Convergence laws for random permutations

Valentin Féray (joint work with Michael Albert, Mathilde Bouvel and Marc Noy)

CNRS, Institut Élie Cartan de Lorraine

Dagstuhl seminar on Logic and Random Structures, February 2022

General problem

Definition

A sequence of random permutations $\sigma_n \in S_n$ satisfies:

- a 0-1 law if, for every first-order property Ψ, the probability P[σ_n ⊨ Ψ] tends to 0 or 1;
- a convergence law if, for every first-order property Ψ , the probability $\mathbb{P}[\sigma_n \models \Psi]$ has a limit as $n \to \infty$?

Motivation: large literature on 0-1/convergence law for random graphs on one side, on random permutations on the other sides.

Goal of today's talk: panorama of some results/questions on the topic.

Permutations as models of a logical theory

Two ways to see permutations

Bijection point of view

A permutation σ is a pair

(A, f),

where f a bijection from $A \rightarrow A$.

Matrix point of view A permutation σ is a triple $(A, <_P, <_V)$, where $<_P$ and $<_V$ are linear orders on A.

$$A <_P B <_P C <_P D <_P E;$$

$$B <_V E <_V A <_V C <_V D.$$

Permutations as models of a logical theory

Two ways to see permutations

Bijection point of view

A permutation σ is a pair

(A, f),

where f a bijection from $A \rightarrow A$.

TOOB: "theory of one bijection"

Matrix point of view A permutation σ is a triple $(A, <_P, <_V)$, where $<_P$ and $<_V$ are linear orders

on A.

 $A <_P B <_P C <_P D <_P E;$ $B <_V E <_V A <_V C <_V D.$

TOTO: "theory of two orders"

First order properties

Definition: A first order formula is written using variables x, y, z, ..., relational symbols f or $<_P, <_V$, and logical symbols $\exists, \forall, =, \neg$ (we quantify only on variables, not on sets of variables).

First order properties

Definition: A first order formula is written using variables x, y, z, ..., relational symbols f or $<_P, <_V$, and logical symbols $\exists, \forall, =, \neg$ (we quantify only on variables, not on sets of variables).

V. Féray (CNRS, IECL)

First order properties

Definition: A first order formula is written using variables x, y, z, ..., relational symbols f or $<_P, <_V$, and logical symbols $\exists, \forall, =, \neg$ (we quantify only on variables, not on sets of variables).

More generally, one can express properties regarding short cycles of the permutation (conjugate permutations are isomorphic!)

Matrix point of view (TOTO)

Example: existence of a 213 pattern $\exists x, y, z : (x <_P y <_P z) \land (y <_V x <_P z)$

More generally, one can express many properties regarding "generalized pattern"... but not the existence of a fixed point!

V. Féray (CNRS, IECL)

Recall that the support of a permutation is the set of its non-fixed points.

Theorem (Albert, Bouvel, F., '20)

Let (P) be a property, expressible as a first-order formula for both TOOB and TOTO. Then

- either all permutations with sufficiently large support verify (P),
- or there is a bound on the size of the support of permutations verifying (*P*).

Proof uses Ehrenfeucht-Fraïssé games and combinatorial arguments.

Back to 0-1/convergence laws: the bijection point of view

Proposition (folklore?)

Let σ_n a uniform random permutation of n. Then σ_n admits a convergence law for TOOB.

"Proof:" it is well-known that

- σ_n contains a large cycle with high probability;
- the small cycle counts $(\#C_1(\sigma), \#C_2(\sigma), ...)$ converge jointly to Poisson random variables.

Back to 0-1/convergence laws: the bijection point of view

Proposition (folklore?)

Let σ_n a uniform random permutation of n. Then σ_n admits a convergence law for TOOB.

"Proof:" it is well-known that

- σ_n contains a large cycle with high probability;
- the small cycle counts $(\#C_1(\sigma), \#C_2(\sigma), ...)$ converge jointly to Poisson random variables.

Theorem (Compton, '87)

Permutations admit an unlabelled 0-1 law. Namely, if σ_n is in the conjugacy class C_{λ} , where λ is taken uniformly at random among partitions of n, then σ_n admits a 0-1 law for TOOB.

(This is one application of a general result, relating 0-1 law and analytic combinatorics.)

V. Féray (CNRS, IECL)

Logic and permutations

Back to 0-1/convergence laws: the matrix point of view

Theorem (Foy, Woods, '90)

Let σ_n be a uniform random permutation. Then σ_n does not admit a convergence law for TOTO (matrix point of view).

In fact, they prove that there exists a first-order property Ψ (using the relations $<_V$, $<_P$) such that

 $\liminf \mathbb{P}(\sigma_n \models \Psi) = 0, \qquad \limsup \mathbb{P}(\sigma_n \models \Psi) = 1.$

Random pattern avoiding permutation

Definition

An occurrence of a pattern τ in σ is a subsequence $\sigma_{i_1} \dots \sigma_{i_k}$ that is order-isomorphic to τ , i.e. $\sigma_{i_s} < \sigma_{i_t} \Leftrightarrow \tau_s < \tau_t$.

We denote $Av_n(\tau_1, \ldots, \tau_r)$ the set of permutations σ of size *n* avoiding τ_1, \ldots, τ_r . For fixed τ_1, \ldots, τ_r , we consider a uniform random permutation σ_n in $Av_n(\tau)$.

V. Féray (CNRS, IECL)

Convergence law for random avoiding permutations

Theorem (Albert, Bouvel, F., Noy '22)

For each $n \ge 1$, let σ_n be a uniform random permutation in Av_n(231). Then σ_n satisfies a convergence law.

The proof uses analytic combinatorics; it is based on Woods' approach for convergence law for rooted trees ('97).

Theorem (Braunfeld, Kukla '22)

For each $n \ge 1$, let σ_n be a uniform random permutation in Av_n(231, 312) (layered permutations). Then σ_n satisfies a convergence law.