

∑
k≥1

√
kξk cos(kθ)

sin(θ)
.
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Fluctuations of linear statistics – the partition case

λ

Limit shape result for Plancherel Young diagrams:
(Kerov–Vershik/Logan–Shepp ’77)

sup
x∈R
|λn(x)− Ω(x)| →P 0.
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Fluctuations of linear statistics – the partition case

λ

Theorem (Ivanov–Olshanski ’03, based on unpublished notes by Kerov)

Let λn be a Plancherel random Young diagram of size n and λn its
renormalized upper boundary . Then

λn ≡ Ω(x) +
2√
n

∆(x) + o
(
n−1/2

)
,

where
∆(2 cos θ) =

1
2π

∑
k≥1

ξk sin(kθ)√
k

.
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Fluctuations of linear statistics – the β-partition case

λ

α = 1/3

Theorem (F. – Dołęga, ’16)

Let λn be a Jack-Plancherel random Young diagram of size n and λαn its
renormalized upper boundary (with rows scaled by

√
α
n and columns by

1√
αn

). Then

λ
α
n ≡ Ω(x) +

2√
n

∆(α)(x) + o
(
n−1/2

)
,

where

∆(α)(2 cos θ) =
1
2π

∑
k≥1

ξk sin(kθ)√
k

+
(√
α
−1 −

√
α
)( θ

2π
− 1

4

)
.
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Comparison with β-ensemble

Our result is reminiscent of fluctuations of linear statistics of β-ensembles

Theorem (Dimitriu – Edelman, ’06)

Let µβ be the (random) empirical measure of a GβE ensemble of n
particles. Then

µβ ≡ µs−c +

√
α

n
∆̃(x) +

α− 1
n

µH(dx) + o
(
n−1),

where ∆̃ is the same generalized Gaussian process as before, and µH is the
following deterministic signed measure:

µH(dx) =
1
4
δ−2 +

1
4
δ2 −

1
2π

dx√
4− x2

.

→ For both partitions and matrices, the β-deformation adds a
deterministic term. . .
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Some proof ideas (only on the partition side, here α = 1)

Character values: fix a permutation σ in Sk of cycle-type µ, and consider
the function on Young diagrams

Chµ : λ 7→ |λ| . . . (|λ| − k + 1)
χλ(σ)

dim(λ)
.

Lemma
Fix µ 6= (1r ). If λ is taken at random with Plancherel measure of size n,
then

E(Chµ) = 0.

What about higher (joint) moments of Chµ? Can we compute Chµ ·Chν?

Yes, using Plancherel’s isomorphism, it is equivalent to multiply conjugacy
classes in the symmetric group algebra!
Example: Ch(2) ·Ch(2) = Ch(2,2) +4 Ch(3) +2 Ch(1,1)
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Some proof ideas (only on the partition side, here α = 1)

Using this and the method of moments, one can prove

Theorem (Kerov, ’93, Hora, ’98)
Ch(k)√
knk/2

converge jointly to independent Gaussian random variables.

What about the fluctuations of the rescaled diagram λ? The connection
goes through the following fact.

Proposition (Kerov–Olshanski, ’94, stated informally)

The functions (Ch(k))k≥2 and λ 7→
∫
R xk(λ(x)− |x |)dx generate the same

algebra of functions on Young diagrams.
(+ some formulas to go from one set of generators to the other one.)
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Some proof ideas (only on the partition side, general α)

For general α, there is no representation theory behind the scene!
But we can define a nice deformation of Chµ:

Ch(α)
µ : λ 7→ α−

|µ|−`(µ)
2 zµ [pρ1|λ|−k ]J

(α)
λ .

We have E(α)(Ch
(α)
µ ) = 0;

The functions Ch
(α)
(k) generate the same algebra of functions on Young

diagrams as λ 7→
∫
R xk(λ

α
(x)− |x |)dx (Lassalle, ’09);

There exist coefficients g (α)
µ,ν;π, such that

Ch(α)
µ ·Ch(α)

ν =
∑

π partition
of any size

g
(α)
µ,ν;π Ch(α)

π ,

but we have no Plancherel isomorphism and thus no combinatorial
description of these coefficients. :(
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Some proof ideas (only on the partition side, general α)

What can we do without Plancherel isomorphism?

We prove that the coefficients g (α)
µ,ν;π are polynomials in

γ :=
√
α
−1 −

√
α and we control their degrees.

Using polynomial interpolation, we prove that the first four moments

of
Ch

(α)
(k)

nk/2
√
k
coincide asymptotically with that of a Gaussian.

We use Stein’s method to prove the asymptotic normality (based on a
work on Fulman for Ch

(α)
(2) , ’04).

V. Féray (CNRS, IECL) Random partitions and random matrices Lille, 2022–04 16 / 23



Some proof ideas (only on the partition side, general α)

What can we do without Plancherel isomorphism?

We prove that the coefficients g (α)
µ,ν;π are polynomials in

γ :=
√
α
−1 −

√
α and we control their degrees.

Using polynomial interpolation, we prove that the first four moments

of
Ch

(α)
(k)

nk/2
√
k
coincide asymptotically with that of a Gaussian.

We use Stein’s method to prove the asymptotic normality (based on a
work on Fulman for Ch

(α)
(2) , ’04).

V. Féray (CNRS, IECL) Random partitions and random matrices Lille, 2022–04 16 / 23



Some proof ideas (only on the partition side, general α)

What can we do without Plancherel isomorphism?

We prove that the coefficients g (α)
µ,ν;π are polynomials in

γ :=
√
α
−1 −

√
α and we control their degrees.

Using polynomial interpolation, we prove that the first four moments

of
Ch

(α)
(k)

nk/2
√
k
coincide asymptotically with that of a Gaussian.

We use Stein’s method to prove the asymptotic normality (based on a
work on Fulman for Ch

(α)
(2) , ’04).

V. Féray (CNRS, IECL) Random partitions and random matrices Lille, 2022–04 16 / 23



Some proof ideas (only on the partition side, general α)

What can we do without Plancherel isomorphism?

We prove that the coefficients g (α)
µ,ν;π are polynomials in

γ :=
√
α
−1 −

√
α and we control their degrees.

Using polynomial interpolation, we prove that the first four moments

of
Ch

(α)
(k)

nk/2
√
k
coincide asymptotically with that of a Gaussian.

We use Stein’s method to prove the asymptotic normality (based on a
work on Fulman for Ch

(α)
(2) , ’04).

V. Féray (CNRS, IECL) Random partitions and random matrices Lille, 2022–04 16 / 23



And edge fluctuations?

Theorem (Guionnet, Huang, ’19)

Let λn be a Jack-Plancherel random Young diagram of size n and fix
k ≥ 1. Then the lengths of the k first row (λn1, . . . , λ

n
k) of λn has

asymptotically the same fluctuations as the k first particles of a GβE
ensemble, where β = 2/α.

Note: the combinatorially relevant cases α ∈ {1/2, 2} were proven earlier
by Baik and Rains, ’01.
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Transition

We now add the time dimension on the partition side, and look at random
tableaux.

1
3
4

2
5
6

7 ≡ ∅ 7→ (1) 7→ (1, 1) 7→ (2, 1) 7→ (3, 1)
7→ (3, 2) 7→ (3, 3) 7→ (3, 3, 1)

Model of random tableaux: fix the shape λ and take a uniform random
tableau T of shape λ.
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Some links with random matrices

Theorem (Marchal, ’07)

Let T be a random Young diagram of square shape n × n. Then, there
exists a function r(t) for t ∈ (0, 1), we have

r(t)
(
T (1, bntc)− ET (1, bntc)

)
N4/3 →d TW ,

where TW is the GUE Tracy–Widom distribution.

Theorem (Gorin–Rahman, ’19)

Let T be a random Young diagram of staircase shape (n− 1, n− 2, . . . , 1).
Then, for α ∈ (−1; 1), the entry T

(
b (1+α)n2 c, d (1−α)n2 e

)
on the outer

border as the same fluctuations as the smallest positive eigenvalue Λ+ of a
GOE matrix.
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Local limits of Young tableaux
(work in progress with J. Borga, C. Boutillier, P.-L. Méliot)

One can encode tableaux as particles (or beads) on vertical lines (threads),
with an interlacing condition.

1
2

4
6

3
5

8
7

9

t=0

t=9

Figure: A Young tableau T and the associated set MT .

We look at MT around a point (x0
√
n, t0 n) in a window of size

O(1)× O(
√
n), i.e. we set

M̃λ =
{

(y , ε) ∈ Z× R :
(
x0
√
N + y , t0n + ε

√
n
)
∈ MλN

}
.
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Local limits of Young tableaux
(work in progress with J. Borga, C. Boutillier, P.-L. Méliot)

What are we trying to prove?

When the size of λ goes to infinity with some limit shape, for (x0, t0) in the
bulk, the renormalized process M̃λ converges to Boutillier’s bead model.

What is the limit object?
Boutillier’s bead models form a natural family of models of random
interlacing bead configurations;
They are local limits in the bulk of GUE corner processes (Adler,
Nordenstam, Van Moerbeke, ’14).

Main tool: The particle representation of Poissonized tableau is a
determinantal point process! (Gorin–Rahman, ’19)
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β-deformation

Fact: the Jack-Plancherel measure is Markovian (i.e. one can sample a
diagram of size n easily starting from one of size n − 1).

→ one can define β-random tableaux (Plancherel distributed, or of a given
shape if one conditioned to the final shape).

Future work?
Do fluctutations of a Plancherel random β-tableau conditioned on
having at most d rows converge to a β-Dyson Brownian motion?
Is the local limit of β-tableaux in the bulk the β-bead model
(Najnudel, Virag, ’21)?
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Thank you for
your attention!
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