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General problem

Definition
A sequence of random permutations σn ∈ Sn satisfies:

a 0-1 law if, for every first-order property Ψ, the probability P[σn |= Ψ]
tends to 0 or 1;
a convergence law if, for every first-order property Ψ, the probability
P[σn |= Ψ] has a limit as n→∞?

Motivation: large literature on 0-1/convergence law for random graphs on
one side, on random permutations on the other sides.

Goal of today’s talk: panorama of some results/questions on the topic.
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Permutations as models of a logical theory
Two ways to see permutations

Bijection point of view Matrix point of view

A permutation σ is a pair

(A, f ),

where f a bijection from A→ A.

A permutation σ is a triple

(A, <P , <V ),

where <P and <V are linear orders
on A.

1

3

4

2

5

f (1) = 3; f (2) = 5; f (3) = 4;

f (4) = 1; f (5) = 2.

C

A

B

D

E

A <P B <P C <P D <P E ;

B <V E <V A <V C <V D.

TOOB: “theory of one bijection” TOTO: “theory of two orders”

V. Féray (CNRS, IECL) Logic and permutations Dagstuhl, 2022–02 3 / 11



Permutations as models of a logical theory
Two ways to see permutations

Bijection point of view Matrix point of view

A permutation σ is a pair

(A, f ),

where f a bijection from A→ A.

A permutation σ is a triple

(A, <P , <V ),

where <P and <V are linear orders
on A.

1

3

4

2

5

f (1) = 3; f (2) = 5; f (3) = 4;

f (4) = 1; f (5) = 2.

C

A

B

D

E

A <P B <P C <P D <P E ;

B <V E <V A <V C <V D.

TOOB: “theory of one bijection” TOTO: “theory of two orders”
V. Féray (CNRS, IECL) Logic and permutations Dagstuhl, 2022–02 3 / 11



First order properties

Definition: A first order formula is written using variables x , y , z , . . . ,
relational symbols f or <P , <V , and logical symbols ∃, ∀, =, ¬ (we
quantify only on variables, not on sets of variables).

Bijection point of view (TOOB)

Matrix point of view (TOTO)

Example: existence of a fixed point Example: existence of a 213 pattern

∃x : f (x) = x

∃x , y , z : (x <P y <P z) ∧ (y <V x <P z)

x

x

y

z

More generally, one can express
properties regarding short cycles of
the permutation (conjugate permu-
tations are isomorphic!)

More generally, one can express
many properties regarding “general-
ized pattern”. . . but not the existence
of a fixed point!

V. Féray (CNRS, IECL) Logic and permutations Dagstuhl, 2022–02 4 / 11



First order properties

Definition: A first order formula is written using variables x , y , z , . . . ,
relational symbols f or <P , <V , and logical symbols ∃, ∀, =, ¬ (we
quantify only on variables, not on sets of variables).

Bijection point of view (TOOB)

Matrix point of view (TOTO)

Example: existence of a fixed point

Example: existence of a 213 pattern

∃x : f (x) = x

∃x , y , z : (x <P y <P z) ∧ (y <V x <P z)

x

x

y

z

More generally, one can express
properties regarding short cycles of
the permutation (conjugate permu-
tations are isomorphic!)

More generally, one can express
many properties regarding “general-
ized pattern”. . . but not the existence
of a fixed point!

V. Féray (CNRS, IECL) Logic and permutations Dagstuhl, 2022–02 4 / 11



First order properties

Definition: A first order formula is written using variables x , y , z , . . . ,
relational symbols f or <P , <V , and logical symbols ∃, ∀, =, ¬ (we
quantify only on variables, not on sets of variables).

Bijection point of view (TOOB) Matrix point of view (TOTO)

Example: existence of a fixed point Example: existence of a 213 pattern
∃x : f (x) = x ∃x , y , z : (x <P y <P z) ∧ (y <V x <P z)

x

x

y

z

More generally, one can express
properties regarding short cycles of
the permutation (conjugate permu-
tations are isomorphic!)

More generally, one can express
many properties regarding “general-
ized pattern”. . . but not the existence
of a fixed point!

V. Féray (CNRS, IECL) Logic and permutations Dagstuhl, 2022–02 4 / 11



An “incompatibility” result

Recall that the support of a permutation is the set of its non-fixed points.

Theorem (Albert, Bouvel, F., ’20)

Let (P) be a property, expressible as a first-order formula for both TOOB
and TOTO. Then

either all permutations with sufficiently large support verify (P),
or there is a bound on the size of the support of permutations
verifying (P).

Proof uses Ehrenfeucht–Fraïssé games and combinatorial arguments.
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Back to 0-1/convergence laws: the bijection point of view

Proposition (folklore?)

Let σn a uniform random permutation of n. Then σn admits a convergence
law for TOOB.

“Proof:” it is well-known that
σn contains a large cycle with high probability;
the small cycle counts (#C1(σ),#C2(σ), . . . ) converge jointly to
Poisson random variables.

Theorem (Compton, ’87)

Permutations admit an unlabelled 0-1 law. Namely, if σn is in the
conjugacy class Cλ, where λ is taken uniformly at random among partitions
of n, then σn admits a 0-1 law for TOOB.

(This is one application of a general result, relating 0-1 law and analytic
combinatorics.)
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Back to 0-1/convergence laws: the matrix point of view

Theorem (Foy, Woods, ’90)

Let σn be a uniform random permutation. Then σn does not admit a
convergence law for TOTO (matrix point of view).

In fact, they prove that there exists a first-order property Ψ (using the
relations <V , <P) such that

lim inf P(σn |= Ψ) = 0, lim supP(σn |= Ψ) = 1.
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Random pattern avoiding permutation

Definition
An occurrence of a pattern τ in σ is a subsequence σi1 . . . σik that is
order-isomorphic to τ , i.e. σis < σit ⇔ τs < τt .

Example (occurrences of 2 1 3)

2 4 5 3 6 1
8 2 3 4 6 1 7 5

Visual interpretation

We denote Avn(τ1, . . . , τr ) the set of permutations σ of size n avoiding
τ1, . . . , τr . For fixed τ1, . . . , τr , we consider a uniform random permutation
σn in Avn(τ).
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Convergence law for random avoiding permutations

Theorem (Albert, Bouvel, F., Noy ’22)

For each n ≥ 1, let σn be a uniform random permutation in Avn(231).
Then σn satisfies a convergence law.

The proof uses analytic combinatorics; it is based on Woods’ approach for
convergence law for rooted trees (’97).

Theorem (Braunfeld, Kukla ’22)

For each n ≥ 1, let σn be a uniform random permutation in Avn(231, 312)
(layered permutations). Then σn satisfies a convergence law.
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